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Abstract

The present work deals with the dynamics of a mechanical switching system in which the state variables are continuous at the switching events,
but the first derivative of the vector field changes discontinuously across the switching boundary. Earlier works have shown that hard impacting
systems yield discrete maps with a term of power 1/2, and stick-slip systems yield discrete maps with a term of power 3/2. Maps of the first
kind exhibit square-root singularity while those of the second kind are smooth, and therefore no border collision bifurcation occur in them. In this
Letter we consider an impacting system with a wall cushioned with spring-damper support. The spring is constrained such that the force on the
mass changes discontinuously at a grazing contact. We focus our attention on the change in the Jacobian matrix of a fixed point caused by grazing.
We show that a typical property of border collision in such systems is that the determinant remains invariant and the trace shows a singularity at
the grazing point. We also explain the observed bifurcations based on the available theory of border collision bifurcations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This Letter studies the dynamical behavior of a mass un-
dergoing soft impacts. Soft impacts occur in many practical
mechanical systems [1,2] where there is some “cushioning” at
the impacting surfaces—meant for reducing the noise and chat-
ter. It can be visualized as a mass impacting not with a hard
wall, but with a spring-damper support in front of a wall. The
existence of the spring-damper type cushion introduces some
special features in the system dynamics—which is the focus of
the investigation in the present Letter.

This dynamical system can be expressed, mathematically, as
two sets of first order ordinary differential equations, and the
orbit switches from one set to the other depending on some
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condition on the state variables. Such switching dynamical sys-
tems are of profound practical importance. All power electronic
circuits are of this type [3]. Many mechanical systems like
impacting systems [4,5] and those involving stick slip motion
[6,7], and hydraulic systems with valves (including the human
heart [8]) are also examples of switching dynamical systems.

The theory of bifurcations in smooth dynamical systems is
well developed. The bifurcations in piecewise smooth systems
demand a different theory. It has been shown that switching
systems yield discrete-time maps with two or more compart-
ments in the state space, and the system description in each
compartment is given by different functional forms [9,10]. In
such systems, as a parameter is varied, a fixed point may collide
with the borderline between compartments. This may cause a
discrete change in the eigenvalues, resulting in a sudden change
in the dynamical behavior. Such bifurcations are called border
collision bifurcations [11,12].

It follows that border collision bifurcations can occur only if
the derivative (or the Jacobian) of the map changes discontin-
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uously across the borderline between compartments. A com-
prehensive study of the form of discrete maps for piecewise
smooth mechanical systems has been done earlier. Nordmark
[6] showed that an impact oscillator with hard impacts yields
a map with square root singularity. Dankowicz and Nordmark
[13] analysed the stick-slip oscillations, and showed that such
a system yields a map with 3/2-type singularity. Di Bernardo
et al. [14] have analyzed normal forms maps using the method
of zero-time discontinuity mapping (ZDM) for a class of hybrid
systems. Of particular interest is the classification on the basis
of continuity of flows. They show that the zero-time disconti-
nuity mapping has (i) a square root singularity at the grazing
point if the flow on the right-hand side is not equal to the flow
on left-hand side, and (ii) a 3/2-type singularity at the grazing
point in case where the flows are equal on both sides but there
is a discontinuity in the first or the second derivative of the flow.

To illustrate the character of the two functional forms, con-
sider the following maps.
Power-of-1/2 map:

(1)xn+1 =
{

axn + μ if x � 0,

bx
1/2
n + μ if x � 0.

Power-of-3/2 map:

(2)xn+1 =
{

axn + μ if xn � 0,

axn − bx
3/2
n + μ if xn � 0.

The map (1) exhibits a singularity in slope—the so-called
square-root singularity—as xn → 0+. On the other hand, the
map (2) is continuous at the critical point xn = 0, and the deriv-
ative has the same value at the two sides of the critical point.
This implies that the map is smooth, and hence border collision
bifurcations are not expected to occur in such a system.

