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Experimental study of impact oscillator with
one-sided elastic constraint
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In this paper, extensive experimental investigations of an impact oscillator with a one-
sided elastic constraint are presented. Different bifurcation scenarios under varying the
excitation frequency near grazing are shown for a number of values of the excitation
amplitude. The mass acceleration signal is used to effectively detect contacts with the
secondary spring. The most typical recorded scenario is when a non-impacting periodic
orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be
stable, but in many cases it loses stability through grazing. Following such an event, the
evolution of the attractor is governed by a complex interplay between smooth and non-
smooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested
through discontinuous transition from one orbit to another through boundary crisis. The
stability of non-impacting and impacting period-1 orbits is then studied using a newly
proposed experimental procedure. The results are compared with the predictions
obtained from standard theoretical stability analysis and a good correspondence between
them is shown for different stiffness ratios. A mathematical model of a damped impact
oscillator with one-sided elastic constraint is used in the theoretical studies.

Keywords: impact oscillator; experimental chaos; grazing; stability of limit cycles
On

*A
1. Introduction

Engineering systems with impacts are very common and impacting behaviour may
be a part of the original design, for example where an allowance for thermal
expansion is given between joints, or may be the result of component wear during
system operation. The simplest model used to investigate impacting systems is a
harmonically forced linear oscillator with an amplitude constraint. This classical
piecewise linear system has been intensively studied in the past both in the case of
rigid (e.g. Peterka 1974a,b; Shaw 1985a; Whiston 1987, 1992; Nordmark 1991;
Peterka & Vacik 1992) and soft (e.g. Shaw & Holmes 1983a; Peterka 2003; Pust &
Peterka 2003; Peterka et al. 2004) constraints, and it is well known that the system
exhibits intricate nonlinear dynamics including periodic and chaotic behaviour.
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Bifurcations of the periodic orbits of this systemhave attracted special attention, in
particular, when the variation of one of the system parameters causes the non-
impacting trajectory to become an impacting one via grazing occurringwhen a part
of the trajectory hits the constraint tangentially. In the case of a rigid constraint
where impact is instantaneous and described by the restitution coefficient,
Nordmark (1991) studied the grazing bifurcation and showed that the Jacobian of
the Poincaré map contains a square root singularity in the first order Taylor
expansion. Chin et al. (1995) classified the types of bifurcations possible in such
square root maps. In particular, coexistence and hysteresis were found to be
common, and the conditions for grazing bifurcation leading to a reverse period-
doubling cascade were derived. A system with soft elastic constraint was
investigated by means of a mapping technique by Shaw & Holmes (1983a),
based upon an approximation of the time of flight which holds only for large
penetrations into the high-stiffness region. They went on to consider also the limit
case of a rigid stop in more detail. Period-doubling cascades and chaotic response
were recorded. It was noted that singularities in the Jacobian existed for certain
conditions. The distinction between impacting systems with soft and rigid
constraints (also recognized as piecewise smooth systems with discontinuous
vector fields and systems with discontinuity in the state, respectively) was
addressed in di Bernardo et al. (1999, 2001) where it was shown that in the discrete-
time representation the latter ones are associated with a square root singularity
while the former ones yield maps with ‘power-of-3/2’ behaviour which is smooth at
the borderline. Ma et al. (2006) investigated the properties of a soft impact with a
prestressed spring, which also displays a square root singularity, and showed that
the discontinuity is restricted to the trace of the Jacobian.

In general, experimental contributions have been rather limited. Shaw&Holmes
(1983b) experimentally examined the response of a beam with a fixed amplitude
constraint at one end, noting that a one degree of freedom approximation allowed
prediction of the regions of periodic and chaotic motion. This was extended
systematically in Shaw (1985b) where the subharmonic resonances predicted in
Thompson et al. (1983) were observed along with period-doubling bifurcations.
Wiercigroch & Sin (1998) designed a piecewise linear oscillator with symmetrical
amplitude constraints and systematically varied a number of parameters to show a
wide range of system responses. Wiercigroch et al. (1998) went on to analyse the
power spectrum of the experimentally observed chaos. Various other experimental
impact oscillators were studied byHinrichs et al. (1997), Todd&Virgin (1997) and
Wagg et al. (1999). Of note is Piiroinen et al. (2004) where a pendulum contacting
with a rigid stop was shown to exhibit periodic windows in a period adding cascade
up to period-5. Such a cascade was not observed experimentally in Ing et al. (2006)
for a piecewise smooth oscillator due to either the soft impact or the presence of a
second elastic constraint. The degree of asymmetry between the constraint
positions was found to greatly affect the response.

The aim of this paper is to provide an experimental backing for the well-
developedmodel of the soft impact oscillator, and, in particular, to study the system
bifurcations close to grazing and to investigate the stability of the periodic orbits
experimentally.

The paper is organized as follows. In §2, the details of the experimental rig
and measurement procedures are discussed. It is shown that the use of recorded
mass acceleration signal has significant advantage in detecting the contact with
Phil. Trans. R. Soc. A (2008)
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Figure 1. (a) Photographs of experimental setup. Parallel leaf springs prevent mass from rotation
ensuring vertical displacement only. Harmonic excitation is provided to the oscillator from the shaker
table. Since the oscillator mass is small when compared to the shaker armature, it is assumed that the
oscillator does not interact with the shaker. (b) Schematic of experimental setup. Mass displacement
Xm and accelerations of themass and the base €Xm, €X b aremeasured by an eddy current probe and two
accelerometers, respectively, and then collected by the data acquisition system.
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the elastic constraint in comparison with the mass displacement signal. Then
different bifurcation scenarios under variation of the excitation frequency near
grazing are shown and discussed in §3 for a number of values of the excitation
amplitude. Section 4 is devoted to experimental evaluation of the stability of
the recorded periodic orbits with and without impacts. Here a new experimental
procedure is described, and the results under varying excitation frequency are
presented for three values of stiffness ratio. In addition, the mathematical model
used for the comparisons is discussed here, and the details of calculations of the
Jacobian matrix for the stability analysis are given.
2. Experimental rig and measurement procedure

