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Abstract

Background: The SmtB/ArsR family of prokaryotic metal-regulatory transcriptional repressors
represses the expression of operons linked to stress-inducing concentrations of heavy metal ions,
while derepression results from direct binding of metal ions by these 'metal-sensor' proteins. The
HlyU protein from Vibrio cholerae is the positive regulator of haemolysin gene, it also plays
important role in the regulation of expression of the virulence genes. Despite the understanding of
biochemical properties, its structure and relationship to other protein families remain unknown.

Results: We find that HlyU exhibits structural features common to the SmtB/ArsR family of
transcriptional repressors. Analysis of the modeled structure of HlyU reveals that it does not have
the key metal-sensing residues which are unique to the SmtB/ArsR family of repressors, yet the
tertiary structure is very similar to the family members. HlyU is the only member that has a positive
control on transcription, while all the other members in the family are repressors. An evolutionary
analysis with other SmtB/ArsR family members suggests that during evolution HlyU probably
occurred by gene duplication and mutational events that led to the emergence of this protein from
ancestral transcriptional repressor by the loss of the metal-binding sites.

Conclusion: The study indicates that the same protein family can contain both the positive
regulator of transcription and repressors — the exact function being controlled by the absence or
the presence of metal-binding sites.

Background

The SmtB/ArsR family of metalloregulators is present in
many bacteria and archaea, and its members respond to a
variety of different metals. However, even in this well-
studied regulator family, the determinants conferring
metal specificity are only beginning to be understood [1].
Members of this family possess a highly conserved DNA
recognition helix-turn-helix (HTH) domain and bind as
homodimers to their operator/promoter (O/P)
sequences, repressing the expression of operons associ-
ated with metal ion sequestration or efflux in both Gram-

positive and Gram-negative bacteria, allowing these
organisms to survive when challenged with toxic concen-
trations of heavy metal ions [2]. An evolutionary analysis,
coupled with comparative structural and spectroscopic
studies of six SmtB/ArsR family members, revealed that
these proteins harbor one or both of the two structurally
distinct metal coordination sites, denoted o3N or o5
[3,4], named for the location of the metal binding sites in
the known or predicted secondary structural elements of
individual family members. The members most closely
related to a common ancestor, represented by the ArsR
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family, contain only o3N metal binding site, while the
more divergent homologue CzrA possesses only a5 metal
binding site. The 3N site is cysteine thiolate-rich, form-
ing S, or S, complexes with large, thiophilic metals includ-
ing Cd, Pb and Bi, as found in the cadmium sensor
Staphylococcus aureus CadC [4-6], while site-directed muta-
genesis and amino acid sequence comparisons suggested
that the o5 site is composed of a combination of carbox-
ylate and imidazole ligands, interacting preferentially
with transition metal ions including Zn, Co and Ni [7-9].
Apart from a3N and o5 sites there are other metal sensory
sites found in Mycobacterium tuberculosis H37Rv CmtR
[10,11]. CmtR is a Pb(II)/Cd(II)-sensing SmtB/ArsR met-
alloregulatory repressor that lacks both typical 3N and
o5 sites and possesses a novel metal-sensing site at the o4
or the DNA-recognition helix [11].

Vibrio cholerae expresses virulence factors that allow it to
colonize the human intestine and cause the disease chol-
era. Regulation of virulence genes in Vibrio cholerae
involves the ToxR, Fur, and HlyU regulatory systems [12].
The HlyU regulator controls the expression of HlyA [13],
and a hlyU mutation attenuates Vibrio cholerae O17 in the
infant mouse cholera model [14]. In addition to the well-
studied role of the positive regulation of the transcription
of HlyA, the possibility of HlyU controlling the expression
of virulence determinants was suggested by the reduced
colonizing ability of a hlyU mutant compared with that of
a hlyA mutant. A recent study also showed that HlyU is
one of the master regulators of in vivo virulence expression
in Vibrio vulnificus [15]. Therefore, the HlyU protein itself
and the genes under its control would serve as important
targets in developing a new-paradigm therapy against
Vibrio cholerae. Using the method of protein fold-recogni-
tion we found that Vibrio cholerae HlyU exhibits a domain
common to the SmtB/ArsR family. The fact that all the
members of SmtB/ArsR family are transcriptional repres-
sors, in contrast to V. cholerae HlyU being a positive regu-
lator of transcription, suggests that the knowledge of
sequence-structure-function relationship in HIlyU is
desired. The elucidation of the three-dimensional (3D)
structure could provide insight into molecular functions
as well as evolutionary relationship between HlyU and
the SmtB/ArsR family members. In this paper we elucidate
the structure and mechanism of action of V. cholerae HlyU
using computational methods.