At the point of grazing, if the cushioning surface does not
apply any force on the mass, there will be no local change in
the vector field, and therefore one would not expect any abrupt
change in the Jacobian of the fixed point. In order to study the
nature of the abrupt change in the Jacobian, we consider a sys-
tem with precompressed spring at the cushion—which causes a
discontinuous change in the force applied on the mass at a graz-
ing point. Therefore in such a system there is a discontinuous
change in the first derivative of the vector field. To our knowl-
edge, the nature of local bifurcations in such a system has not
been investigated yet. In this Letter we show that border colli-
sions do occur in such a system, and offer explanation of the
bifurcation phenomena based on the available theory of border
collision bifurcations [15]. We also investigate the specific char-
acter of the two-dimensional normal form of the Poincaré map,
and show that in such a system, at all border collision events
the determinant of the Jacobian matrix remains invariant while
the magnitude of the trace approaches infinity at one side of the
border.

2. System description

The system considered in this Letter consists of a mass M

supported by a spring k1 and a damper R1 attached to a rigid
Fig. 1. Schematic diagram of the system.

wall (see Fig. 1). There is a sinusoidally varying force

F = Fm cosωt

acting on the mass. This part is a simple spring-mass-damper
system. When the spring is relaxed, the right end of the mass is
at a distance L1 from the wall, and x is the elongation from the
unstretched position.

On the other side there is a wall with spring k2 and
damper R2 (and no mass) to cushion the impact. For the sake
of simplicity of the model, the equilibrium positions of both
springs are taken as L1. The spring of the cushion is constrained
so that it is compressed by a displacement L2 − L1 from its re-
laxed position. Thus the impacting surface is at a distance L2.

If x + L1 < L2 then it is a simple harmonic oscillator given
by the equation

Mẍ + R1ẋ + k1x = Fm cosωt.

We call it system-1.
If x +L1 � L2 then an impact occurs. Since there is no mass

at the impacting surface, following the impact simply the spring
and damper constants change, to give the equation

Mẍ + (R1 + R2)ẋ + (k1 + k2)x = Fm cosωt.

We call it system-2.
Here we are interested in the bifurcations occurring when the

trajectory grazes the boundary between system-1 and system-2.
The discrete observations are done in synchronism with the ex-
ternal periodic input, to obtain a “stroboscopic sampling”. It is
known that such switching dynamical systems yield maps that
are piecewise smooth. We are interested in the character of the
discrete map at the two sides of the borderline.

3. Observed bifurcation phenomena

In this section we study the bifurcation phenomena in this
system, with the amplitude Fm of the forcing function as the bi-
furcation parameter and the other parameters fixed at M = 1 kg,
k1 = k2 = 1 N/m, R1 = R2 = 0.1 N s/m, L2 − L1 = 0.5 m,
and ω = 0.8 rad/s. A bifurcation diagram, with Fm varied from
0.175 N to 0.3 N is shown in Fig. 2(a). This diagram has
been obtained by using a number of initial conditions for each
parameter value, so that the coexisting attractors are visible.
A close-up of the diagram in the parameter range Fm = 0.176
to Fm = 0.186 is shown in Fig. 2(b).

In the following discussion, specific periodic orbits are iden-
tified by a symbol like PiTj , where i implies the periodicity of
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Fig. 2. (a) The bifurcation diagram of the system. (b) Close-up view of the
parameter range from 0.176 to 0.186 to show the details.

the orbit and j implies the number of transitions from system-1
to system-2, i.e., the number of impacts in that orbit.

At low values of Fm, the period-1 orbit (P1T0 type, without
any impact) exists and is stable. At Fm ≈ 0.1768, another sta-
ble period-3 orbit comes into existence through a saddle-node
bifurcation. At Fm ≈ 0.179245 this period-3 orbit undergoes a
bifurcation as the continuous-time trajectory grazes the cush-
ioning surface, and the orbit abruptly turns chaotic. We call it
bifurcation point A.