Extensive experimental investigations of an impact oscillator with one-sided
amplitude constraint have been undertaken with the set-up shown in figure 1a.
The oscillator rig developed at Aberdeen University (Wiercigroch & Sin 1998;
Sin & Wiercigroch 1999; Ing et al. 2006) has been modified by taking off one of
the symmetric amplitude constraints made of elastic beams. The oscillator shown
in figure 1 consists of a block of mild steel supported by parallel leaf springs
providing the primary stiffness and preventing the mass from rotation. The
Phil. Trans. R. Soc. A (2008)
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Figure 2. A sample of the recorded experimental time histories for fnZ9.38 Hz, fZ6.5 Hz,
cZ1.3 kg sK1 and bZ29; (a) base acceleration €X b, (b) mass acceleration €Xm, (c) mass
displacement Xm and (d ) mass velocity obtained by differentiation of the mass displacement.
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secondary stiffness provided by the elastic beam is mounted on a separate
column. Contact between the mass and the beam is made when their relative
displacement is equal to zero. In practice, the contact is through a bolt that is
attached to the beam. The length of the bolt can be adjusted to control the gap g.
The secondary stiffness can be varied by changing the length of the beam.

The natural frequency of the oscillator fn is controlled by varying the length of
two parallel leaf springs, and for the experiments presented here to be such that both
sub- and super-harmonic oscillations can be executed. The damping of this system
was found to be well approximated by a linear viscous damping model (Ing et al.
2006). Although in principle times when the mass makes contact with the restraint
can be determined bymonitoring their relative displacement, a muchmore accurate
estimation can be made by analysing the oscillator acceleration; hence this method
was used. The stiffness of the secondary spring was determined through static tests.
The harmonic excitation was provided by an electro-dynamic shaker. Displace-
ment of the oscillator Xm was measured with an eddy current probe displacement
Phil. Trans. R. Soc. A (2008)
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Figure 3. Time histories of (a) oscillator displacement and (b) acceleration. It can be clearly seen
that while the displacement history is not sensitive enough to detect contacts, the acceleration
signal changes abruptly when the contact is made and lost (Ing et al. 2006).
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transducer mounted over one leaf spring. The acceleration of the oscillator €Xm was
measured using an accelerometer mounted directly on the mass. The signals from
these three devices €X b, €Xm, Xm were captured and observed in real time using the
data acquisition system. This allowed variation of a parameter until a change in
the response was observed. The responses of the oscillator in the frequency range
from 6 to 10 Hz were measured for different values of forcing amplitude. The choice
of frequency was made to maximize the frequency intervals for which attractors
remained topologically similar. A Savitzky–Golay algorithm was used to smooth
the data, where a second order polynomial fitted to the eight surrounding data
points gave the best results. This preserved the shape and height of the peaks in
the time histories, while removing much of the background noise. The velocity was
obtained from the smoothed displacement data. By mounting an accelerometer
directly onto the mass and observing the acceleration time histories, the points of
contact are easily recognizable in the form of sharp spikes.

A sample of the obtained chaotic time series for fnZ9.38 Hz, the excitation
frequency fZ6.5 Hz, damping coefficient cZ1.3 kg sK1 and stiffness ratio bZ29 is
presented in figure 2, where the smoothed signals of the recorded base acceleration
(figure 2a), and acceleration and displacement of the mass (figure 2b,c) are shown
togetherwith theprocessed signal for themassvelocity (figure2d ),whichwasobtained
by differentiation of the recorded displacement signal. As can be seen from figure 2b,
short time intervalswhen themass is in contactwith the beamare clearly visible in the
form of sharp spikes above the 1 m sK2 level. Since this study was focused on grazing,
contactswith the beamwere short andhard to detect, especially by looking at the time
histories of the mass displacement alone. Figure 3 presents an example of the case
where contacts occur very close to grazing and they are not detectable from the
displacement (figure 3a) but apparent from the acceleration (figure 3b).

Another method by which the mass acceleration signal can be used to detect
the contact with the secondary spring is shown in figure 4. Here instead of a
standard displacement–velocity phase plane, velocity–acceleration and displace-
ment–acceleration planes are used. Figure 4a,d present trajectories without
contact with the beam, whereas figure 4b,e together with figure 4c,f depict
responses with contacts. As can be seen from these figures, the contact regimes
are characterized by sharp spikes of acceleration.
Phil. Trans. R. Soc. A (2008)
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Figure 4. (a–c) Acceleration–velocity curves; (d – f ) acceleration–displacement curves. All results
were recorded for fnZ9.38 Hz, cZ1.3 kg sK1, bZ29 and the excitation frequency f equal to 7.75,
8.25 and 9.00 Hz for (a,d ), (b,e) and (c, f ), respectively.
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3. Study of the grazing bifurcations

In this section, the behaviour of the system near grazing is investigated and the
results are presented in the form of bifurcation diagrams, which were obtained in the
following way. First for each chosen value of frequency, the excitation amplitude
was slowly increased until the first contact occurred; then the amplitude was fixed at
that value and the bifurcation scenario under varying frequency was studied.
Starting with the non-impacting period-1 solution, the excitation frequency was
slowly increased through the grazing and beyond. The recorded data were smoothed
as described above in §2. For each chosen set of parameters, a steady state response
was reached prior to data capture. Next, a first return Poincaré map was
constructed and projected onto the displacement axis. The Poincaré plane was
placed at the various phases (constant for different bifurcation diagrams) in order to
maximize the separation between the points appearing on the diagram. This was
done because for the original choice of the positive slope zero crossing of the
excitation signal, the recorded points were too close and there was no difference
between period-1 and period-2 regimes, etc. The procedure was repeated by
increasing the frequency f in small steps over a reasonably large range.

