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We present the theory of border collision bifurcatio

n for the special case where the state space is

piecewise smooth, but two-dimensional in one side of the borderline, and one dimensional in the
other side. This situation occurs in a class of switching circuits widely used in power electronic
industry. We analyze this particular class of bifurcations in terms of the normal form, where the
determinant of the Jacobian matrix at one side of the borderline is greater than unity in magnitude,
and in the other side it is zero. @002 American Institute of Physic§DOI: 10.1063/1.1521390

Border collision bifurcations occur in piecewise smooth
(PWS) maps when a fixed point collides with a borderline
separating two smooth regions. The discontinuous change
in the Jacobian elements results in many atypical bifur-
cation phenomena, like a periodic orbit turning directly
into a chaotic orbit, or multiple attractors coming into
existence or going out of existence as the parameter is
varied across some critical value, etc. So far the theory
for border collision bifurcations has been developed for
one- and two-dimensional PWS maps. Some results re-
garding the existence and stability of period-1 and
period-2 orbits are also available for the general
n-dimensional systems. However, recent research has
shown that there may also be systems where the map is
two dimensional in one side of the border, and one-
dimensional in the other side. In the present paper we
present various bifurcation phenomena that may occur
under that condition.

I. INTRODUCTION

Following the pioneering work of Nusse and Yorke,

that (a) the functionf is continuous across the borderlines,
(b) the Jacobian of is discontinuous across the borderlines,
and (c) the Jacobian elements are finite.

Over the years, evidence has accumulated pointing to-
wards occurrence of such maps in systems of practical im-
portance. Most widely studied examples come from electri-
cal engineering where power electronic circuits—which
contain switches controlled by state feedback—routinely
yield piecewise smooth maps under sampled-data
modeling?® This has given impetus to the study of the dy-
namics of piecewise smooth maps. In piecewise smooth
maps, a new class of bifurcation occur when a fixed point
collides with the border—which causes a discontinuous
change in the elements of the Jacobian matrix. Such bifurca-
tions are in general called border collision bifurcations. In
recent years, the border collision bifurcations occurring in
one-dimensional and two-dimensional maps have been sys-
tematically investigated from the point of view of asymptotic
behavior of orbits at the two sides of a border collision
event*® In another line of development, the existence of
period-one and period-two orbits have been investigated in
the context of a general-dimensional magp.

many researchers have investigated the phenomenon of bor- In the above work it was always assumed that the system

der collision bifurcation that occur in piecewise smooth
maps. In such maps, the state spamephase spagéas di-

dimension is the same over the whole of the state space.
However, recent work on a class of power electronic circuits

vided into two or more regions, and the dynamics are giverhave shown that there may be systems where the state space

by equations of the form

fi(x,y;p)  for (x,y)eRy
fo(x,y;p)  for (x,y)eR

fyip)=1 = ’ &)
fa(X,y;p)  for (x,y)eRy,

whereR;, R,, etc., are different smooth regions of the phas
space, withborderlinesdividing these regions. Much of the
work on the dynamics of piecewise smooth nfasssumed
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dimension may be different at the two sides of the border-
line. This has necessiated a thorough study of the bifurca-
tions that may occur under such condition.

In Sec. Il we first present the example of a system where
the state space dimension changes from two to one across a
borderline. In Sec. Il the basic tools of this analysis—the
normal form and its properties—are presented. We then pro-
ceed to analyze the various bifurcations that may occur in
such systems. There are three possible situations that require
separate treatment depending on the determinant of the sys-
tem at one side of the bordéthat in the other side being

Zero:
(@

when the determinant is less tharl,
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FIG. 1. Circuit diagram of the boost converter. =
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(b) when the determinant is greater thar, = ol
(c) when the determinant is betweenl and+ 1. E
These three cases are treated in Secs. IV, V, and VI, 40 60 80 ) 100 120 140
respectively. Since a large number of cases depending on the (@ Load resistance (€2)
parameters of the normal for need to be presented, we avoid 1 —
the theorem—proof format that would make the paper very
long. Instead, in each case we describe the mechanism of 08-
creation of attractors and the resulting bifurcations as a pa-
rameter is varied. Section VII contains the conclusions of 0.6 L
this paper. o
04r
Il. A PRACTICAL EXAMPLE: THE DC-DC BOOST
CONVERTER 02
The circuit shown in Fig. 1, called the boost converter, is
widely used in industry to convert a lower dc voltage to a or , . ., =
higher dc voltage. When the controlled switBhis on, the 45 55 65 75 85 95

input voltageV;, is applied on the inductor and the inductor )
current rises. When it is off the inductor current falls, and the

polarity of the inductor voltage reverses so that it adds to th&!G. 3. Bifurcation diagrams of the boost converter. Left, with parameters
input voltage. Therefore the output voltafey is greater - G2 M0l Fut v 20N Lo s e S erametors.
than the input voltag®;,. The capacitor acts to smoothen _g 4 my, c=22 uF, V;,,=10 V, T=33.33 5. | .= 1 A and the load re-
the voltage across the load. The energy stored in the induct@rstance varied from 4% to 95Q.

during theon phase circulates through the loégtthe resis-

tanceR) and the diodeD during the off period. During the

on period, the capacitor discharges through the load, thus

maintaining a continuous load current flow. I . A periodic clock signal generated separately is used to

The switch can be controlled by various control 10gics.y,rn on the switch: after the switch turns off, it is turned on at
Here we consider the current mode control where the swnctEhe next clock pulse.

turns off as the inductor current reaches a reference current  thare are two main operating modes of the converter—

the continuous conduction modéCM)’ and the discontinu-

ous conduction modéDCM).8 In CCM, the inductor current

is always nonzero, and the switch and the diode are turned

on and off in a complementary fashion. In DCM, the induc-

tor current drops to zero before the next clock period begins

and during this period botB and S do not conduct.

© The inductor current and the capacitor voltage, are
the state variables of the system. We can construct the
discrete-time model by observing the states in synchronism
with the clock® During the CCM mode of operation the map
will be two dimensional, but during the DCM mode of op-
eration it will be one-dimensional since the inductor current
is always zero at the end of a clock period. Therefore the
state space dimension changes from two to one when the

FIG. 2. Possible evolutions of the inductor current between two clock in-COnverter shifts from CCM to DCN?

stants:(a) where the clock arrives befoiereached ¢, (b) both on and off Figure 2 shows that the discrete-time state space is di-

imer?'?hafeIian'UgeC?ei”Tt:]‘:sg'?ﬁ'r‘egefigg’;)igﬁngi izledczf:f‘feefezn‘if?ugi c?nal vided into three regions, with three different equations giving

fpoi;:]s(,)of tﬁecrg;p, syepa.rated by the b(?rderline cas)(;s shoyeh and(e): in the complete mOdel of the SyStem' Across the first borderline

the state-space dimension remains the same but across the

situation(d) the clock arrives exactly wheinreached ¢, and in situation - Ui .
(e) i becomes zero just at the end of the clock period. second borderline it changes from two to one. The functional

Load resistance (€)

i
0

Iref 1 -

|

0 T
(d) (e)
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TABLE I. The possible types of fixed points of the normal form.