Results and Discussion

Identification of the three-dimensional fold

To create a model of Vc-HlyU, we first performed a BLAST
search for proteins with similar sequence and known 3D
structure using the 108 residue long Vc-HlyU sequence
(SWISS-PROT: P52695). Significant similarities were
found with several ArsR family of transcription regulators
(Table 1) suggesting that Vc-HlyU may belong to the same

http://www.biomedcentral.com/1472-6807/6/24

family. Additionally, a conserved domain search [16] of
Vc-HlyU sequence also supported the above idea. A
PROSITE analysis of Vc-HlyU sequence also indicated the
presence of ArsR-type HTH domain signature and profile.
In addition, a BLAST search against the structures in Pro-
tein Data Bank (PDB) also identified ArsR-like transcrip-
tion regulators, though with lower E-values and ~35%
sequence identity (Table 1). The proteins are CadC from
Staphylococcus aureus pI258, CzrA from Staphylococcus
aureus, and SmtB from Synechococcus sp., which could be
considered as possible templates for modeling of Vc-HlyU
using the threading approach, which allows to assess the
compatibility of the target sequence with the available
protein folds based not only on the sequence similarity
but also on structural considerations [17,18]. The Vc-
HlyU sequence was therefore submitted to the Genesilico
protein fold-recognition metaserver. Fold-recognition
servers SPARKS, FUGUE, and 3DPSSM reported SmtB
from Synechococcus (PDB entry: 1smt) as the best template
with highly significant score. INBGU scored CzrA from
Staphylococcus aureus (PDB entry: 1rlu) as the best tem-
plate, which was CadC from Staphylococcus aureus pI258
(PDB entry: 1u2w) according to mGENETHREADER.
Fold-recognition alignments reported by these servers
were compared, evaluated, and ranked by Pcons server,
which assigned highly significant scores to Synechococcus
PCC7942 SmtB (1%t), S. aureus CzrA (27d), and S. aureus
pI258 CadC (31) as the potential modeling templates.
The analysis by CATH and SCOP on the crystallographic
structures of Synechococcus PCC7942 SmtB, S. aureus CzrA,
and S. aureus pI1258 CadC confirmed that they all belong
to the 'Winged helix DNA-binding domain' superfamily,
and 'ArsR-like transcriptional regulators' family. Their
fold is well conserved in the entire superfamily, even if the
sequence identity between the proteins in this family is
low (~25-50%). On the basis of these results, we can con-
clude that Vc-HlyU has a fold similar to these proteins.
Therefore, we used these experimental three-dimensional
structures as templates to predict the 3D structure of Vc-
HlyU by using comparative modeling strategy.

Comparative modeling of the Vc-HIlyU

The availability of experimental 3D templates allowed us
to create a 3D model of Vc-HlyU by using the comparative
modeling strategy, taking into account the difficulties
encountered with low sequence identity (between 20 and
40%) - a borderline case that has to be treated carefully
[19-22]. Nevertheless, when proteins used for alignment
and modeling belong to the same family in which the
structure is well conserved, functional information and
overall structure similarity can overcome the problem of
low-sequence identity and a good multiple sequence
alignment can be obtained, suitable for applying the com-
parative modeling procedure [19]. Moreover, information
such as the position of secondary structure elements can
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Table I: Proteins found with BLAST search producing alignments (E value < | x 10-20) with the sequence of HlyU from V. cholerae are

shown together with proteins with known 3D structure

Genebank code Protein description Organism Score (bits) E Sequence identity (%)
ZP_00992718.1 Transcription activator HlyU Vibrio splendidus 137 2 x 103! 82
ZP_01065735.1 Transcription activator HlyU Vibrio sp. 135 4 x 103! 82
NP_759503.1 Transcription activator HlyU Vibrio vulnificus 132 6 x 1030 82
NP_796908.1 Transcription activator HlyU Vibrio parahaemolyticus 130 2x 102 83
ZP_01261951.1 Transcription activator HlyU Vibrio alginolyticus 129 5x 1020 83
ZP_00761653.1 Predicted transcriptional regulator Vibrio sp. 129 6 x 102 83
YP_128811.1 Putative transcription activator HlyU Photobacterium profundum 126 3x 1028 75
YP_203846.1 Transcription activator HlyU Vibrio fischeri 124 2x 107 73
NP_719085.1 Transcription activator HlyU Shewanella oneidensis 109 4 %1028 64
YP_751572.1 Transcriptional regulator, ArsR family protein Shewanella frigidimarina 107 I x 1022 63
ZP_01437145.1 Transcriptional regulator, ArsR family protein Shewanella baltica 106 2 x 1022 63
ZP_00838999.1 Regulatory protein, ArsR Shewanella sp. 105 5x 1022 63
YP_563729.1 Regulatory protein, ArsR Shewanella denitrificans 105 5x 1022 63
ZP_01305695.1 Transcription activator HlyU Oceanobacter sp. 101 I x 1020 58
Proteins with known 3D structure?