The results presented in this section were obtained for a natural frequency of
9.38 Hz, gap equal to 1.26 mm, the secondary spring stiffness 29 times higher
than that of the main one and damping coefficient equal to 1.3 kg sK1.
Bifurcation scenarios observed for different values of excitation amplitude are
Phil. Trans. R. Soc. A (2008)
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shown in figures 5, 8 and 10. Figure 5a shows the changes in the system response
under increasing frequency for the amplitude of the base excitation equal to
0.25 mm in the form of a bifurcation diagram and two phase portraits. As can be
seen from the bifurcation diagram, the period-1 responses were obtained before
and after grazing (see additional phase plane windows). The grazing frequency
was determined at the point fZ8.40 Hz where the slope of the bifurcation curve
changed. Close to this point, a small window of chaotic behaviour with a small
spread was observed.

For the excitation amplitude equal to 0.38 mm, a quite different bifurcation
scenario was observed, which is shown in figure 5b. The grazing occurs at
fZ9.75 Hz, where a period-4 response shown in an additional window (with
period equal to 0.503 s) was recorded. As the excitation frequency increases,
period-3 oscillations with one impact per period are obtained for
f2[8.00,8.45] Hz and their sample trajectory on the phase plane is shown in
an additional window for fZ8.25 Hz (here period is equal to 0.364 s). Numerical
simulation reveals the nature of the atypical transitions from period-1 to period-
4 to period-3 as resulting from a complex interplay between coexisting orbits and
grazing-induced bifurcations. Simulation shows that a period-4 orbit coexists
with the non-impacting period-1 orbit before it makes the first contact with the
switching surface and then with impacting period-1 orbit after grazing for a
narrow range of frequency. At about fZ7.95 Hz, there is a boundary crisis, and
the state moves to the period-4 orbit. At a larger value of the parameter, another
coexisting period-3 orbit (with one impact) is numerically found to occur. As the
parameter is increased, there is another boundary crisis, and the state jumps
from the period-4 to the period-3 orbit. The sequence of experimentally recorded
phase plots and Poincaré maps showing these orbits for fZ7.95, 8.00 and 8.05 Hz
are given in figure 6.

As the parameter is further increased, another grazing event occurs around
fz8.45 Hz, and the period-3 orbit ceases to exist. After this event, the state
jumps to a coexisting period-2 orbit with two impacts at fz8.50 Hz. Following
this, we observe a reverse period doubling (which is a smooth bifurcation)
resulting in a period-1 orbit. Figure 7 presents the sequence of phase plots
and Poincaré maps for fZ8.45, 8.50 and 8.55 Hz, showing the orbits that occur
in quick succession. For fO8.5 Hz the impacting period-1 response was recorded
and sample trajectory for fZ9.00 Hz is presented in an additional window
in figure 5b.

Another example of a possible bifurcation scenario is shown in figure 8a for
excitation amplitude equal to 0.44 mm. As can be seen from this figure, chaotic
behaviour is observed close to grazing at fZ7.55 Hz, which changes to period-2
oscillations as the frequency increases. The sample trajectory of this period-2
response is presented on the phase plane for fZ7.85 Hz. Next, a window of
chaotic behaviour is obtained and a typical discrete-time phase portrait is given
for fZ8.35 Hz. This is followed by a reverse period-doubling cascade, resulting in
a period-1 response with one impact per period. A typical phase space trajectory
for this condition is shown for fZ8.55 Hz.

For the excitation amplitude equal to 0.53 mm (see figure 8b), grazing occurs
at fZ7.15 Hz which turns the period-1 orbit unstable. However, the system does
not collapse, as there is another coexisting periodic orbit at that parameter value,
and so the orbit discontinuously jumps from a non-impacting period-1 orbit to a
Phil. Trans. R. Soc. A (2008)
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Figure 5. Bifurcation diagrams obtained for the mass displacement under varying frequency f at
fnZ9.38 Hz, cZ1.3 kg sK1, bZ29, gZ1.26 mm and the excitation amplitude equal to (a) 0.25 mm
and (b) 0.38 mm. Additional windows demonstrate the trajectories on the phase plane and
obtained for (a) fZ7.95 Hz and 9.34 Hz and (b) fZ7.95, 8.25 and 9.00 Hz, respectively.
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period-2 orbit with two impacts with period equal to 0.208 s (shown in the
additional window). Simulation shows that this period-2 orbit coexists with the
non-impacting period-1 orbit before the parameter value fZ7.15 Hz, and there is
a different period-2 orbit with one impact that begins to coexist with it after this
value. At fz7.45 Hz, there is a boundary crisis, due to which the system
behaviour jumps from the period-2 orbit with two impacts to the coexisting
period-2 orbit with one impact. As the parameter is further increased, one of the
Phil. Trans. R. Soc. A (2008)
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loops of the period-2 orbit approaches the switching manifold, and at fz8.45 Hz
another grazing occurs. This results in a period-2 orbit with two impacts.
Following this, there is a smooth reverse period-doubling bifurcation giving rise
to a period-1 orbit with one impact per cycle. To demonstrate these transitions
the sequence of phase plots and Poincaré maps for fZ8.45, 8.50, 8.55 and 8.60 Hz
are given in figure 9. Representative phase space trajectories of different period-2
oscillations and the period-1 orbit for fO8.6 Hz are shown for fZ7.45, 8.00 and
9.10 Hz, respectively, in additional windows in figure 8b.