As the parameter is increased further, at Fm ≈ 0.1843909 the
P1T0 type period-1 orbit grazes the boundary and loses stabil-
ity. We call it bifurcation point B . Following this bifurcation,
the orbit moves to a coexisting chaotic orbit. Subsequently a
period-2 orbit becomes stable and persists for a large range of
the parameter.

As the parameter is increased further, the P1T1 orbit again
becomes visible at Fm ≈ 0.261 and the stable P2T1 orbit sud-
denly disappears at Fm ≈ 0.287. To probe these events, we plot
the bifurcation diagram by following the fixed points (not by
Fig. 3. The bifurcation diagram obtained by following the fixed points.

obtaining the asymptotically stable orbits as is the common
practice). For this, the fixed points, irrespective of their stability,
are obtained by solving the algebraic conditions numerically
[16]. The resulting diagram is presented in Fig. 3.

It shows that the unstable P1T1 orbit undergoes a subcritical
period doubling bifurcation at F ≈ 0.261 and becomes stable.
We call this the bifurcation point C. The P2T2 type orbit origi-
nating at this bifurcation exists for Fm > 0.261, i.e., at the same
side as the stable P1T1 orbit. This orbit collides with the sta-
ble P2T1 orbit at Fm ≈ 0.28692 and both the orbits disappear
(bifurcation point D).

To investigate the nature of these bifurcations, we show in
Fig. 4 the continuous-time orbits which undergo the bifurca-
tions A, B , C, and D. It shows that at bifurcations A, B , and
D, the orbit grazes the line representing the switching condi-
tion between system-1 and system-2, and therefore these are
related to the grazing condition. The orbit in Fig. 4(c) does not
show grazing, and hence point C must be related to a smooth
bifurcation. In case of bifurcation D, both the stable P2T1 orbit
and the unstable P2T2 orbit undergo grazing, and at the bi-
furcation point they become identical. This orbit is shown in
Fig. 4(d).

The question now is: Do these grazing conditions lead to
border collision bifurcations? The answer hinges on whether
the eigenvalues of a fixed point change abruptly as an orbit
grazes the state space boundary.

4. Calculation of the eigenvalues

To investigate this point, we need to obtain the eigenvalues
of the fixed point that collides with the border (corresponding
to the continuous-time orbit that undergoes grazing). We have
calculated the eigenvalues following a procedure particularly
suitable for switching dynamical systems, presented in a sepa-
rate paper [16].

For bifurcation point A, the eigenvalues of the stable period-
3 orbit just before the bifurcation are 0.142531 and 0.635898,
and those of the unstable period-3 orbit just after the bifurcation
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Fig. 4. The continuous-time orbits close to bifurcation points A, B , C, and D. The points of discrete-time observation for obtaining the stroboscopic map are also
shown.
are −0.0001316 and −688.514. For the bifurcation point B ,
the eigenvalues of the P1T0 fixed point at Fm = 0.1843909
(before grazing) are 6.633115 × 10−3 ± i0.6751993, and that
of the P1T1 fixed point at Fm = 0.1844 (after grazing) are
−6.102994462061591 × 103,−7.470650757568364 × 10−5.
At the bifurcation point C, for the parameter value Fm = 0.2609
the unstable P1T1 orbit’s eigenvalues are −1.00047867 and
−4.29169277, while for Fm = 0.261, the stable P1T1 orbit’s
eigenvalues are −0.99941506 and −4.29601072. Just before
the bifurcation point D, i.e., just before the disappearance of the
orbits at Fm = 0.28692, the stable P2T1 orbit has the eigenval-
ues −0.16072169 ± i0.39923669 and the unstable P2T2 orbit
has the eigenvalues 11235.37065 and 1.64855405 × 10−5.