PDB code: lu2w Cadmium efflux system accessory protein CadC Staphylococcus aureus 46.2 2 x |00 34
PDB code: Irlu Repressor protein CzrAb Staphylococcus aureus 454 3 x 1006 33
PDB code: Ismt Transcriptional repressor SmtBb Synechococcus sp. 36.2 0.002 37

aFound from a BLAST search on PDB.

b A few other closely related structures have PDB codes Irlv and (1r22, 1r23 and Irlt).

be used to verify the quality of the sequence alignment
and to optimize the position of the gaps. Therefore, we
performed a multiple sequence alignment, on Vc-HlyU
and the proteins selected by fold-recognition methods.
The positions of the experimentally observed secondary
structure elements of templates and of the predicted sec-
ondary structure of Vc-HlyU were then superimposed
onto the aligned sequences. We found good agreement
between the predicted and experimental secondary struc-
ture positions. These results confirmed the good quality of
the multiple alignment obtained, and after a few minor
manual refinements to correct gaps, we used the final
alignment (Figure 1) as the starting point to predict the
3D structure of Vc-HIyU.

To create the 3D model of Vc-HlyU, two sets of ten struc-
tural models were created using MODELLER in two dis-
tinct sessions, one set using SmtB from Synechococcus
PCC7942 and CzrA from Staphylococcus aureus as tem-
plates, while the other set also additionally used CadC
from Staphylococcus aureus pl258. We then performed a
PROCHECK analysis on the stereochemical quality of the
20 models, selected the best model from each session, and
used them as templates to generate a new set of ten mod-
els. The most reliable of them in terms of stereochemical
quality (based on PROCHECK) was selected as the final
model, which had 96.3% of residues in most favoured
regions, 3.2% of residues in additional allowed regions
and one residue in generously allowed regions with no
residues in disallowed regions, a result expected for crys-
tallographic models with at least 2.0 A resolution and the
R factor lower than 20% [23]. The side-chains of the mod-
els were optimized using SCWRL 3.0 program. A complete
validation analysis on the final homodimeric model was

also performed with ADIT Validation server at RCSB
(Research Collabatory for Structural Bioinformatics) and
confirmed its good quality. The model was also evaluated
at the Eval123D server [24] using Eval23D [25], Verify3D
[26], Prosall [27], and Solvation Free Energy (SFE) of fold-
ing [28]. Results shown in Table 2 indicate that the quality
of the model is as good as the crystallographically deter-
mined structures in the SmtB/ArsR family. Furthermore,
the plot of Prosa values, representing the interaction
energy of each residue with the rest of the protein, are neg-
ative along the whole sequence (see additional file 1), also
indicating the overall reliability of the model.

The three-dimensional structure of Vc-HlyU

Each monomer of Vc-HlyU has a fold consisting of five a-
helices and a pair of antiparallel B-strands in the topology
ol-02-03-04-B1-f2-05 (Figure 2a). As expected the
model is perfectly superimposable with the templates
(Figure 2b), the root-mean-square deviations (RMSD)
using Co. atoms being 2.04 A, 0.32 A and 0.85 A with
SmtB, CzrA and CadC, respectively (for comparison, the
RMSD values between the template structures are SmtB-
CzrA: 2.29 A, SmtB-CadC: 3.29 A and CzrA-CadC: 1.88
A). Helices 3 (0:3) and 4 (0i4) constitute the helix-turn-
helix motif in Vc-HlyU and the B-sheet is the wing as
found in other winged-HTHs. Helix 4 (0i4) is termed as
the recognition helix (aR), like in other HTHs where it
binds the DNA at the major groove. This helix-turn-helix
domain (o3-turn-oR) has strong structural resemblance
to other bacterial transcriptional regulators including CAP
(catabolite activator protein) [29], and DtxR (the Fe(III)-
regulated diphtheria toxin repressor) [30]. This DNA
binding domain, particularly the sequence of the pro-
posed DNA-recognition o-helix (aR), is also highly con-
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3N site ol o2
C O C (@)
SmtB MTKPVLQDGE TVVCFQGTI;IAAIAS ELQAIAPEVAQSLAEFFAVLADPNRLRLLSLLAR 57
CZrA ———————mmmm— i MSEQYSEINTDTLERVTEIFKALGDYNRIRIMELLSV 37
CadC --- —MKKDTQEIFQYDEEKVNRIQGDLQTVDISGVSQILKAIADENRAKITYALCQ 53
HlyU —--—--——————-—- MPYLKGAPMNLQEMEKNSAKAVVLLKAMANERRLQILCMLLD 42
o3N site .3 OR B1 B2 oS site o5
C O C (@)
SmtB S —ELgVGQLAQAIGVSE SAVSHQLRSLRNLRLVSYRKQGRHVYYQLQ]QHI} IVALYQN 113
CzrA S-EASVGHI SHQLNLSQSNVSHQLKLLKSVHLVKAKRQGQSMIYSLDQ I !_;_IVATMLKQ 93
CadcC DEEL(_EVC:"D IANILGVT IANASHHLRTLYKQGVVNFRKEGKLALYSLG]QEI} IRQIMMI 110
HlyU N—]}‘_.LS¥GE]:..$SRPE]:..$Q$AL§QI:I£.AW£.RRDGI_.¥NTBI_(EAQTVF¥T¥S STEVKA].\_JIEL 98
o5 site
SmtB ALDHLQECR---- 122
CzrA AIHHANHPKESGL 106
CadC ALAI;IKK}JZ}VKVNV— 122
hlyU LHRLYCQANQ--- 108
Figure |