Two other examples of possible bifurcation scenarios are presented in
figure 10a,b for excitation amplitudes equal to 0.66 and 0.70 mm, respectively.
As can be seen from these figures, chaotic behaviour is observed at grazing
frequencies fZ6.50 and 6.25 Hz and the corresponding Poincaré maps are
presented in additional windows. After a series of bifurcations in both cases the
system settles down to impacting the period-1 response. However, the intermediate
bifurcations are different. For the smaller excitation amplitude of 0.66 mm, the
chaotic regime is followed by period-3 oscillations (with three impacts per period)
shown for fZ6.70 Hz. It jumps to a coexisting period-2 orbit through crisis at
fz6.75 Hz, and then on to another different period-2 orbit at fZ7.9 Hz. Finally at
fZ8.50 Hz, we observe a bifurcation to a period-1 response with one impact per
period. For the larger amplitude of 0.70 mm, the narrow range of chaotic
behaviour is followed by impacting period-1 oscillations shown for fZ6.65 Hz,
Phil. Trans. R. Soc. A (2008)
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which bifurcates into period-2 response at fZ8.05 Hz. After two grazing events, it
bifurcates back to a period-1 response with one impact at fZ8.55 Hz.
4. Evaluation of the stability of periodic orbit

The experimental studies undertaken so far have confirmed that the most typical
bifurcation scenario is when a non-impacting orbit bifurcates into an impacting
one via the grazing mechanism as can be seen in figures 5a and 10b, for example.
Such stability change is an important archetype in the dynamics of impacting
systems. Therefore, in this section, the stability of these periodic orbits close to
grazing conditions is investigated experimentally. However, before the experi-
mental procedure is explained, a short summary of standard theoretical stability
analysis for a periodic orbit, which goes back to the work of Floquet (1883), is
given (Argyris et al. 1994), and also a mathematical model used for the comparison
is very briefly discussed.

For a nonlinear periodic externally excited system described by a set of non-
autonomous differential equations

_x ZFðx; tÞ ð4:1Þ
and having periodic solution x� of period length T, i.e. _x�ZFðx�; tÞ, to
investigate the stability of the solution x�, a neighbouring state xZx�Cu is
considered, where u represents a small perturbation juj=jx�j/1. The following
Phil. Trans. R. Soc. A (2008)
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equation can be easily obtained for the perturbation dynamics as each
component of the function F(x, t) in the immediate neighbourhood of x� can
be expanded into a Taylor series:

_uZFðx; tÞKFðx�; tÞZ vFðx; tÞ
vx

�����
xZx�

uCOððuÞ2Þ: ð4:2Þ
Phil. Trans. R. Soc. A (2008)
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Thus neglecting higher order terms, to analyse the perturbation, a set of linear
differential equations with a time-dependant coefficient matrix has to be
considered

_u Z
vFðx; tÞ

vx

�����
xZx�

u: ð4:3Þ

As explained in Argyris et al. (1994), the basic idea behind Floquet’s stability
theory is the conjecture that the periodicity of the matrix DZðvFðx; tÞ=vxÞjxZx�

induces a reduction to a system with constant coefficients, allowing an
observation of the behaviour of u only at the discrete points in time tZ0, T,
2T, 3T, .. From a geometrical point of view, this corresponds exactly to a
Poincaré section, thus allowing conclusions drawn from the characteristics of the
appertaining Poincaré map to apply to the behaviour of the continuous system.

The periodic solution x� of the system (4.1) corresponds to the fixed point v� of
the appertaining Poincaré map P, i.e. v�ZPðv�Þ. So the linear equation with the
constant coefficient Jacobian matrix JZðvP=vvÞjvZv� for the infinitesimal
perturbation vn on the nth iteration of the Poincaré map can be obtained

vnC1 ZJvn: ð4:4Þ
If all eigenvalues of the Jacobian matrix have modulus less than unity, then the
fixed point v� and the corresponding periodic orbit x� are stable.

Theoretical investigations of the considered oscillator were conducted
using the physical model shown in figure 11a. The non-dimensionalized equations
of motion for this system are derived in Shaw & Holmes (1983a,b) and
Wiercigroch & Sin (1998) and they are given in non-dimensional form as

x 0 Z v and

v 0 ZG sinðutÞK2xvKxKbðxKeÞHðxKeÞ; ð4:5Þ
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Figure 10. Bifurcation diagrams obtained for the mass displacement under varying frequency f at
fnZ9.38 Hz, cZ1.3 kg sK1, bZ29, gZ1.26 mm and the excitation amplitude equal to (a) 0.66 mm
and (b) 0.70 mm. Additional windows demonstrate the trajectories on the phase plane and
obtained for (a) fZ6.50 (Poincaré map), 6.70, 6.95, 7.55 and 8.60 Hz; and (b) fZ6.25 (Poincaré
map), 6.65, 8.35 and 8.60 Hz, respectively.
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where

x Z
y

x 0

; v Z
dx

dt
; tZ 2pfnt; fn Z

1

2p

ffiffiffiffiffiffi
k1
m

r
; ð4:6Þ

and H($) is the Heaviside step function, fn is the natural frequency for the
undamped linear system (measured in Hz as before), x0 is some arbitrary
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Figure 11. (a) Physicalmodel of the oscillator. (b) Phase space is divided by the discontinuity boundaries
S1 and S2, and the locally valid maps P1 and P2 project the points from one boundary to another.
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reference distance and the remaining parameters are

bZ
k2
k1

; uZ
f

fn
; eZ

g

x0
; xZ

c

4mpfn
and GZ

A

x0

f 2

f 2n
: ð4:7Þ

Here b is the stiffness ratio, u is the non-dimensionalized frequency, e is the non-
dimensionalized gap, x is the damping ratio and G is the non-dimensionalized
forcing amplitude.