S. Parui and S. Banerjee

Type Eigenvalues Condition
For 0<6<1
Regular attractor &N <1, 0<A,<1 2\/6<7<(1+ )
Regular saddle N <1, \,>1 7>(1+ )
Flip attractor —1<A;<0, —1<\,<0 —(1+8)<r<—-25
Flip saddle —1<M<0,N<—1 7<—(1+9)
Spiral attractor IN4], INgl<1 eigenvalues complex
(@) Clockwise spiral 0<r<2s
(b) Counter-clockwise spiral —2/56<7<0
For —1<6<0
Flip attractor —1<\1<0, 0<\ <1 —(1+8)<7<(1+9)
Flip saddle N>1, —1<\,<0 ™1+6
Flip saddle BN <1,N\ <1 7<—(1+9)
For 6>1
Regular repeller A>1,A>1 26<7<(1+9)
Flip repeller M<—1,N\,<-1 —28>7m>—(1+6)
Flip saddle —1<\ <0, N < —1 7<—(1+9)
Regular saddle N>1, 0<N,<1 7> (1+ )
Spiral repeller IN4], INo[>1 eigenvalues complex
(@) Clockwise spiral 0<r<2s
(b) Counter-clockwise spiral —2/56<1<0
For 6<—-1
Flip repeller N>1N<—1 1+ 8)<r<—(1+9)
Flip saddle BN <1, Ap<—1 7<(1+ )
Flip saddle N>1, —1<A,<0 7<(1+ )
For 6=0
Regular attractor aN1<1,N\,=0 o<r<1
Regular saddle N1>1,0,=0 ™1
Flip saddle N<—1,N,=0 7<-1
Flip attractor —1<\1<0,X,=0 —-1<7<0

forms of the map and the borderlines can be found in Refwhere the state space is divided into two halvesndR. 7

10. and 6, are the trace and determinant of the Jacobian matrix
Figure 3 presents two bifurcation diagrams where a fixedn the left side of the borderline anek and 6y are these

point collided with the second borderlifghown with ar- quantities in the right side, and is the parameter.

rows). Numerical determination of the eigenvalues show that  Classifications of border collision bifurcations are gener-

at pointA, the determinant in one side +s1.219 and thatin ally done in terms of the parameters of the normal form

the other side is zero, and at poBtthe determinant in one (2),%*>®namelyr, , §,, 7, and dg. Presently we consider

side is—1.588 and in the other side it is zero. Therefore, inthe condition 5g=0, for which the locations of the fixed

such a system the determinant in one side of a border collipoints at the two halvek andR are given by

sion event may have magnitudeeater than one-a possi-

bility which has not been investigated so far. L* =( Lt — o
Though this is the first studied case of a system with -7 +6 " 1-7+6,

varying state space dimension, similar phenomena are ex-

pected to occur in many power electronic circuits and other  p« :( Lt 0) (4)

types of systems. Hence the necessity of a theory for this 1-1g’

special class of border collision bifurcations.

: ()

There are two basic categories of border collision

: 5
IIl. THE NORMAL FORM AND ITS PROPERTIES bifurcations.

(1) Border collision pair bifurcation: A pair of fixed points
are born on the border as the parameter is varied through
wn=0. If the parameter is varied in the opposite direction,
a pair of fixed points approach each other, and are anni-

It has been shown earlietthat in the neighborhood of a
border collision event, the nonlinear map can be approxi-
mated by a piecewise linear mé&pormal form) given by

. 1\/x 1 hilated as they collide on the border. Under this condi-
(_ 5. 0 y) +M(0) for x<0, tion, (3) gives the location of.* in the right half plane
g(x,y; m)= 2 and (4) gives the position ofR* in the left half—
=1 X) i (1) for x>0 meaning that the two fixed points do not exist. On the
—dr 0/)\Y #o ’ other side ofu=0, both fixed points exist—one in the
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left half and the other in the right half of the state space.
The condition for the occurrence of pair bifurcation can
be obtained from the above consideration as
1>(14+48) and r<1 (5)
when no fixed point exists for<0 and a pair of fixed
points exist foru> 0.

Similarly there will be another parameter range in which
no fixed point exists fo>0 and two fixed points exist
for ©<0. Its condition of occurrence is found to be
71.<(1+4) and x>1. (6)
Border crossing bifurcation: i5) or (6) are not satisfied,

a fixed point crosses the borderlineass varied from a
negative value to a positive value. Bifurcation occurs

(2)

due to the change of the character of the fixed point as it

crosses the border.

The stability of the fixed points in the above two cases
are governed by the eigenvalues which, for the locally lin-
earized map, are

N=3(7+\72—468), N,=%(7—\7—46), (7)

where 7 and ¢ refer to the trace and determinant of the ei-
genvalue of the fixed point in question.

We can categorize fixed points depending on the nature

of orbits in the neighborhood of the fixed points. The various
types of fixed points for the normal form m&p) are defined
in Table 1.

In working out the character of the attractors, we make

use of the following properties of mdg). First, any point on
they-axis maps to a point on theaxis. The forward iterates
of a point on the unstable manifold will remain on the un-

Border collision bifurcations 1057
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L
I Region of existence of HPO or chaotic attractor
Hl Region of existence of period—2 orbit
(a) [ No attractor
— A
=) [%=)
w +
=+ =t
2 = ',

stable manifold. As an unstable manifold crosses the border
i.e., they-axis, one linear map changes to another linear
map. So the slope of the unstable manifold in two sides of

the x-axis will be different unless the map is smooth, i.e.,
7.=17g and 6, = 8r. Thus for a piecewise smooth map the
unstable manifold will fold at every intersection with the
x-axis. Moreover, the images of every fold point will also be
a fold point. In case of stable manifold the same argumen

applies for the inverse map, and we conclude that the stabl

manifold will fold at every intersection with thg-axis and
the preimage of every fold point will be a fold point.

10

Region of existence of period—1 orbit
t [ Region of exitence of period—2 orbit
[ | Region of existence of HPO or chaotic attractor
(b) [ I No attractor

Second, as the system is linear in each side, period-2 &1'G. 4. Schematic diagram of the parameter space partitioning for

higher period fixed points cannot exist with all pointd.iror
all points inR side. Therefore, if a period-2 orbit exists, it
must have one point ih and another ifR. The condition for
existence of such an orbit is

_,LL(1+ TL+ 5|_)
e

—u(lt7gR)

1+ o) 0

(8
The eigenvalues of the period-2 orbit arex{, — )

and 0. The period-2 orbit will be stable if 1<rg7 —d,

< +1. From this the condition for the stablity of the period-2

orbit is obtained as
1- TLTR+ 5L>0’

9

1+ TLTR— 5|_>0 (10)

Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP |

5. <—1, 6g=0; (a) for <0 and(b) for u>0. The dynamics in the num-
bered regions are discussed in the text.

IV. THE CLASSIFICATION FOR 6, <—1 AND 65z=0

We make a primary division of the parameter space de-
pending on the character of fixed points at the two reglons
andR. Since the fixed point il. can be of three types and
that in R can be of four types, the parameter space can be
partitioned into 12 regions where different types of border
collision bifurcations are expected to occur. These are shown
in Fig. 4. We now discuss briefly the phenomenology that
occur in each region.

A. Border collision pair bifurcation
If (5) and (6) are satisfied, there is no fixed point and
hence no attracting orbit for one side pf=0, and in the

icense or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. The bifurcation diagram for Region 1 in negative determinant casé-!G. 7. The basin boundary and the chaotic attractor for Region 2 in nega-

with 7 as parameter anek=—1.1, 6, = —2, 6g=0, andn=0.4.

other side ofu=0 two fixed points exist. Here we explore
the character of the stable orbit when fixed points exist.

Region 1.7, >—(1+6.) andg<-—-1

Two fixed points exist fopr >0 in L andR, and both are
flip saddles. Due to the flip property of the fixed points,
iterates inL move toR and iterates irR move toL. The
period-2 orbit exists if8) is satisfied, and is stable (@) and
(10) are satisfied. Wheri10) is violated the attractor be-

comes chaotic. The transition from the period-2 orbit to the
chaotic attractor can be seen in the bifurcation diagram

drawn with 7, as the parametdFig. 5. It is seen that at a
critical value of r_, a period-doubling occurs and subse-

quently the resulting orbit hits the borderline. Therefore the
transition from periodic to chaotic orbit occurs through a

border collision.