Alignment of the Vc-HIyU sequence with those of templates SmtB from Synechococcus PCC7942, CzrA from Staphylococcus
aureus, and CadC from Staphylococcus aureus pl258. Secondary structural elements are shown (o-helices as cylinders and -
strands as arrows) and labeled (04 is the DNA-recognition helix, oiR). Metal binding sites 3N and o5 are marked with plus
(+) sign in magenta and green color, respectively. Residues which formed the homodimeric interface are shown in colors, core-
residues and rim-residues [37] are shown in red and sky-blue, respectively. Conserved residues are denoted by asterix (¥),
while residues conserved among all the SmtB/ArsR family members are colored in blue asterix (*). The wild-type CadC has a

Cys in position | |, which was Gly in the recombinant protein.

served throughout the SmtB/ArsR family and is one of the
distinguishing characteristics that define membership.
Most SmtB/ArsR-like metalloregulators form homodim-
ers. The dimer interface is formed by helix 5 (0.5) and an
N-terminal part of the protein [31], as can also be seen in
the model of Vc-HlyU (Figure 2c).

HlyU has two cysteine residues (C38 and C104, Figure 1),
not linked by any disulfide bridge; C104 (in a.5) is solvent
exposed, while C38 (in 0.2) is partially buried, as was indi-
cated by biochemical studies [32].

Vc-HIyU does not have the key metal-binding residues
Comparative biochemical, spectroscopic, and theoretical
studies on SmtB/ArsR family members, reveals that these

Table 2: Evaluation of the quality of the model using some statistically derived methods

Solvation Free Energy (SFE)

Protein Eval23D Verify3D Prosall Calculated? Predicted®
Ve-HlyU 4.156 0.401 -1.836 -200.9 -208.4
SmtB 4.768 0418 -1.353 -221.1 -209.6
CzrA 5.851 0.435 -2.075 -215.9 -196.0
CadC 5.878 0.402 -1.831 -227.8 -228.8
aUsing Eval 123D server [24].
b Using the equation, SFE = 15.30 - 1.13 N, where N = number of residues [28].
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Figure 2

Three-dimensional structure of Ve-HIyU. (a) Cartoon diagram of Vc-HlyU monomer showing the ol -02-0.3-0i4-3 1-$2-05 fold.
(b) Superimposition of Synechococcus SmtB (blue color), S. aureus CzrA (orange), S. aureus CadC (teal), and Vc-HIyU (magenta)
monomers. (c) Ribbon diagram of Vc-HIyU dimer showing the secondary structural units. Monomer A and B are in magenta
and blue colors, respectively. All figures were created with PyMOL [73].
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proteins possess one or both of two structurally distinct
metal-binding sites, denoted by a3N or o5, named
according to the location of the metal sites in the known
or predicted secondary structure of individual family
members. Metal binding leads to derepression by induc-
ing a conformational change leading to the release of the
metalated repressor from the O/P sequence. In the case of
CadC, binding of the metal brings the N-terminus of one
subunit into position to sterically block the DNA binding
site of the other subunit [33]. Synechococcus PCC7942
SmtB binds Zn?+, has both the 03N and o5 metal binding
sites, but only the a5 site is functional; N-terminal resi-
dues C14, H18, and residues C61 and D64 (in the N-ter-
minus of &3 helix) comprise the first metal binding site or
3N site; while the other Zn2+-binding site or the o5 site
occurs at the dimer interface between the C-terminal o5
helices of two monomers, they are formed by two residues
from each monomer, D104 and H106 from one mono-
mer along with H117 and E120 from the other [31] (Fig-
ure 1). S. aureus pI258 CadC has a similar structural
arrangement, o3N site consists of C7, C11, C58, and C60
residues, while o5 site consists of D101, H103, H114, and
E117 residues. S. aureus CzrA does not have the o3N site,
but the a5 site is present and consists of D84, H86, H97,
and H100 residues in the same structural arrangement as
in the other members of SmtB/ArsR family of proteins.