The considered oscillator operates in two different regimes, i.e. with and without
contact with the secondary spring. Thus the phase space of the system is divided into
two half-spacesX1 andX2 where themotion of the oscillator is governed by different
linear ordinary differential equations. Switches between those two regimes occur on
the discontinuity boundaries, S1 and S2, which are defined as

PX1;2 hS1 Z fðti; xi; viÞjxi Z e; viO0g and

PX2;1 hS2 Z fðti; xi; viÞjxi Z e; vi!0g:
ð4:8Þ

Numerical integrations of this piecewise smooth system are connected with
the principal difficulties of determining the moments when the mass hits the
secondary spring, or in other words the moments when the trajectory crosses the
discontinuity boundaries.Theprecise value of the crossing time tihas tobe evaluated
since the response canbevery sensitive to any inaccuracyof the computed solution on
the above-mentioned boundaries. Various procedures could be implemented in order
to achieve the required precision of the crossing time (e.g.Wiercigroch & de Kraker
2000). To avoid these difficulties in this paper, it is proposed to construct a global
solution of the system using local maps. These maps are defined as follows:

P1 : S1/S2 and P2 : S2/S1: ð4:9Þ

The local maps are two dimensional and project the point located on one of the
discontinuity boundaries onto another as Pi : ðjn; vnÞ/ðjnC1; vnC1Þ as shown in
figure 11b. As the external excitation is periodic, a variable jZutmod 2p is
Phil. Trans. R. Soc. A (2008)
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introduced so that j2(0,2p]. Themaps (4.9) can be calculated using the solutions of
the equations of motion in each smooth half-space which are linear. These solutions
are given in full in appendixA, anddetails of the procedure describing construction of
the local maps are given in appendix B.

Experimentally measured and theoretically predicted trajectories are
compared in figure 12, where periodic orbits of different complexity are shown.
As can be seen from this figure, a good correspondence between theory and
experiment is obtained for the periodic responses. Therefore, this mathematical
model is used for theoretical prediction of the stability of the periodic orbits.

Next, we propose a new experimental method to study the stability of the
periodic orbits based on the experimental evaluation of the Jacobian matrix.
First, a periodic orbit of the experimental system needs to be established. Two
examples of the steady state system response are shown in black in figure 13a,b
and c,d. Then a perturbation from the established periodic orbit is applied to the
system, which is practically realized by a gentle tap onto the oscillator mass. A
suitable perturbation should be strong enough to be distinguishable from the
background noise, but small enough to preserve the locally linear nature of themap
(e.g. a perturbation should not change a non-impacting to an impacting trajectory
or vice versa). Since the perturbations were randomly applied, care needed to be
taken so that the results were repeatable since, for example, perturbations along
one eigen direction would suppress the corresponding eigenvalue. In our case, all
the observed maps showed complex conjugate eigenvalues, so in fact this was not
an issue. Nevertheless, the data from at least five perturbations were averaged for
each estimate of the stability. Figure 13a,c show the time histories of displacements
for the periodic orbits with and without impacts, where the moments of
perturbations are marked by arrows. Next, the Poincaré maps for the perturbed
orbits are constructed as shown in figure 14, and their points are marked by
numbers 1, 2, 3,. and connected by solid lines for the orbits without (figure 14a)
and with impacts (figure 14b). The choice of the coordinate system ðxKx�; vKv�Þ
is made to demonstrate the behaviour of the perturbation around the point (0, 0)
which corresponds to the Poincaré point of the original periodic orbit. Next, we
make an assumption that any two subsequent points of the map are linearly
dependant. This assumption is based on the fact that the perturbation of the
original orbit was very small. The recorded data points of the perturbed map are
then used to calculate the matrix A

xnC1Kx�

vnC1Kv�

 !
Z

A11 A12

A21 A22

 !
xnKx�

vnKv�

 !
; ð4:10Þ

where (x�, v�) is the fixed point of the Poincaré map corresponding to unperturbed
periodic orbit, A11, A12, A21 and A22 are unknown coefficients of the constant
matrix A to be determined and index n denotes the nth step of the iteration.
Having the form of equation (4.10) describing the experimental perturbations of
the mass displacement and velocity exactly the same as the theoretical linear
equation for perturbation of the Poincaré map (4.4), we can conclude that the
matrix A is the experimental evaluation of the Jacobian matrix J. In general to
find the matrixA only three consecutive data points are required, but in this case
to satisfy the assumption about the constancy ofA the first eight data points were
considered and a least-squares method was used to obtain the best fit. The results
Phil. Trans. R. Soc. A (2008)

http://rsta.royalsocietypublishing.org/


25.0 30 40

20

0

–20

–40

15

0

–15

–30

(a)

(d ) (e) ( f )

(b) (c)

12.5

0

–12.5

–25.0

0.4

–0.50

0.50

0.25

0

–0.25

–0.50

0.50

0.25

0

–0.25

0.2

0

–0.2

–0.4

–0.450

–0.50 –0.25 0 0.25 0.50 –0.6 –0.3 0 0.3 –0.6 –0.3 0 0.3 0.6

–0.6 –0.3 0 0.3 0.6

0.6

–0.6 –0.3 0 0.3 0.6–0.225 0 0.225 0.450

Figure 12. Comparison between the experimental results (a–c) and theoretical predictions (d –f )
for bZ13, xZ0.015822, eZ0.35 and (a)uZ0.78,GZ0.35, (b)uZ0.804,GZ0.35, (c)uZ0.70,GZ0.45,
(d ) uZ0.73, GZ0.35, (e) uZ0.80, GZ0.35 and ( f ) uZ0.70, GZ0.45.

J. Ing et al.694

 on January 11, 2011rsta.royalsocietypublishing.orgDownloaded from 
are shown by dotted lines in figure 14a,b for the orbits without and with impacts,
respectively, for fnZ11 Hz, gZ0.335 mm, cZ1.12 kg sK1, bZ13, the excitation
amplitude of 0.552 mm, and fZ6.07 and 7.34 Hz. These approximations were
obtained by using the matricesAa andAb for the orbits without and with impacts,
respectively, which were determined as

Aa Z
0:164 K0:014

63:105 0:184

 !
and Ab Z

0:014 K0:010

79:483 0:499

 !
: ð4:11Þ

As can be seen from figure 14, a good correspondence between the original
experimental results and the linearizations is obtained.