The structure of the chaotic attractorrgt=6.0 is shown
in Fig. 6. The attractor lies on the unstable manifoldR3f.
Any point in R maps to thex-axis and moves away froR* .

Since the expression of the map is different at the two side
of the origin O, the extremeties of the attractor are formed

by forward iterates of the origin a®—B, B—A, A—C,
C—D, D—E—-creating a two-piece chaotic attractor. With

the change in parameter the two pieces join to form a singlé

piece attractor.

The basin boundary is formed by the stable manifold o
L* which folds at the intersections with theaxis. At a
critical parameter value a boundary crisis ocduvhen point

FIG. 6. The basin boundary and the chaotic attractor for Region 1 in nega-

tive determinant case withr =6, & =—
n=0.4.

2, ,g=—1.1, 63g=0, and

tive determinant case withr

f

4.0, §,=-3, 7y=1.1, 6z=0, and
u=-—0.1.

B touches the basin boundaryd} and the attractor is an-
nihilated.

Therefore in this region of the parameter space, one can
have the birth of a period-2 orbit, a chaotic orbit, or an un-
stable chaotic orbit ag is varied through zero.

Region 2:7 <(1+6) andg>1

For 1< 0 two fixed points exist—a flip saddle in and
a regular saddle iR. The phenomenology is similar to that
in Region-1: the period-2 orbit is stable (®) and (10) are
satisfied, and wheri10) is violated the attractor becomes
chaotic, through period doubling followed by border colli-
sion.

The structure of the chaotic attractor gt=—4.0 is
shown in Fig. 7. The attractor is formed by the unstable
manifold of L* which is located on the attractor. In the at-
tractorOB—BE, FC—CD, FD—CA, BC—ED, thusA,

C, and D become the extremities. The basin boundary is
fsormed by the stable manifold &* which is a saddle. At a
Critical parameter value, boundary crisis may occur, annihi-
lating the attractor. Therefore in this region also, one can
have the birth of a period-2 orbit, a chaotic orbit or an un-
stable chaotic orbit ag is varied through zero.

Region 3: (I 6) <7 <—(1+6,) and O0<7x<1

For u>0 there is a flip repeller il and a regular at-
tractor inR. All initial conditions in L flip to R. All initial
conditions in theR side map to points on the-axis and then
converge ontdR*. So we get a stable period-1 attractor for
u>0.

Region 4:7 > —(1+6,) and 0<y<1

For u>0, L* is a flip saddle andR* is a regular attrac-
tor. This is like a saddle-node bifurcation and we get a stable
period one attractor fop>0.

Region 5: (I+ 6 ) <7 <—(1+6,) and—1<7x<0

For u>0, there is a flip repeller in the side and a flip
attractor in theR side. Initial conditions irL. will be repelled
to the R side, and the initial conditions in the side will
converge onR*. So a stable period-1 attractor exists for
u>0.

Region 6:7 > —(1+4,) and —1<7x<0

For u>0, L* is a flip saddle andR* is a flip attractor.
This is also like a saddle-node bifurcation and we get a
period-1 attractor fog.>0.

Therefore in the regions 3, 4, 5, and 6 there is a birth of
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parameter, if we calculate the location of the fixed pdtit
from (4), we find that it is also located in thie side, and
therefore actually does not exist. However, such a nonexist-
ent fixed point has significant influence on the system dy-
namics because the trajectories of pointRiside are guided

by its location and character. Such a fixed point will be
called avirtual fixed pointand will be denoted by the overbar

sign R*. Similarly, whenR* exists,L* becomes a virtual

fixed point.

Region 8: (L+ 6 )<7 <—(1+6,) andg>1

(Regular saddle changes to flip repeller

For <0, R* exists and is a regular saddle, whil& is

a flip repeller. Forw <0, initial conditions inR converge on

to the unstable manifold. The segment of the unstable mani-

a period-1 attractor =0 as the parameter is varied from fold to the right ofR* goes to infinity, and the segment to the

a negative value to a positive value. left goes towards . In sideL, all points map tdR because of
Region 7: (+6)<7 <—(1+6)) andy<-—1 the flip property ofL*. A period-2 orbit can exist, with a
For u<0 there is a flip repeller in the side and a flip  point each inL andR, if (9) and (10) are satisfied. When

saddle in the R side. The initial conditions in theside (10) is violated, a period doubling occurs followed by a bor-

diverge due to the repelling action bf. The initial condi-  der collision, creating a chaotic orbit. Both the period-2 at-

tions in theR side flip toL, and then diverge to infinity. tractor and the chaotic attractor are located on the unstable

FIG. 8. The chaotic attractor of Region 10 in negative determinant case, for
7.=-5,6,=-3,7/,=0.9, 6s=0, andu=—0.1.

Therefore no attractor can exist for any valuepof manifold of R*. The basin boundary is formed by the stable
manifold of R*. At a critical parameter value the chaotic
B. Border crossing bifurcation attractor is annihilated due to boundary crisis.

In a border crossing bifurcation, a fixed point crosses the ~ For >0, L* is a flip repeller andR* is a regular
border asu is varied through zero, and may become a dif-saddle. The action of the flip repellér* causes all initial
ferent kind of fixed point. Wher(3) shows that the fixed conditions inL to flip to theR side in some iterate, and then
point is inL, the dynamics of points in the side are guided the action ofR* makes it diverge to infinity along its un-
by the character of the fixed poiht*. For that value of the stable direction, i.e., thg-axis.

TABLE II. The nature of the fixed points and the type of bifurcations dpr< —1 and 5g=0.

Region ©n<0 ©n>0 Type of bifurcation

Border collision pair bifurcations
Region 1:7g<—1, No fixed point L*-flip saddle Birth of period-2 attractor, chaotic attractor,
>—(1+46) R*-flip saddle or unstable chaotic orbit for>0
Region 2:73>1, L*-flip saddle No fixed point Birth of a period-2 attractor, or a chaotic
7.<(1+46) R*-regular saddle attractor, or an unstable chaotic orbit for

n<0
Region 3: 6< <1, No fixed point L*-flip repeller Birth of a period-1 attractor fop.>0
(1+68) <7 <—(1+6) R*-regular attractor
Region 4: 0< 7x<1, No fixed point L*-flip saddle Birth of a period-1 attractor fop.>0
>—(1+46) R*-regular attractor
Region 5:— 1< 7x<0, No fixed point L*-flip repeller Birth of a period-1 attractor fop>0
(1+o)<n<—(1+7) R*-flip attractor
Region 6:—1<73<0, No fixed point L*-flip saddle Birth of a period-1 attractor fop.>0
n>—(1+46) R*-flip attractor
Region 7:7y<—1, No fixed point L*-flip repeller No attractor for any value of
(1+o)<m <—(1+6) R*-flip saddle
Border crossing bifurcations

Region 8:7x>1, R*-regular saddle L*-flip repeller Period-2, or chaotic attractor, or no attractor
(1+6) <7 <—(1+46) for <0 and no attractor fop>0
Region 9:7x>1, R*-regular saddle L*-flip saddle No attractor for any value of
>—(1+6)
Region 10: < 7x<1, L*-flip saddle R*-regular attractor Period-2, or chaotic attractor or no attractor
<(1+46)) for <0 and period-1 fou>0
Region 11:— 1< 1z<0, L*-flip saddle R*-flip attractor No attractor fope <0, period-1 foru>0
<(1+46,)
Region 12:7p<—1, L*-flip saddle R*-flip saddle No attractor for any value of
<(1+46))
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Therefore in this region, i is increased from a nega-
tive value, the attractofeither period-2 or chaoticvanishes
at u=0.