A highly conserved ELCV(C/G)D motif termed as the
'metal binding box' was initially identified in members of
the SmtB/ArsR family [2]. This motif was proposed to con-
tain residues involved in metal coordination and, there-
fore, directly involved in metal ion sensing. SmtB and
CadC have this motif, 59ELCVGD®%* and S55ELCVCDS0,
respectively in the a3 helix (Figure 1), as part of the pro-
jected a3-turn-oR DNA-binding motif [31,33]. This
sequence is required for metal ion sensing by the direct
binding of metal ions, suggested by the fact that the sub-
stitution of one or both cysteines with non-metal-ligand-
ing residues in the 3°ELCVCD3> motif inhibited the ability
of arsenate salts to dissociate ArsR from the ars O/P [34].
Vc-HIyU has the the 'metal binding box' 44ELSVGE*? (Fig-
ure 1) exactly in the same position as found in other
SmtB/ArsR family members, but interestingly, the key
metal sensor residue cysteine in this box is replaced by
non-metal-ligand residue serine, indicating that Vc-HlyU
may not bind metal at the a3N site. S. aureus CzrA, which
does not bind metal at the a3N site, has similar motif
39EASVGH*4 as Vc-HlyU. Ve-HlyU also lacks the two metal
binding residues present in the N-terminus of the protein
as found in case of SmtB and CadC. This is similar to
CzrA, which also does not have those metal-sensing resi-
dues. Therefore, the absence of N-terminal metal-binding
residues in addition to the presence of non-metal binding
residue serine in the 'metal binding box' suggests that Vc-
HlyU does not bind any metal at the 3N site (Figure 3a).

http://www.biomedcentral.com/1472-6807/6/24

The a5 metal site consists of four metal ligands derived
exclusively from the two ends of a5 helix, forming a tetra-
hedral or distorted tetrahedral metal complex across the
dimerization interface, as originally hypothesized from
the crystallographic studies of SmtB [31]. Mutagenesis of
H105 and H106, together, in SmtB had earlier been
shown to inhibit Zn(II) sensing in vivo, suggesting that the
metal site across the o5 helix may be more important for
metal sensing by SmtB, in contrast to ArsR [35]. When we
looked at the o5 metal-binding region in Vc-HlyU we
found that again the key metal-binding residues are
replaced by non-metal-binding residues, while keeping
the overall structure similar to other Smtb/ArsR family
members. The four conserved residues Asp, His, His, and
Glu/His which formed the 05 metal binding site in SmtB,
CadC, and CzrA (Figure 1) are replaced mostly by non-
metal-binding residues Ser, Glu, Leu, and Gln, respec-
tively, in Vc-HIyU, suggesting that Vc-HlyU also does not
bind metal at the a5 site (Figure 3b). We also considered
the possibility if other residues, such as E97, H100 and
C104 around the a5 helix can be involved in metal bind-
ing. But these are positioned in a linear fashion at the
hydrophilic side of the helix, opposite to the face involved
in the dimeric interface. As such, even if these sites were to
bind metal ions the dimeric interface will get disrupted.

M. tuberculosis CmtR is proposed to bind Pb(II) and Cd(II)
via coordination by C57, C61, and C102 [11]. The C57
and C61 residues are in a4 DNA-recognition helix of
CmtR while C102 is at the C-terminal end of the protein.
Vc-HlyU does not have any cysteine residues at the o4
helix, but it has a cysteine (C104) residue at the C-termi-
nal end. Therefore, Vc-HlyU also lacks the unique metal-
sensory sites at the o4 helix as found in case of CmtR.
Another protein Streptomyces griceus StnR which showed
homology to the transcription regulators of ArsR family
represses the transcription of sodF gene only in conjuga-
tion with nickel-binding protein SrnQ [36]. StnQ binds
nickel but it did not show any homology to the SmtB/
ArsR family, while SrnR has a DNA-binding motif but did
not reveal any metal-binding capacity [36]. Our analysis
indicates that Vc-HlyU does not have any metal-binding
sites similar to any proteins in this family.