It is therefore clear that at bifurcation points A and B , there
is an abrupt change in the eigenvalues of the fixed point at
the grazing incident. For the bifurcation point C, one eigen-
value assumes the value of −1, which implies that the event is
a smooth period-doubling bifurcation. At bifurcation point D,
a stable and an unstable fixed point collide with the border-
line simultaneously, and their eigenvalues are widely different.
Bifurcations A, B , and D are therefore clear cases of border
collision bifurcation.
The eigenvalues of the fixed point seem to be jumping dis-
continuously over a large distance on the complex plane when
an orbit grazes the switching boundary. The question is: Is there
an underlying pattern in the seemingly arbitrary jump of the
eigenvalues?

5. Character of the normal form

As shown in [15,17], the local character of border collision
bifurcations can be analysed by obtaining the piecewise linear
“normal form” map in the neighborhood of the borderline. The
normal form is given by

(3)

(
xk+1
yk+1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
τL 1

−δL 0

)
︸ ︷︷ ︸

JL

(
xk

yk

)
+

(
1
0

)
μ, xk � 0

(
τR 1

−δR 0

)
︸ ︷︷ ︸

JR

(
xk

yk

)
+

(
1
0

)
μ, xk � 0

where τL is the trace and δL is the determinant of the Jaco-
bian matrix JL of the system at a fixed point in RA := {(x, y) ∈
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Table 1
The parameters of the normal form corresponding to the bifurcation points A,
B , and D

Bifurcation τL δL τR δR

A 0.7784 0.0906 −688.5141 0.0906
B 0.0126623 0.45593 −6.1029944 × 103 0.45593
D −0.32144 0.18522 1.123537 × 104 0.18522

�2: x � 0} and close to the border and τR is the trace and δR is
the determinant of the Jacobian matrix JR of the system eval-
uated at a fixed point in RB := {(x, y) ∈ �2: x � 0} near the
border.

The parameters of the normal form, namely, the trace and de-
terminant of the Jacobian matrix at the two sides of the border,
depends on the system description and the parameters chosen.
But it is not possible to establish a closed form functional re-
lationship between the parameters of the normal form and the
actual system parameters. For each border collision bifurcation,
the parameters of the normal form have to be obtained by com-
puting the eigenvalues of the fixed point before and after the
border collision event. These parameters, computed from the
eigenvalues presented in the last section are tabulated in Ta-
ble 1.

For the bifurcation point A, the parameters satisfy the con-
dition

2
√

δL < τL < 1 + δL and τR < −(1 + δR),

and the theory of border collision bifurcation [15,17] predicts
that there should be a direct transition from a stable fixed point
to a chaotic orbit. In the actual system the fixed point under con-
sideration is period-3. Therefore we observe a transition from a
period-3 orbit to a 3-piece chaotic orbit.

For the bifurcation point B the orbit becomes locally un-
stable following the border collision bifurcation. The available
theory of border collision bifurcations predicts that following
this bifurcation a period-1 and a period-2 orbit should exist, but
both should be unstable. The bifurcation diagram obtained by
following the period-1 and period-2 orbits close to this bifur-
cation point (Fig. 5) show the evolution of these orbits. It is
found that the P2T1-type period-2 orbit, which was unstable
immediately following the border collision bifurcation, attains
stability at Fm = 0.184403 (at Fm = 0.184402, the eigenvalues
are −1.059081004 and −0.19611911 while at Fm = 0.184403,
the eigenvalues are −0.98396256 and −0.21108037). But the
system does not collapse in the parameter range where both the
orbits are unstable, and moves to a coexisting chaotic orbit.

As for case D, the theory of border collision bifurcation
[15,17] predicts that the merging and disappearance of a pair
of fixed points would occur if

τR > 1 + δR and −(1 + δL) < τL < (1 + δL).

In the present case this condition is satisfied, and so this is a
“border collision fold bifurcation”.

However, the most remarkable results emerging from Ta-
ble 1 are that
Fig. 5. The bifurcation diagram obtained by following the period-1 and period-2
fixed points.