Region 9:7 > —(1+6) and7x>1

(Regular saddle changes to flip saddle

For ©<0, R* is a regular saddle arld* is a flip saddle.
The initial conditions in theR side diverge along the un-
stable manifold ofR*. The initial conditions in thed. side
flip to the R side due to the action df* and then move
outwards along the unstable directionRf. So no attractor
exists foru<O0.

For u>0,L* is a flip saddle andR* is a regular saddle.
The flip property ofL* is along the stable direction, and the

unstable direction has a positive eigenvalue. Therefore, the

initial conditions which are to the left df* will gradually
diverge along the unstable direction lof and those which
are to the right ofL* will gradually move to theR side.
Points inR diverge along thec-axis, which is the unstable

direction of R*. So no attractor exists fqu>0.

Thus in this region of the parameter space, there is nc(®)

stable attractor for any value @f.

Region 10:7 <(1+46,) and O< 7x<1

(Flip saddle changes to regular attractor

For u<0, L* is a flip saddle. Therefore the initial con-
ditions in theL side will flip along the unstable manifold of
L* and will move over to theR side in subsequent iterates.
Iterates inR will be guided byR* which is a regular attrac-
tor, and so initial conditions iR will move to theL side.

Since points i move toR and points iR move toL,
there is a possibility of a period-2 orbit. (8) is satisfied, a
period-2 orbit exists, and if9) and (10) are satisfied, it is
stable. Ast, is reduced, conditio9) is approached and the

distance between the period two fixed points gradually in-
creases and finally becomes infinite and no attractor exists

after that.
When 7 is increased, at a poiiL0) is violated, and the
period-2 orbit goes through period doubling after which one

of the branches hits the border, giving rise to a chaotic at-

tractor in a phenomenology similar to that in Fig. 5.

Both the period-2 orbit and the chaotic attractor must lie
on the unstable manifold df*. The chaotic attractor ob-
tained following the instability of the period-2 orbit is shown
in Fig. 8. The extremities of the attractor are formed by for-
ward iterates of the intersections wighaxis: O—B, B—G,
F—C, C—D, E—H, andD—A. The basin of attraction
spans the whole state space.

For u>0, L* is a flip saddle andR* is a regular attrac-
tor. All initial conditions in theR side converge on tB* and
all initial condition in theL side flip to theR side due to the
action of L* and finally converge on t&®k*. So we get a
stable period-one attractor far>0.

Therefore in this region of the parameter spaceuds

decreased from a positive value to a negative value, one has

a transition from period-1 to either period-2 orfit (9) and
(10) are satisfieflor chaotic orbitfif (10) is violated or no
attractor[if (9) is violated.
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FIG. 9. Schematic diagram of the parameter space partitioning,forl,
Sgr=0 showing existence of attractor®) for <0, (b) for u>0.

lated values of the normal form parameters are as follows.
For point A, 7, =-0.2526, 5, =—1.219, 7x=0.9838,
and 6g=0. For point B, 7 =-1.027, 6 =—1.588,
7r=0.7196, andSzx=0. Since(9) and(10) are satisfied, we
see period doubling phenomenon due to border collision.
Region 11:7 <(1+4)) and —1<73<0

(Flip saddle changes to flip attractpr

For ©<0, L* is a flip saddle andR* is a flip attractor.

Initial conditions in theR side flip to the other side dR*

Note that in the boost converter example, the bifurcatiorand land in the. side. Points i move outwards along the

pointsA andB in Fig. 3 fall under this category. The calcu-
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FIG. 10. The basin boundary and the chaotic attractor for Region 1 inFIG. 11. Basin boundary and chaotic attractor for Region 3 in positive
positive determinant case with =—4.5, § =4, rg=1.1, dzg=0, and determinant case with =5.1, 7g=—1.05, §_ =4, 6g=0, andu=0.4.
u=-—0.2.

The chaotic attractor lies on the unstable manifold of
fied, period-2 orbit is not stable. No other attractor can exisR* . Any point in sideR, lying to the left of AB maps to the
for u<0. o x-axis, and then moves along this unstable manifold towards
For >0 R* is a flip attractor and_* is a flip saddle. sideL. Since the originrO—H, and since the map changes
All initial conditions in theR side converge on t&®*. The across the border, the unstable manifold experiences a fold at
initial conditions in thel side move to théR side due to the H. The rest of the attractor is composed by line segments
action of L* and finally converge on t&®R*. So we get a Obtained by the forward iterates @H, as OH—HF,

stable period one attractor far>0. HM—FJ, MF—JG, OJ—HP, KP—>SQ HK—FS, thus
Region 12:7, <(1+6,) and Tr<-—1 forming the attractor.
(Flip saddle remains flip saddie The repellerL* lies within the attractor, and all points

For ©<0, L* andR* are both flip saddles. The initial Cl0S€ t0 it move outwards, and converge on the attractor

conditions in theL side flip along the unstable direction of SinceL™ is enclosed from all sides by the attractor.
L* and move to the side. Points in th® side come to the As the parameters are varied within Region 1, the shape
L side due to the action d&* and flip along the unstable of the attractor and the basin boundary undergo quantitative

direction ofL*. As the fixed point of the second iterate is a changgs. At some comb|na-t|on of parameter values, they
. o S , come in contact, and the orbit becomes unstable at boundary
saddle, the points will diverge to infinity along its unstable

direction. So no attractor exists for any valueof 0. CrISIS.

For 4> 0, the same phenomenon occurs, and no attractor Region Z:TL*<. —(1+4) and TR>*1 ,
can exist For u<0,L* is a flip saddle an®R™* is a regular saddle.

The bifurcation phenomena faf, <—1 and6zg=0 are In this parameter range we haye chaotic'attractpr,uf @TQ’
summarized in Table II. and the phe_nqmenology is similar to that in Regio.1.is _
enclosed within the attractor formed by the unstable mani-
fold of R*. The basin boundary is formed by the stable
V. THE PARAMETER SPACE PARTITIONING FOR manifold of R*. When the origin maps to a point on the

6,>1 AND 6z=0 basin boundary, a boundary crisis occurs.

When the determinant is positive, there can be five types ~ R€9ion 3:TL*>_(1+ 6)andrg<—-1
of fixed points in the left side and 4 types of fixed points in  For#>0,L" is aregular saddle ari" is a flip saddle.
the right side. Therefore the parameter space can be dividdChaotic attractor is organized by the flip sad&e, whose
into 20 regions depending on the type of fixed points—as

hown in Fig. 9.
sho g9 0.65

A. Border collision pair bifurcation

Since no fixed point and hence no attractor exists in one
side of =0, we discuss only the character of the attractor
when fixed points exist.

Region 1:— (1+6,) <7 <—25, andrg>1

For <0, L* is a flip repeller andR* is a regular
saddle. The shape of the chaotic attractor existing in this
region is shown in Fig. 10.