Dimerization interface and inter-subunit contacts

Most SmtB/ArsR like metalloregulators form homodim-
ers, and the dimeric interface is formed by helix 5 (0.5)
and the N-terminal part of the protein. The interface
formed between two protein subunits provides the con-
text for understanding the principles of molecular recog-
nition. We analyzed the characteristics of homodimeric
interfaces of SmtB, CzrA, CadC, and Vc-HlyU using the
PROFACE server [37], which dissects a given protein-pro-
tein interface and obtains various parameters to character-
ize it. The results are shown in Table 3. The buried
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His 106

His 103

His 117

His 114
Leu 102

Glu 117
Gln 105

Superimposition of (a) a3N and (b) o5 metal binding sites of Synechococcus SmtB (blue color), S. aureus CzrA (orange), S.

aureus CadC (teal), and Vc-HlyU (magenta).

interface areas between the subunits are 3924 A2, 3016 A2,
4614 A2, and 3753 A2in SmtB, CzrA, CadC, and Vc-HlyU
respectively. CadC has the largest interface area due to the
presence of an additional a-helix at the N-terminus which
interacts with the other monomer in the CadC dimer. The
other parameters like interface area/surface area, fraction
of non-polar atoms, non-polar interface area etc. of SmtB,
CzrA, and CadC are found to be very similar with Vc-HlyU
(Table 3). Overall the dimerization interface is highly
hydrophobic in Vc-HlyU as it has a latge non-polar inter-
face area (2526 A2), similar to the other members of the
family (Table 3). Vc-HlyU also has three 'self-contacting'
residues L25, M95, and L98; SmtB has two F40 and L110;
CzrA has three F20, T89, and M90; CadC also has three
L36, 1107, and 1110. In a 2-fold symmetry relating the
protein subunits, a residue close to the 2-fold axis may
interact with the same residue from the other subunit -
thus making up a pair of 'self-contacting' residues; these
'self-contacting' residues are found to be important in
forming homodimeric interface [38].

Interestingly, HlyU with a long N-terminal His,-tag found
to be monomer in solution [32], but on cleaving the His,-
tag HlyU forms a dimer (Saha & Chakrabarti, unpub-

lished results). As the N-terminal region is found to be
important in forming dimeric interface, most probably
the His,-tag was creating some kind of hindrance to the
formation of the dimer. All these results suggest that Vc-
HlyU is also a homodimer, as found in the case of other
SmtB/ArsR family members.

Protein-DNA interactions

Homology-modeled structures may be of too low resolu-
tion to characterize the protein-DNA contacts at the
atomic level and elucidate their mechanism of action, but
they can suggest which sequence regions or individual
amino acids are essential components of the binding sur-
faces. In particular, identification of amino acids poten-
tially involved in protein-DNA contacts may guide
mutagenesis experiments aimed at the engineering of pro-
tein variants with novel specificities and mechanisms.

Vc-HIyU is predicted to be a winged-helix DNA binding
protein. The two wings (W1 and W2), three o-helices (0.2,
03, and 04), and two B-strands (B1 and B2) arranged in
an order o2-03-04-B1-W1-f2-W2, to form a typical
winged-helix motif [39,40]. The putative DNA-binding
domain has a helix-turn-helix motif consisting of a3-turn-
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Table 3: Characteristics of homodimeric interfaces
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Ve-HiyU SmtB CzrA CadC
Interface area (A2) 3753 3924 3016 4614
Interface area/Surface area 0.27 0.23 0.3
Number of atoms 378 305 455
Number of residues 95 73 118
Fraction of non-polar 0.65 0.68 0.66
atoms
Non-polar interface area 2526 3020 2221 3307
(A?)
Fraction of fully buried 0.35 0.43 0.44
atoms

Self-contacting residues Leu25, Met95, Leu98

Phe40, Leul 10

Phe20, Thr89, Met90 Leu36, llel07, llel 10

Both the subunits have been indicated in the calculation.

o4. When involved in DNA-binding, the recognition helix
(04) might interact with the major groove of a duplex
DNA, as suggested by other winged-helix protein-DNA co-
crystal structures [41]. The wing W1 is predicted to inter-
act with the adjacent minor groove. To find out the pro-
tein-DNA interaction we created a simple model of Vc-
HlyU binding to DNA, based on the similarity of the
DNA-recognition motif of Vc-HlyU with the winged helix-
turn-helix motif of the MarR-family transcription regula-
tor, OhrR from Bacillus subtilis [42]. The coordinates of Vic-
HlyU DNA-recognition motif superimposed onto those of
OhrR, and the actual DNA in OhrR was replaced by an
idealized B-DNA model. The model shows that the bind-
ing of both ends of the Vc-HlyU dimer would require a
bending of the DNA-helix of about 15° (Figure 4). Based
on the homology to OhrR the residues which may be
important for DNA-binding are in ol (K26 and A27),
N30, in a2 (E31, R32, and R33), E44, S46, in 0.3 (V47 and
G48), S57, in a4 (Q58, S59, A60, S62, Q63, A66, W67,
and R70), in B1 (T76 and K78), Q81, T82, in B2 (V83),
Y85. The positions of these residues which may be
required for DNA recognition in Vc-HlyU are quite similar
to what was predicted in case of SmtB [31]. The proposed
model would allow binding of each end of the Vc-HlyU
dimer to consecutive major grooves.