Knowing the matrices Aa and Ab, the stability of the corresponding periodic
orbits shown in figure 13b,d can be easily evaluated by calculating the
appropriate eigenvalues. It was found that the fixed points in the two cases
have complex conjugate eigenvalues l1,2aZ0.174Gi0.944 for the regime without
impacts and l1,2bZ0.256Gi0.865 for the regime with impacts. That means for
the specific set of parameters, at the grazing condition the eigenvalues abruptly
jump from one position to another, but remain within the unit circle and hence
there is a transition from a stable non-impacting period-1 orbit to a stable
impacting period-1 orbit. We have seen earlier that it is also possible for the
period-1 orbit to lose stability abruptly at the grazing condition.

If the eigenvalues jump abruptly at grazing, can they jump from any position to
any other position? Or, is there any restriction or pattern in the jump? The
procedure described above has been adopted to investigate this question
Phil. Trans. R. Soc. A (2008)
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experimentally. For this, we chose a set of parameters for which a stable non-
impacting period-1 orbit changes to a stable impacting period-1 orbit as the
excitation frequency was varied. It has been shown earlier (Ma et al. 2006) that
patterns in the jump of the eigenvalues emerge only when seen in terms of the trace
and the determinant of the Jacobian matrix. Following that lead, we obtained the
Jacobian matrix for each parameter value, and then the trace and the determinant
of that matrix—which are shown in figure 15. Three different values of the stiffness
ratio were chosen, i.e. bZ2.9 (figure 15a), 13.0 (figure 15b ) and 95.4 (figure 15c),
whereas all other system parameters remained in close range. In practice, three
different beams providing secondary stiffness were used, but all the other elements
of the rig were the same. The figure also shows the corresponding values predicted
from theory, showing a very close match between the two. Theoretical curves used
for comparison were obtained using the mathematical model described above,
whereas the details of the Jacobian matrix calculations for this piecewise linear
model are given in appendix C.

The experimental results showed that the determinant of the Jacobian matrix
does not change significantly under varying excitation frequency, but the trace
seems to jump abruptly following the grazing condition. However, in all three cases
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shown in figure 15, there is a gap in the experimental curve near the grazing
frequency,where, asmentionedbefore, itwas difficult to gather reliable experimental
data. The curves obtained from theory were used to fill the gap, to obtain a clearer
understanding of the variation of the trace and the determinant very close to the
grazing condition. It can be seen from the simulations that the trace remains
continuous, but not smooth, during this transition. The variation of the trace curve is
indicative of a square-root singularity. However, the determinant remains invariant
as the system is moved from a non-impacting state to an impacting state.
5. Conclusions

In this paper, extensive experimental investigations of an impact oscillator with a
one-sided elastic constraint have been presented. Different bifurcation scenarios
have been shown for a number of values of the excitation amplitude, with the
excitation frequency as the bifurcation parameter. Close to grazing, the mass
acceleration signal is shown to be more effective in detecting contacts with the
secondary spring. The most typical recorded scenario is when a non-impacting
periodic orbit bifurcates into an impacting one via the grazing mechanism. In some
cases the resulting orbit is stable, but in most cases it loses stability through grazing.
Following such an event, the evolution of the attractor is governed by a complex
interplay between smooth and non-smooth bifurcations. In some cases, the
occurrence of coexisting attractors was manifested through discontinuous transition
from one orbit to another through boundary crisis. One notable feature was the
occurrence of boundary crises provoked by grazing events.

In this paper we also presented a new experimental technique to study the
stability of periodic orbits in impact oscillators. The Jacobian matrix of the
Poincaré map, obtained with the experimental technique, was compared with
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http://rsta.royalsocietypublishing.org/


2.0(a)

(b)

(c)

1.5

1.50

2

1

0

–1

–2

0.75

0

–0.75

–1.50

1.0

0.5

0

tr
ac

e 
an

d 
de

te
rm

in
an

t
tr

ac
e 

an
d 

de
te

rm
in

an
t

tr
ac

e 
an

d 
de

te
rm

in
an

t

–0.5
0.45

non-dimensional frequency

0.50 0.55 0.60 0.65

0.4 0.5 0.6 0.7 0.8

0.56 0.60 0.64 0.68

Figure 15. Trace and determinant of the Jacobian matrix obtained for (a) bZ2.922, xZ0.011,
AZ1.580, eZ0.769, fnZ18.84 Hz; (b) bZ13, xZ0.008, AZ0.552, eZ0.335, fnZ10.87 Hz and
(c) bZ95.4, xZ0.01, AZ2.08, eZ1.511, fnZ7.87 Hz. Experimental results (circles for the trace and
squares for the determinant) are shown in grey and the theoretical curves are in black.

697Experimental study of impact oscillator

 on January 11, 2011rsta.royalsocietypublishing.orgDownloaded from 
that obtained from theoretical analysis, and a good correspondence between
them was observed for different stiffness ratios. Using this approach, we also
studied how the eigenvalues of the Jacobian matrix change as the system is
driven from a non-impacting state to an impacting state. It was concluded that
the determinant remains invariant, while the trace varies rapidly at this
transition, exhibiting a slope singularity.
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Appendix A

In the smooth half-space X1, the solutions of the equation of motion (4.5) for
initial conditions (xn, vn) at tn are

xIðtÞZD1 sinðutC41ÞCexpðKxðtK tnÞÞðA1 cos g1ðtK tnÞ

CB1 sin g1ðtK tnÞÞ ðA 1Þ
and

vIðtÞZuD1 cosðutC41ÞCexpðKxðtK tnÞÞððg1B1KxA1Þcos g1ðtK tnÞ

CðKg1A1KxB1Þsin g1ðtK tnÞÞ; ðA 2Þ
where

D1 Z
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2xuÞ2Cð1Ku2Þ2
q ; g1 Z

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kx2

p
; 41 Z arctan

K2ux

1Ku2

� �
ðA 3Þ

and

A1ðtn; xnÞZ xnKD1 sinðutn C41Þ;