B is location of R*. FDCEAB is the basin boundary _0.1 B
formed by the stable manifold &*. Any point on lineAB -4.0 T
maps to pointB. So from the map we get the slope of the Border
line AB as— 7. In the basin boundarp C—EA, DF—E,  Fig. 12. The bifurcation diagram for Region 6 with as parametefvaried
CA—AB andAB—B. from —4 to 0 with 7g=1.1, 8, =4, 53=0, andu=—0.1.
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FIG. 13. The chaotic attractors for different combinations of the parameters for Region 6 in positive determinatd) case—3.5, §, =4, rx=1.1,
8z=0, andu=-0.1. () 7,=-0.5, §,=4, 7r=1.1, 5g=0, andu=-0.1. (c) 7.=2.0, §,.=4, 7r=1.04, 53=0, andu=—-0.1 (d) 7,=2.7, § =4,
7r=1.01, 63=0, andu=—0.1.

unstable eigenvector lies along thexis (Fig. 11). Any ini- lision pair bifurcation in the seventh iterafene point of the

tial condition in R maps to thex-axis and diverges away periodic orbit lies on the border at the bifurcatjion

from R*. As it crosses the origin, the map changes and the  For different values of the parameter we get chaotic at-
further iterates fall away from the-axis. By the action of  tractors of different shapes as shown in Fig. 13. The basin
L*, the iterates map back t@._The extremities of t_he attrac- boundary is formed by the stable manifold Bf. R* is

tor are formed by forward iterates of the origi®—C,  |ocateq atS and the stable eigenvector with eigenvalue zero

CA, AQB’ B—D gndD»—>I'E.. .is UT. ThereforeUT—S. The stable manifold folds at the
Basin bounary exists and it is formed by the stable mani-

fold of the third iterate fixed point, which is a saddk, Q, y-axis atU and at all preiterates df, forming the basin
andX are the locations of the fixed points of the third iterate.boundary' ) ) ) .
The stable manifold throug® is alongSU, and the unstable The attractor is formed in the following manner. In Fig.
manifold is along thex-axis. The stable manifold folds &t  13(@ the origin O—B, B—A, A—D, andE—C. These
and intersects with the unstable manifold as it crosses thirm the extremities of the attractor. The segments
x-axis. One intersection between stable and unstable marf@?B—BA, BE—~AC andEA—CD. As 7_is increased, the
fold implies an infinite number of intersections, leading to apoint A moves to thelL side, and so the structure of the
fractal structure of the basin boundary. attractor changes, as shown in Fig()31In this attractor the

At a critical combination of parameter values, the attrac-origin O—B, B—A, A—D, D—F, E—~C, F— a point on
tor contacts the basin boundary. No attractor exists after thisF and C— a point onOC. So the segmentBA—AD,
boundary crisis. AE—DC, ED—CF and OB—BA. FC~> a segment on

Regions 4 and 51 >(1+4,) and —1<7g<1 _ OF and further iterate of this segmertOC. As 7, is in-

For 1.>0, one fixed point is regular saddle at theside o550 further, the poid moves to theL side, and the
ar:d. the other s an attractor n theside. If O<TF5<.1 the_n attractor assumes a pentagonal structure as shown in Fig.
R* is a regular attractor and i 1<7x<<0 then it is a flip 13(c) whereO—B, B>A A—D, D—F, F>G, EC.

attractor. This is like a saddle-node bifurcation. Likewi ith further i . the atiract ¢
For u<0 all points diverge to infinity, and for>0 all ! gvylse, with Turther lncrgase im_, the attractor gets one
additional segment. In Fig. 18 O—B, B—~A, A—D,

points are attracted tB*, thus giving a period-1 attractor. )
Region 6:— 28, <7 <28, and7g>1 D—F, F—G, G—H, E—~C, H— a point onCH and
For <0, L* is a repelling spiral an®R* is a regular C— @ point onOC. L* lies within the attractor.
saddle. We get high periodic orbits or chaotic attractor for ~ As any part of the attractor touches the basin boundary,
w<0. The bifurcation diagram with, as the paramet¢and  the attractor becomes unstable at a boundary crisis. Since for
u fixed) is shown in Fig. 12. It shows that the transition from different parameter values we get chaotic attractors of differ-
chaotic orbit to high periodic orbit occurs due to border col-ent shapes, the condition of occurrence of the boundary crisis
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changes discretely as additional segments are added in the 1.3
attractor and/or the basin boundary. This gives the particular
structure of the parameter space region where attractors exist
as seen in Fig. @) (see Region b
Region 7: 2/8, <7 <(1+48,) and rg>1 .
A regular repeller and a regular saddle are born inLthe
andR side, respectively, fo>0. No attracting orbit exists
in either side ofu=0.

B. Border crossing bifurcation 0.2

0.0 Tr 1.0

Region 8:— 25, > 7, >—(1+46)), 0<7mz<1

(Flip repeller chgnges to regular attractpr with 75 as parametefvaried from 0.15 to 06 and 7. =—4.5, § =4,

For u<0, there is a chaotic attractor for most part of the 53=0, andu=—0.2.
parameter space. The attractor is formed by the same mecha-
nism as in Region 1, and has structure similar to that shown
in Fig. 10 (the only difference is thaR* is in theL side.

However, since any initial condition anywhere in the
state space must ultimately moveRaand converge onto the
attractor, the basin of attraction spans the whole state space.

For some parts of the parameter space within this region,
high periodic attractors can exist. To investigate how one
type of attractor changes to another, the bifurcation diagram
for u<0 with 7g as parameter is shown in Fig. 14. 57

From the period-3 orbit a period-6 orbit is created due to bk o T
a period doubling bifurcation and subsequently one of the HEE B § i
period-6 fixed points hits the border which gives rise to a -0.35
chaotic attractor. From the chaotic attractor a period-4 orbit -0 T —40
is originated due to border collision pair bifurcation in the FIG. 15. The bifurcation diagram for Region 9 in positive determinant case
fourth iterate. From period-4 a transition to period-8 occurswith 7 as parametefvaried from—5.0 to—4.0). The other parameters are
due to period doubling bifurcation and subsequently one ofr=~0-9: .=4, 5z=0, andu=-0.2.
the period-8 fixed points collides with the border to give rise
to a chaotic attractor. The same kind of bifurcation phenom-
ena is observed if we vary, within this parameter region.

For ©>0, R* is a regular attractor. All the initial condi-
tions in R side converge on t®* and all the initial condi-
tions inL are repelled to th&® side and gradually converge
on to R*. So we get a period-1 attractor fer>0, and its
basin also spans the whole space.

Region 9:— 28, > 7. >—(1+4,), —1<7z<0

(Flip repeller changes to flip attractor

In this region foru<0, L* is a flip repeller. High peri- FIG. 16. The chaotic attractor for Region 10 in positive determinant case
odic orbits(e.g., period-3, period-5 or higher perigads cha- ~ with 7,.=—86, 6, =4, 7z=0.9, andég=0.
otic attractor may exist. The bifurcation diagram ferx 0
with 7 as the parameter is shown in Fig. 15. It is found that
the high-periodic orbits are all born with one point on the 2.65 WY
border—therefore these are border collision pair bifurcations
of higher iterates. The changeover to chaos also occurs when
one point of a high periodic orbit hits the border. Whenever
attractors exist, their basin spans the whole space.

For u>0, R* is a flip attractor and we get a stable ' P
period-1 orbit. Therefore in this region, asis varied from a T B - s

FIG. 14. The bifurcation diagram for Region 8 in positive determinant case

o C

positive to a negative value, there is a bifurcation from a
period-1 attractor to a high periodic attractor or chaos. —

Region 10:7 <—(1+4,), 0<7xr<1 05 — —

(Flip saddle changes to regular attractor -0.7 T 0.0

For u<0, L* is a flip saddle. Initial conditions iR ) o ) ) . )

— i L FIG. 17. The bifurcation diagram for Region 11 in positive determinant case

move towards the regular attractB* which is inL, and  yith 7, as parametetvaried from —0.7 to 0.0 and 7, =—6.0, 5, =4,
initial conditions inL flip to R due to the action oE*. This  §3=0, andu=-0.2.
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creates the possibility of high period orbits or chaos. The
bifurcation diagram is similar to the one shown in Fig. 14,
and exhibit the same phenomenology. The structure of the
chaotic attractor is shown in Fig. 16. The extremities of the
attractor are formed bp—A, A—B andB—C. The for- R
ward iterates ofOA forms the attractor as shown in this
figure.

For ©>0, R* is a regular attractor. All the initial condi-

tions in theR side converge on tR*. L* is a flip saddle ; ;
which is in theR side. All the initial conditions in thé side (@) (©
flip to the R side and finally converge onf®*. So we get a 1
unique period-1 attractor.