Figure 5 shows the electrostatic potential of the Vc-HlyU
dimer computed by GRASP [43]. A positive charge is
found in regions of the surface directly involved in pro-
tein-DNA interaction (Figure 5a) and the overall charge
distribution at the DNA-binding surface is quite similar to
the other SmtB/ArsR family members. The HTH motif is
the most positively charged region of the DNA-binding
domain. This is in accordance with the postulated role of
the DNA-binding domain in the interaction with the
phosphate backbone of DNA. In contrast, the solvent
accessible surface of Vc-HlyU is negatively charged (Figure
5b).

Evolutionary analysis

A phylogenetic analysis of a subset of SmtB/ArsR repressor
sequences clearly showed that the sensors that respond to
the biologically required metal ions cluster on a distinct
branch of the dendrogram and may have evolved later
than those which confer resistance to the environmental
stress resulting from the heavy metal pollutants [3]. The
members most closely related to a common ancestor, rep-
resented by the ArsR, contain only the first metal binding
site, while the more divergent homologue, CzrA possesses
only the a5 metal binding site. CadC, with both types of
metal binding sites, might represent an evolutionary inter-
mediate between ArsR and SmtB [33]. To find out the evo-
lutionary relationship between Vc-HlyU and SmtB/ArsR
family members a phylogenetic tree of 26 sequences (25
SmtB/ArsR family member sequences, taken from refer-
ence no. 3, and the Vc-HlyU sequence) was created using
the neighbor-joining, minimum evolution and UPGMA
methods. The distance estimation was done using the

Figure 4

Model of Vc-HIyU binding to DNA based on the similarity of
Vc-HlyU with OhrR DNA-recognition motif. Monomers A
and B are in magenta and blue color respectively.
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Figure 5

The electrostatic surface potential of the Vc-HlyU dimer with blue and red regions indicating positive and negative electrostatic
regions, respectively. (a) The DNA-binding surface indicates the highly basic nature of the DNA-binding domains in the two
subunits. (b) The molecule is rotated 180° around the long axis showing the opposite surface of DNA-binding region which is

predominantly negatively charged and highly acidic.

Poisson correction method. Neighbor-joining, minimum
evolution and UPGMA analyses produced topologically
identical trees. Bootstrap analyses were performed on the
neighbor-joining, minimum evolution and UPGMA trees
with 1000 replications. All phylogeny trees were con-
structed using "MEGA version 3.1", a molecular evolu-
tionary genetic analysis software [44]. The a3N and o5
sensors appear to cluster on separate nodes of the dendro-
gram and linked by a common evolutionary ancestor. Vc-
HlyU was found to cluster along with ArsR proteins,
which are considered as the evolutionary primitive and
the founder members of the SmtB/ArsR family of proteins
(Figure 6). The clustering of Vc-HlyU along with ArsRs
suggests that Vc-HlyU is close to the common ancestor
from which this family of proteins evolved. These data
suggest that during evolution Vc-HlyU probably occurred
by gene duplication followed by mutational events that
led to the loss of the metal-binding residues.

Conclusion

In recent years, the methodology to predict the 3D struc-
ture of a protein starting from its sequence has improved
in accuracy and statistical robustness [45]. Though the
conservation of the structure can be inferred from the high
sequence similarity, it is well known that in a single family
the function and the fold can be retained even if proteins
have a low sequence similarity. Even if the sequence iden-

tity between the target and template proteins is lower than
40%, the secondary structural information can be used for
sequence alignment, and the strategy of comparative
modeling can be applied with success [46]. In this paper,
we present results of modeling of Vc-HlyU with a compar-
ative modeling strategy, starting from the 3D structures of
proteins belonging to the same functional and structural
family. The results show that Vibrio cholerae transcription
regulator HlyU maintains similar fold as that of SmtB/
ArsR family of repressor proteins, but lost the key metal
binding residues.