B1ðtn; xn; vnÞZ
vnKuD1 cosðutn C41ÞCxA1ðtn; xnÞ

g1

:
ðA 4Þ

In the second half-space X2, the solutions for initial conditions (xn, vn) at tn are

xIIðtÞZ be

1Cb
CD2 sinðutC42ÞCexpðKxðtK tnÞÞðA2 cos g2ðtK tnÞ

CB2 sin g2ðtK tnÞÞ ðA 5Þ
and

vIIðtÞZuD2 cosðutC42ÞCexpðKxðtK tnÞÞððg2B2KxA2Þcos g2ðtK tnÞ

CðKg2A2KxB2Þsin g2ðtK tnÞÞ; ðA 6Þ
where the constants are given below:

D2 Z
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð1CbÞKu2Þ2 Cð2uxÞ2
q ; g2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1CbÞKx2

q
;

42 Z arctan
K2ux

ð1CbÞKu2

� �
and

ðA 7Þ

A2ðtn; xnÞZ xnK
be

1Cb
KD2 sinðutn C42Þ

B2ðtn; xn; vnÞZ
vn CxA2ðtn; xnÞKuD2 cosðutn C42Þ

g2

:

ðA 8Þ
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Appendix B

The map P1 associates the point ðji; viÞ2S2 with the point ðjiC1; viC1Þ2S1, or
in other words the initial moment tiZji/u of no contact regime characterized by
initial conditions (e, vi) with its final moment tiC1. Equation G1ðtiC1ÞZxIðtiC1ÞK
eZ0 is an implicit equation that needs to be solved in order to determine the
time tiC1. The formula for xIð$Þ is given in equation (A 1), and thus we have an
equation for the unknown tiC1

G1ðtiC1ÞZD1 sinðutiC1 C41ÞCexpðKxðtiC1K tiÞÞðA1 cos g1ðtiC1K tiÞ

CB1 sin g1ðtiC1K tiÞÞKeZ 0; ðB 1)

where D1, g1, f1, A1 and B1 are described by equations (A 3) and (A 4)
substituting tnZji/u, xnZe, vnZvi.

Once tiC1 is calculated, the values of jiC1 and velocity viC1 can be determined
from

jiC1 ZutiC1 mod 2p and ðB 2)

viC1 Z vIðtiC1ÞZuD1 cosðutiC1C41ÞCexpðKxðtiC1K tiÞÞ
!ððg1B1KxA1Þcos g1ðtiC1K tiÞCðKg1A1KxB1Þsin g1ðtiC1K tiÞÞ:

ðB 3)

Similarly, themapP2 relates thepoint ðjiC1; viC1Þ2S1 to thepoint ðjiC2; viC2Þ2S2,
or in other words the initial moment tiC1ZjiC1=u of contact regime characterized
by initial conditions (e, viC1) to its final moment tiC2. Equation G2ðtiC2ÞZ
x IIðtiC2ÞKeZ0 is again implicit and needs to be solved in order to determine time
tiC2, and now the formula for x IIð$Þ is given in equation (A 5)

G2ðtiC2ÞZ
be

1Cb
CD2 sinðutiC2C42ÞCexpðKxðtiC2K tiC1ÞÞ

!ðA2 cos g2ðtiC2K tiC1ÞCB2 sin g2ðtiC2K tiC1ÞÞKeZ 0; ðB 4)

whereD2, g2, f2,A2 andB2 are described by equations (A 7) and (A 8) substituting
tnZjiC1/u, xnZe, vnZviC1.

Once tiC2 is calculated, the values of jiC2 and velocity viC2 can be determined
from

jiC2 ZutiC2 mod 2p and ðB 5)

viC2 Z vIIðtiC2ÞZuD2cosðutiC2 C42ÞCexpðKxðtiC2K tiC1ÞÞ
!ððg2B2KxA2Þcos gIIðtiC2K tiC1Þ
CðKg2A2KxB2Þsin g2ðtiC2K tiC1ÞÞ: ðB 6)

Appendix C

Theoretical results for the Jacobian matrix were obtained using the solutions of
the linear equations of motion constructed in both smooth half spaces of the
system and given in appendix A. As it was difficult to obtain experimental results
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on the discontinuity boundary, the earlier developed theoretical maps were not
suitable for the comparison, and appropriate Poincaré maps were constructed
and their stability was analysed. Similar to the earlier introduced local maps P1

and P2 described in appendix B, three additional maps P1, P2 and P3 were
introduced. Local map P1 associates a point in the first half space ðji; xi; viÞ2
X1 (assuming that jiZ0) with the point on the boundary of this half space
ðjiC1; e; viC1Þ2S1

ðjiC1; viC1ÞZP1ðxi; viÞ:

Local map P2 associates a point on the boundary ðji; e; viÞ2S1 with a point on
the other boundary of this half space ðjiC1; e; viC1Þ2S2 (and in fact P2 coincides
with earlier introduced local map P2)

ðjiC1; viC1ÞZP2ðji; viÞ:

Finally, local map P3 associates a point on the boundary ðji; e; viC1Þ2S2 with
point ð2pKji; xiC1; viC1Þ

ðxiC1; viC1ÞZP3ðji; viÞ:

Here again to use local maps P1 and P2 it is necessary to solve nonlinear
algebraic equations, but the application of P3 is straightforward as in this case
for known jiC1Z2pKji formulae of the displacement and velocity are explicitly
defined as equation (A 1). Then a Poincaré map can be constructed as

ðxnC1; vnC1ÞZPðxn; vnÞZP3+P2+P1ðxn; vnÞ: ðC 1)

A fixed point of the Poincaré map is expressed as v�ZPðv�Þ and to calculate the
stability of this point the Jacobian matrix is computed by the chain rule (Shaw &
Holmes 1983a,b)

DP Z
vðxiC3; viC3Þ
vðxi; viÞ

� �
ðx �;v�Þ

Z
Y3
jZ1

DPj : ðC 2Þ

Here it should be noted that as shown in figure 16, local map P1 associates
(xi , vi) with (jiC1,viC1) as the displacement xiC1Ze and the time (or variable
jZtu mod 2p) vary with the change of initial conditions. Thus