Region 11:7 <—(1+46), —1<7x<0 ‘I/]

(Flip saddle changes to flip attractpr AlL

For ©<0, L* is a flip-saddle andR* is a flip attractor— R
both located in the. side. Foru <0 there may be period-2,
period-3 or chaotic attractor. Coexisting attractors may also
exist. The bifurcation diagram is shown in Fig. 17, which
shows the evolution of the coexisting attractors. A period-3 |
orbit is created due to pair bifurcation at bifurcation point (5) (d)
“A.” A period-2 orbit coexists so long ag9) and (10) are
satisfied. |fTR is decreased, E(Q.O) is violated, the period-2 FIG. 18. Chaotic attractor_s of dif_ferent.s_;hapes for_different combinations
orbit goes through period-doubling at “B.” Subsequently 2;thlgazriefrfsgzroﬁegrﬂ” Mli TO‘.);S'E'bV)e fft:er_mz"”a;::dgsse'“;;iz
one of the bifurcated orbits hits the border and at the ensuing.—o, andu=-0.2. (¢c) 7,.=—1, 7z=0.5, 5, =4, 53=0, andu=—0.2.
border crossing bifurcation, a chaotic orbit develops. As the&d) =2, 5,=9, 7r=0.8, 63g=0, andu=—0.05.
parameterrg is increased, the seperation between the two
period-2 fixed points gradually increases and finally becomes
infinite (not shown in Fig. 1Y So for some value of the
parameter the attractor does not exist.

For u>0, R* is a flip attractor and.* is a flip saddle. 0.8
All the initial conditions in theR side converge ont®* and
all the initial conditions in the. side flip to theR side due to
the action of theL* and finally converge ontd&R*. So a
period-1 attractor exists fqu>0.

Region 12:— 25, <7 <26, 0<1r<1

(Repelling spiral changes to regular attracjor »

In this region of the parameter spaté is a repelling 015 S
spiral. For—2+/8, < <0, it has counter-clockwise sense of 0.0
rotation ﬂhlle for O<T'-<2\/5—'— it has clockwise sense of FIG. 19. The bifurcation diagram for Region 12 in positive determinant case
rotation. R* is a regular attractor and is in tHe side for  with 5 as the parametéwaried from 0 to 1and 7 =2, 8, =9, 8x=0, and
<0, which makes all initial conditions iR move towards #«=-0.05.

L along thex-axis. The effect of the spiral fixed point makes
them to go back tdR in some iterate and this causes high
periodic orbits or a chaotic attractor to exist f@r 0.

A few different types of chaotic attractors observed
in this region are shown in Fig. 18 which are formed
in the following manner. In Fig. 18 O—~B—A—D
and E—C. This forms the extremities of the attractor.
The segmentsOB—BA, BE—AC, EA—CD. Keeping
other parameters fixed as is increased we find a 4-piece
chaotic attractor as shown in Fig. (b3 where =5 S
O—B—A—D+—C—E~|—H—F—G—J andJ maps to ‘
a point onHD. As 7 is further increased we get an attractor
as shown in Fig. 1&) where the extremeties are formed in
this mannerO—B—A—C. For different set ofr_ , 7 and
S, values we get attractors of different shape. One examplée

is shown in Fig. 18) where originO—B—A—D—F and g, 20. Chaotic attractor for Region 13 in positive determinant case with
E—C. 7.=-3.0,7r=—1.7, 6,=4, 6g=0, andu=—0.1.

(b)
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FIG. 23. Chaotic attractors for Region 14 in positive determinant case with
7.=—4.62,7y=—1.1, 6, =4, 5g=0, andu=—0.1.

FIG. 21. The basin boundary and the chaotic attractor for Region 13 in
positive determinant case with =15, 7s=—1.2, 6, =4, 6z=0, and  exijsts foru<0. Condition(9) implies that in a part of Re-
p=01. gion 13 there is a subcritical period doubling caused by bor-
der collision.
) ) For u<0, L* is a repelling spiral. A high periodic orbit
The basin of attraction spans the whole state space. In &l 5 chaotic attractor may exist, which may be annihilated in
the cased * lies within the attractor. One important feature g5me parts of the parameter space due to boundary crisis.

of these chaotic attractors is that they are organized by gnaotic attractors of different shapes exist for different val-
spiral repeller and a virtual attracting fixed point, and hencg,qg of the parameter.

do not occur on the unstable manifold of a saddle. The sen-
sitive dependence on initial condition is caused by the repel
ler.

One such attractor and its basin of attraction are shown
in Fig. 20.H andS are the locations of the fixed points of the
) i . . o second iterate, which is a saddle. The basin boundary is
_ To investigate the transitions between high periodic Orqrmeq py the stable manifold of this second iterate fixed
bits and chaotic orbits, the bifurcation diagram is shown iNnoint. The stable eigenvector @is alongUT, and the stable
Fig. 19. It is seen that repeated border collisions cause th&genvector aH is NHP—which fold at the intersections
transitions between various periodic orbits and chaos. Alith the y-axis, forming the stable manifoldST—>NM,
some bifurcation points the periodic orbit goes through pep N—S, andM—S. The stable manifold bends #tand the
riod doubling and subsequently one of the points hits thé, eiterate ofT is K which is also a fold point. The extremi-

border to give rise to chaotic attractor. Subsequently, highies of the chaotic attractor are formed in the following man-
periodic orbits are created due to border collision pair bifur-,q,. Origin 0—~D, D—B, F—E, E—~C, C—A and A

cation. , __maps to a point oiDC. For some parameter ranges within

[Foru>0, R* is a regular attractor and a stable period-1yhjs region, the separation between the period-2 saddle that
orbit exists. forms the basin boundary increases to large dimension, and

Reg|on_13:—2\/6_,_< 7'L<2J5—*_ TR<—1 hence the basin becomes very large.

(Repelling spiral changes to flip sadgle As 7R is decreased or,_ is increased within this region,

It can be seen from8) that for 7 7r<<(1+6.) the  high periodic orbits and chaotic attractors exist, each with a
period-2 orbit exists fo>0, while for 7. 7s>(1+4) it gifferent condition of occurrence of boundary crisis. This
gives the fine structure of the parameters space as shown in
Fig. 9a).

For >0, there can be period{2vhen(9) and(10) are
satisfied, high periodic orbit, chaotic attractor or no attrac-

FIG. 22. The basin boundary and the chaotic attractor for Region 13 irFIG. 24. The bifurcation diagram for Region 14 in positive determinant case
positive determinant case for,=—1.0, 7y=—1.2, §,=4, 6g=0, and with 7, as parametefvaried from—4.63 to—4.0) andrg=—1.1, § =4,
w=0.1. 8z=0, andu=-0.1.
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TABLE Ill. The nature of the fixed points and the type of bifurcations fpr~1 and 6g=0.

S. Parui and S. Banerjee

Region

n<O0

w>0

Type of bifurcation

Region 1:7g>1,
28 >m>—(1+48)
Region 2:7y>1,
<—(1+6)
Region 3:7y<—1,
>(1+46)

Region 4: 0<7z<1,
>(1+46)

Region 5:— 1< 73<0,
.>(1+6)

Region 6:75>1,
—2\5 <m <25,
Region 7:7x>1,
25 < <(1+46)

Region 8: 0< 7z<1,
—(1+8)<m<—-28
Region 9:— 1< 73<0,
—(1+8)<m<—28
Region 10: 6<7z<1,
<—(1+46)

Region 11:— 1< 73<0,
<—(1+46)

Region 12: < 7z<1,
—2/5 <m<2V5
Region 13:7q<—1,

25 <m<2\8.