The SmtB/ArsR family of metalloregulators responds to a
wide variety of metals. The metal-dependent transcrip-
tional regulation is the major mechanism of the cellular
response to changing metal concentrations. It is, there-
fore, crucial to understand how metalloregulators are able
to differentiate between metals and how this information
is translated into transcriptional control. The ancestral
member of this family, ArsR had only the first metal-bind-
ing site. During evolution, SmtB retained the site partially,
but lost the function, while CzrA lost the site completely.
However, both acquired a regulatory role for the metal
binding at a new site (a.5). CadC, which possesses both
the metal binding sites, might represent an evolutionary
intermediate between ArsR and SmtB. CmtR binds metal
at a unique site at o4 helix, while another related protein
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Figure 6

Phylogenetic relationship of SmtB/ArsR family members (25 SmtB/ArsR family members and the Vc-HIyU sequence). This is a
bootstrap consensus tree based on 1000 replicates. The numbers on the nodes are bootstrap values. The metal-binding motifs
sense different metals, present in the three major clusters, are indicated on the right.
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SrnR senses metals but only in conjugation with metal-
binding protein SrnQ. Using these sites the members of
this family respond to an amazing array of different met-
als and metalloids, suggesting that during evolution one
could acquire or lose one or more metal binding sites.
However, there is also a possibility that during evolution
one could lose all the metal binding sites and show an
entirely different function, or vice versa. The structure of
Vc-HIyU suggests that the evolution of Vc-HlyU probably
occurred by gene duplication and mutational events that
led to the loss of the metal binding sites, and eventually it
acquired a function that is seemingly different from the
repressors constituting the SmtB/ArsR family. HlyU is a
positive regulator of hiyA, but there is no biochemical evi-
dence that HlyU binds to the hlyA O/P region. Therefore it
is still uncertain if HlyU is a transcriptional activator or
the regulation observed [13,14] is due to the involvement
of unknown intermediary which is repressed by HlyU.
Experiments are underway to determine the DNA-recogni-
tion, if any, at the O/P sequence of hiyA gene. The present
work exemplifies how the same fold can have different
functions depending on the presence or absence of metal-
binding sites.

Methods

Fold recognition and sequence alignments

Sequence searches of the non-redundant (nr) database
were carried out at NCBI using PSI-BLAST [47], using the
Vibrio cholerae HlyU (Vc-HlyU) sequence as a query. Sec-
ondary structure prediction and tertiary fold-recognition
were carried out using the GeneSilico meta-server gateway
[48]. The secondary structure was predicted using SAM
[49], PSIPRED [50], JNET [51], SABLE [52], PROF [53],
JUFO [54], and PROFsec [55]. The fold-recognition anal-
ysis was carried out using FFAS03 [56], INBGU [57],
mGENETHREADER [58], SPARKS [59], FUGUE [60], and
3DPSSM [61]. The fold-recognition alignment reported
by these methods were compared, evaluated, and ranked
by Pcons server [62]. The analysis of architectural motifs
and the topology of proteins with known three-dimen-
sional structure was made according to SCOP [63] and
CATH [64] classifications. PROSITE [65] database was
used for searching functional motifs. Multiple alignments
were generated using CLUSTALW [66] and subsequently
subjected to minor manual editing.

Homology modeling and data analysis

After careful examination of potential templates the struc-
ture of SmtB from Synechococcus PCC7942 (PDB entry:
1smt) [31], CzrA from Staphylococcus aureus (PDB entry:
1rlu) [67], and CadC from Staphylococcus aureus pl258
(PDB entry: 1u2w) [33] were selected for homology mod-
eling. A pairwise alignment between Vc-HlyU and the
template sequences were manually adjusted taking into
consideration multiple sequence alignments, structural

http://www.biomedcentral.com/1472-6807/6/24

alignments and the continuity of secondary structure ele-
ments. A few manual refinements were added to account
for the position of secondary structures. For the modeling
procedure, only the region in the sequence for which the
3D structure of the template is available was considered.
As a consequence, we excluded from the model of Vc-
HlyU the first 8 amino acids as well as the last residue due
to the unavailability of template structure. The alignments
between the sequence of Vc-HlyU and the structures of the
selected templates were used as a starting point for mode-
ling of the HlyU tertiary structure comprising cycles of
model building by MODELLER v8.1 [68]. The best mod-
els among those obtained were chosen by evaluating the
stereochemical quality with the program PROCHECK
[23], and side-chains were optimized using SCWRL 3.0
[69]. Secondary structures on the final 3D model were cal-
culated with the program DSSP [70], and solvent accessi-
bility of the amino acids was calculated with the program
NACCESS [71].

Availability

Atomic coordinates for Vibrio cholerae transcriptional reg-
ulator HlyU are publicly available via the PMDB database
[72] as a theoretical model (PMDB id: PM0074675).
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