DP1 Z
vðjiC1; viC1Þ

vðxi; viÞ

� �
: ðC 3Þ

Similarly, local map P2 associates (jiC1, viC1) with (jiC2, viC2) as again the
displacement xiC2Ze, and

DP2 Z
vðjiC2; viC2Þ
vðjiC1; viC1Þ

� �
: ðC 4Þ
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Figure 16. The Poincaré map is constructed using the locally valid maps P1, P2 and P3.
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Finally, local map P3 associates (jiC2, viC2) with (xiC3, viC3) as in this case the
final value of j is known as jiC3Z2pKjiC1KjiC2, and

DP3 Z
vðxiC3; viC3Þ
vðjiC2; viC2Þ

� �
: ðC 5Þ

Thus the Jacobian matrix DP is calculated as

DP Z
vðxiC3; viC3Þ
vðxi; viÞ

� �
ðx �;v�Þ

Z
vðxiC3; viC3Þ
vðjiC2; viC2Þ

� �
vðjiC2; viC2Þ
vðjiC1; viC1Þ

� �
vðjiC1; viC1Þ

vðxi; viÞ

� ������
ðx �;v�Þ

: ðC 6Þ

The partial derivatives given in equation (C 6) are calculated using implicit
function differentiation as explained below.

The first matrix in the r.h.s. of the equation (C 6) contains four partial
derivatives vjiC1=vxi, vviC1=vxi, vjiC1=vvi and vviC1=vvi. The phase variable
jiC1 is implicitly defined by equation (B 1) where the substitutions of tiZ0
and jiC1ZutiC1 are made. Thus using implicit differentiation, one can
obtain partial differentials

vjiC1

vxi
ZK

vG1

vxi
vG1

vjiC1

ðC 7Þ

vjiC1

vvi
ZK

vG1

vvi
vG1

vjiC1

ðC 8Þ

and because viC1ZvIðtiC1Þ (where function v I is given by equation (A 1)
substituting tnC1ZjiC1=u, tnZ0, xnZxi and vnZvi) is a function of jiC1 as well
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as xi and vi , the other partial derivatives are calculated as

vviC1

vxi
Z

vvI

vxi
C

vvI

vjiC1

vjiC1

vxi
and ðC 9Þ

vviC1

vvi
Z

vvI

vvi
C

vvI

vjiC1

vjiC1

vvi
: ðC 10Þ

Thus substituting

G1ðjiC1=uÞZD1sinðjiC1 C41ÞCexpðKxjiC1=uÞðA1ðxiÞcosðg1jiC1=uÞ

CB1ðxi; viÞsinðg1jiC1=uÞÞKeZ 0;

vG1

vjiC1

Z vIðjiC1=uÞ=u;

vG1

vxi
Z expðKxjiC1=uÞ

vA1ðxiÞ
vxi

cosðg1jiC1=uÞC
vB1ðxi; viÞ

vxi
sinðg1jiC1=uÞ

� �

Z expðKxjiC1=uÞ cosðg1jiC1=uÞC
x

g1

sinðg1jiC1=uÞ
� �

;

vG1

vvi
Z expðKxjiC1=uÞ

vA1ðxiÞ
vvi

cosðg1jiC1=uÞC
vB1ðxi; viÞ

vvi
sinðg1jiC1=uÞ

� �

Z expðKxjiC1=uÞ
1

g1

sinðg1jiC1=uÞ
� �

;

vv I

vjiC1

ZKuD1 sinðjiC1C41ÞCexpðKxjiC1=uÞ
1

u
cosðg1jiC1=uÞ A1ðxiÞ x2Kg2

1

� ���

CB1ðxi; viÞðK2xg1ÞÞC
1

u
sinðg1jiC1=uÞ A1ðxiÞð2xg1ÞCB1ðxi; viÞ x2Kg2

1

� �� ��
;

vv I

vxi
Z expðKxjiC1=uÞ cosðg1jiC1=uÞ Kx

vA1ðxiÞ
vxi

Cg1

vB1ðxi; viÞ
vxi

� ��

Csinðg1jiC1=uÞ Kg1

vA1ðxiÞ
vxi

Kx
vB1ðxi; viÞ

vxi

� ��

Z expðKxjiC1=uÞ sinðg1jiC1=uÞ
Kx2Kg2

1

g1

� �
and

vv I

vvi
Z expðKxjiC1=uÞ cosðg1jiC1=uÞ g1

vB1ðxi; viÞ
vvi

� ��

Csinðg1jiC1=uÞ Kx
vB1ðxi; viÞ

vvi

� ��

Z expðKxjiC1=uÞ cosðg1jiC1=uÞK
x

g1

sinðg1jiC1=uÞ
� �

;
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we obtained

vjiC1

vxi
ZK

u

v IðjiC1=uÞ
expðKxjiC1=uÞ cosðg1jiC1=uÞC

x

g1

sinðg1jiC1=uÞ
� �

;

vjiC1

vvi
ZK

u

v IðjiC1=uÞ
expðKxjiC1=uÞ

1

g1

sinðg1jiC1=uÞ
� �

;

vviC1

vxi
Z expðKxjiC1=uÞ sinðg1jiC1=uÞ

Kx2Kg2
1

g1

� �
C

vvI

vjiC1

vjiC1

vxi
and

vviC1

vvi
Z expðKxjiC1=uÞ cosðg1jiC1=uÞK

x

g1

sinðg1jiC1=uÞ
� �

C
vv I

vjiC1

vjiC1

vvi
:

The other partial derivatives given in equation (C 6) are calculated similarly
using function G2 given by equation (B 4) and formulae for the displacement and
velocity in the second half-space equation (A 5).
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NOTICE OF CORRECTION
Figure 10 and equation (4.7) are now presented in their correct forms.
19 November 2007
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