Region 14:7p<—1,
—(1+8)<m<—-28

Region 15:7r<—1,
28 <m <(1+8)
Region 16:— 1< <0,

-2 <m <25,

Region 17: 6<7x<1,
28 <m <(1+6)
Region 18:— 1< 73<0,
28 <m <(1+8)
Region 19:7x>1,
.>(1+46)

Region 20:7r<—1,
n<—(1+46)

L*-flip repeller
R*-regular saddle
L*-flip saddle
R*-regular saddle
No fixed point
No fixed point
No fixed point
L*-repelling spiral
R*-regular saddle

L*-regular repeller
R*-regular saddle

L*-flip repeller
L*-flip repeller
L*-flip saddle

L*-flip saddle

L*-repelling spiral

L*-repelling spiral

L*-flip repeller

L*-regular repeller

L*-repelling spiral

L*-regular repeller
L*-regular repeller
L*-regular saddle

L*-flip saddle

Border collision pair bifurcations

No fixed point
No fixed point

L*-regular saddle
R*-flip saddle
L*-regular saddle
R*-regular attractor
L*-regular saddle
R*-flip attractor

No fixed point

No fixed point

Border crossing bifurcations

R*-regular attractor
R*-flip attractor
R*-regular attractor

R* -flip attractor

R*-regular attractor

R*-flip saddle

R*-flip saddle

R*-flip saddle

R*-flip attractor

R*-regular attractor
R*-flip attractor
R*-regular saddle

R*-flip saddle

Birth of a stable chaotic attractor, or no attractor
for u<0

Birth of a chaotic attractor, or no attractor

for u<0

Birth of a chaotic attractor, or no attractor

for u>0

Birth of a period-1 attractor fop.>0

Birth of a period-1 attractor fop>0

Birth of a chaotic attractor, or high periodic
orbit, or no attractor fo<0
No attractor for any value @f

High periodic orbit or chaos fex0 and
period-1 foru>0

High periodic orbit or chaos far<0 and
period-1 foru>0

High periodic orbit or chaos fex0 and
period-1 foru>0

Period-2, high-period orbit or chaos plus
coexisting attractor for <0 and period-1
for u>0

High periodic orbit or chaos fex0 and
period-1 foru>0

High periodic orbit or chaotic attractor or
no attractor foru<0 and period-2, high
periodic orbit or chaotic attractor fqe>0
High periodic orbit or chaotic attractor or
no attractor foru<<0 and period-2 or no
attractor foru>0

No attractor fop <0 and chaotic attractor
or no attractor foru>0

High periodic orbit plus coexisting attractor
or no attractor foru<0 and period-1
for u>0

No attractor far<<0 and period-1 for
©n>0

No attractor fo<<0 and period-1 fo>0

No attractor for any value of

No attractor for any value of

tor. R* is a flip saddle situated iR side, and_* is a repel-
ling spiral also in theR side.

If L* is a clockwise rotating spiral repelléwhich hap-

However, the character of the attractor and that of the

basin boundary are not always the same as shown in Figs. 22

and 23. The chaotic attractor has two disjoint pieces for this

pens for 0< 7, <2./8.) then the basin boundary, formed by Setting of the parameters. The extremities of the attractor are
the stable manifold of the third iterate fixed point, assumes &rmed in this manner.O—B, B—A, A—C, C—E,

fractal structure as shown in Fig. 2Q, K and S are the

E—~D, andD maps to a point oME. The chaotic attractor

locations of the fixed point of the third iterate. The unstableis annihilated due to boundary crisis at a certain parameter
manifold is along thex-axis. The stable manifold & is  value.

alongTK which folds atN and intersects the unstable mani-

The basin boundary is formed by the stable manifold of

fold (i.e., x-axis) at M. One intersection between stable andthe third iterate fixed point which is a saddke. N, T are the
unstable manifold signifies an infinite number of intersec-locations of the third iterate fixed points and the stable ei-
tions. So the basin boundary takes fractal structure. Boundgenvector af is alongSU, which folds at every intersection
ary crisis may lead to the annihilation of the chaotic attractowith the y-axis and their preiterates, thus forming the stable
manifold. In this case there is no homoclinic intersection and

when pointC touches the basin boundary.
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TABLE IV. The nature of the fixed points and the type of bifurcations fat <, <0 and 5g=0.

Border collision bifurcations 1067

Region n<0 u=>0 Type of bifurcation
Border collision pair bifurcations

Region 1:7g>1, L*-flip saddle No fixed point Birth of period-2 attractor, or chaotic attractor,
n<—(1+46) R*-regular saddle or unstable chaotic orbit for <0
Region 2:73>1, L*-flip attractor No fixed point Birth of a period-1 attractor for<0
—(1+8)<7 <(1+4) R*-regular saddle
Region 3: 0<7z<1, No fixed point L*-flip saddle Birth of a period-1 attractor fop.>0
>(1+46) R* -regular attractor
Region 4:—1<73<0, No fixed point L*-flip saddle Birth of a period-1 attractor fop.>0
>(1+46) R*-flip attractor
Region 5:7q<—1, No fixed point L*-flip saddle Birth of a period-2 or chaotic attractor or no attractor
>(1+46) R*-flip saddle for >0

Border crossing bifurcations

Region 6:7>1, R*-regular saddle L*-flip saddle No attractor for any value of

>(1+46)

Region 7: 0< 7p<1, L*-flip saddle R*-regular attractor Period-2, or chaotic attractor forx0 and
<—(1+46) period-1 attractor fop>0

Region 8: 0<7x<1, L*-flip attractor R*-regular attractor period-1 for any value af

—(L+8) <7 <(1+6)

Region 9:— 1< 7z<0, L*-flip saddle R*-flip attractor Period-2 or no attractor far<<0, period-1 for
n<—(1+4,) >0

Region 10:— 1< 7m3x<0, L*-flip attractor R*-flip attractor period-1 for any value gf
—(1+8)<7.<(1+6)

Period 11:7q<—1, L*-flip saddle R*-flip saddle No attractor for any value of

n<—(1+46)

Region 12:7y<—1, L*-flip attractor R*-flip saddle Period-1 fox <0 and period-2, or chaotic attractor
—(L+6)<7 <(1+6) or no attractor foru>0

the basin boundary is composed of line segments.
Region 14:—(1+8,) <7 <28, 1r<—1

(Flip repeller changes to flip saddle

Due to condition(8), there is a supercritical period dou-
bling if (9) is satisfied, and a subcritical period doubling if
(9) is violated. Foru<0, L* is a flip repeller.R* is a flip

boundary(formed by the stable manifold of the third iterate
saddle are similar to Fig. 21.
Region 16:— 28, <7, <2\8,, —1<1z<0

(Repelling spiral changes to flip attractor
For u<0, there is a repelling spiral ih side. We get
high periodic orbit or no attractor. Coexisting attractors may

saddle, and if9) is violated the period-2 orbit exists but is also exist. The initial conditions in the side move to thé&R

unstable. Under such condition high periodic orbit or chaoticsjde after a finite number of iterations and RS is a flip

attractor may exist due to the same mechanism as discussgfractor the next iterate will be on the negativexis. Thus

in Region 13(Fig. 20. _ _ _ there exists a possibility of having stable high periodic or-
The bifurcation diagram withras the bifurcation pa- s |t is possible to work out the conditions for existence of

rameter iS_ s_howr_1 in Fi_g. 24. We_ find th_at _due tp repeate%ach high periodic orbit, but that results in cumbersome ex-
border colision bifurcations the high periodic orbits or cha-

fic attract it ivel tod h kflressions which we omit here. It is however notable that the
olic attractors are afternatively crealed—a phenomenon o ligh periodic orbits are created due to pair bifurcation. At-
served in many of the parameter space regions.