• at all border collision events for the soft impact system,
the determinant at the two sides of the borderline were the
same, and

• the trace at one side of the borderline assumes a very high
value.

The eigenvalues were obtained at the fixed point which is
dependent on the parameter value chosen. Our investigations
indicated that the trace changes very fast as one chooses a para-
meter value closer and closer to the bifurcation point, but the
determinant does not change appreciably. This raises further
questions:

(1) Does the magnitude of τR tend to infinity as one approaches
the bifurcation point?

(2) Are the determinants exactly equal at the two sides of the
normal form map?

(3) How does the variation of the trace and determinant depend
on the character of the cushioning surface?

To settle these issues, we plot the variation of the determi-
nant of the Jacobian matrix with the amplitude of the forcing
function Fm for various values of k2 and R2 (Fig. 6) for the
bifurcation event B , where the P1T0 orbit collides with the
switching surface. It shows that the determinants at the two
sides of the border collision event are indeed equal, and with in-
creasing values of the parameter, the determinant falls linearly.
It also shows that the slope of the curve obtained for the P1T1
orbit depends on the stiffness of the spring k2 and the coeffi-
cient of the damper R2. For very hard and frictionless impact
(k2 → ∞, R2 → 0), the determinant is expected to be essen-
tially constant over a large parameter range.

In Fig. 7 we plot the variation of the trace as a function of
the parameter Fm. Since the value changes over several orders
of magnitude and since it has negative value, we plot the log-
arithm of the negative of the trace. The graph clearly shows
that the trace changes discontinuously at the border, and that
the value of the trace approaches −∞ as the bifurcation para-
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Fig. 6. The variation of the determinant of the Jacobian matrix as a function of the parameter Fm (a) for various values of k2 with R2 fixed at 0.1 N s/m, and (b) for
various values of R2, with K2 fixed at 1.0 N/m.

(a) (b)

Fig. 7. The variation of the trace of the Jacobian matrix as a function of the parameter Fm, (a) for various values of k2 with R2 fixed at 0.1 N s/m, and (b) for various
values of R2, with K2 fixed at 1.0 N/m.
meter is approached from the right side. The rate of approach
depends on the softness of the impacting surface (given by the
stiffness of the spring k2) but is independent of the coefficient
of the damper R2.

6. Conclusions

In this Letter we have considered an impact oscillator with
a constrained spring-damper cushion in front of the impact-
ing wall. In this system there is no discontinuity in the state
variables, and only the first derivative of the flow changes dis-
continuously across the switching surface. Our numerical inves-
tigations show that the Jacobian matrix of a fixed point under-
goes abrupt change as it hits the border—or in continuous-time,
when an orbit grazes the switching manifold. There is an under-
lying pattern in the seemingly arbitrary jump of the eigenvalues,
which becomes clear only when one looks at the normal form.
For an orbit with impact, the magnitude of the trace ap-
proaches infinity as the parameter approaches the critical value
corresponding to the grazing condition, implying a square-root
like singularity in the trace of the Jacobian matrix. The rate of
approach is dependent on the spring constant of the cushion,
but is independent of the damping factor. Another remarkable
observation is that at every occurrence of border collision, the
even though the Jacobian elements are widely different, the de-
terminants at the two sides of the border are the same. The
determinant varies linearly as the fixed point moves away from
the border with the change of a parameter, with different rates
of change for various values of k2 and R2.

Though the theory of border collision bifurcations for 2D
normal form map should not logically be applicable to systems
with derivative singularity, we find that the predictions of the
theory, when extended to very large values of the trace, do sat-
isfy the bifurcations observed in this system. However, further
investigation is necessary to ascertain the limits of applicability
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of the available theory to systems with square-root singular-
ity.

We believe that the observations reported in this Letter will
pave way for a proper understanding of the local bifurcations
that occur in practical systems with components undergoing
soft impact. These observations also call for further develop-
ment of the theory of border collision bifurcations for two-
dimensional maps with singularity in the trace.
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