For 10 we get period-2 orbit or no attractor n this (A7 =X 1 O STRRR B B R A RRER
parameter range. So long d49) and (10) are satisfied P P 9y

period-2 orbit exists. But as the parameters are varied, gegllzon 13;0 R* i fiio attract d ¢ tabl
point is reached whefD) is violated and the seperation be- or w IS a Tlip aftractor, and we get a stable

tween the period-2 fixed points becomes infinite and nooeriod-l. orbit.-
period-2 orbit exists after that. Region 17: 2/5 <7, <(1+4,), 0<7r<1

Region 15: 2/6 <7, <(1+8,), r<—1 (Regular repeller changes to regular attracjor
(Regular repeller changes to flip sadylle Region 18: /8 <7 <(1+ o), —1<7g<0
For u<0 L* is a regular repeller an@* is a flip saddle. (Regular repeller changes to flip attractor

So all initial conditions inL are repelled away and initial Fpr '“<_0' L_* is regulgr .re'peller. All the initia'l cond.i-
conditions inR flip to L and then are repelled to infinity. tions inL side either go to infinity due to the repelling action

Therefore no attractor exists in this region of the parameteff L* or moves to theR side. In the latter case it will fa.II on
space foru<0. thex-axis in the next iterate and gradually move to thside

For >0 R* is a flip saddle and is in the side. We get due to the action oR* and subsequently go to infinity due to
chaotic attractor which may become unstable at some paranthe repelling action of.*. So there will be no attractor for
eter value. The structure of the chaotic attractor and the basin<O0.
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TABLE V. The nature of the fixed points and the type of bifurcations ferd <1 and §g=0.

S. Parui and S. Banerjee

Region u<0 u>0 Type of bifurcation
Border collision pair bifurcations
Region 1:7x>1, L*-flip saddle No fixed point Birth of a stable chaotic attractor, or unstable

<—(1+46)
Region 2:73>1,
—(1+8)<m<-28
Region 3:7x>1,
—2\5 <m <25,
Region 4:73>1,
25 < <(1+6)
Region 5: 0<7p<1,
>(1+46)

Region 6:— 1< 73<0,
.>(1+6)

Region 7:7q<—1,
.>(1+6)

Region 8:7x>1,
.>(1+6)

Region 9: < 7z<1,
<—(1+46)

Region 10: 6<7z<1,
—(1+8)<m<-2V8
Region 11: < 7z<1,

-2 <7 <25,

Region 12: 6<7z<1,
25 < <(1+46)
Region 13:— 1< 73<0,
<—(1+46)

Region 14:— 1< z<0,
—(1+8)<m<—-28

Region 15:— 1< m3<0,

—2Js <m <25,

Region 16:— 1< 73<0,
25 < <(1+6)
Region 17:7q<—1,
<—(1+46)

Region 18:73< -1
—(A+8) <7 <-2\8,
Region 19:7p<—1,

-2 <7 <25,

Region 20:7r<—1,
25 < <(1+6)

R*-regular saddle
L*-flip attractor
R*-regular saddle
L*-attracting spiral
R*-regular saddle
L*-regular attractor
R*-regular saddle
No fixed point

No fixed point

No fixed point

R*-regular saddle
L*-flip saddle
L*-flip attractor

L*-attracting spiral

L*-regular attractor

L*-flip saddle

L*-flip attractor

L*-attracting spiral

L*-regular attractor
L*-flip saddle
L*-flip attractor

L*-attracting spiral

L*-regular attractor

No fixed point
No fixed point
No fixed point

L*-regular saddle
R*-regular attractor
L*-regular saddle
R*-flip attractor
L*-regular saddle
R*-flip saddle

Border crossing bifurcations

L*-regular saddle
R*-regular attractor
R* -regular attractor

R* -regular attractor

R*-regular attractor

R*-flip attractor

R*-flip attractor

R*-flip attractor

R*-flip attractor
R*-flip saddle
R*-flip saddle

R*-flip saddle

R*-flip saddle

chaotic orbit or no attractor for <0
Birth of a period-1 attractor for<0

Birth of a period-1 attractor fer<0
Birth of a period-1 attractor for<0
Birth of a period-1 attractor fop.>0
Birth of a period-1 attractor fop>0

Birth of a stable chaotic attractor, or unstable
chatic attractor or no attractor far>0

No attractor for any value of

Period-2 or chaos fex 0 and period-1
for u>0

Period-1 plus coexisting attractorsier0
and period-1 forw>0

Period-1 plus coexisting attractbr
—2/8 < 7,<0) and period-1if 0 <7, <285,)
for any value ofu

Period-1 for any value of

Period-2 plus coexisting attractor or no attractor
for ©<0 and period-1 plus coexisting

attractor foru>0

Period-1 plus coexisting attractor for 0

and period-1 plus different coexisting attractor
for u>0

Period-1(if —2+/8, <7, <0) and period-1

plus coexisting attractor§f 0 <7, <2./5,)

for any value ofu

Period-1 attractor for any value of

No attractor for any value @f

Period-1 for<0 and period-2 or no attractor
for u>0

Period-1 plus coexisting attractor jor 0

and chaos or high periodic orbit plus coexisting
attractor or period-2 plus coexisting

attractor or no attractor for>0

Period-1 foj. <0, period-2 or chaos for

©n>0

For >0 andL* is a regular repeller anB* is a regu-
lar attractor(if 0 <7g<<1) or flip attractor(if —1<7z<0).
All the initial conditions in theR side will converge on to
R*. All the initial conditions in thel side will come to theR

side due to the repelling action bf and finally converge on

to R*. So there will be a stable period-1 attractor for

wn>0.

Region 19:7 > (1+4)), T/r>1

(Regular saddle changes to regular saddle

Region 20:7 <—(1+6,), 7p<—1
(Flip saddle changes to flip saddle

unstable eigenvector df* and for x>0, all initial condi-
tions go to infinity along the unstable eigen vectorRSf.
Therefore there will be no attractor for both sideswof 0.

Table 1l summarizes the various bifurcations occurring
when é,>1 and 6g=0.

VI. WHEN THE DETERMINANT LIES BETWEEN —1

AND +1

In Ref. 5 the border collision bifurcations were investi-
gated under the condition that the determinants of the Jaco-
For u<0, all initial conditions go to infinity along the bian matrices at the two sides of a border collision event lie
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between—1 and +1. Since a two-dimensional map with maps, chaotic attractors are known to occur only on the un-
determinant zero is a one-dimensional map, the above worktable manifold of saddles. The present study has shown that
gives proper prediction of the border collision events underchaotic attractors can also be organized around repellers, and
the special case where the determinant in one side is zeroeed not be associated with saddle fixed points.

Therefore, without describing each individual case, we sum-

marize in Tables IV and V, and the results obtained from

Ref. 5 regarding théz=0 situation. 'H. E. Nusse and J. A. Yorke, PhysicadJ, 39—-57(1992.

2G. Yuan, S. Banerjee, E. Ott, and J. A. Yorke, IEEE Trans. Circuits Syst.,
VIl. CONCLUSIONS I: Fundam. Theory Appl45, 707—715(1998.
. o _ 3S. Banerjee, E. Ott, J. A. Yorke, and G. H. Yuan, IEEE Power Electronics
In this paper we have presented the border collision bi- specialists's Conference, 1997.

furcation phenomena that occur in piecewise smooth map$s. Banerjee, M. S. Karthik, G. Yuan, and J. A. Yorke, IEEE Trans. Circuits
which are two dimensional in one side of the borderline and, Syst- |- Fundam. Theory App7, 389-394(2000. .

. . . . S. Banerjee, P. Ranjan, and C. Grebogi, |IEEE Trans. Circuits Syst., I:
one d|men3|0pal in the other §|de. It has recently begn found £\ qam. Theory Appl47, 633—643(2000.
that such a situation occurs in systems of practlcal interestém. di. Bernardo, M. I. Feigin, S. J. Hogan, and M. E. Homer, Chaos,
most important examples coming from switching circuits. _Solitons Fractald0, 1881-19081999.

. . . . 7 i _
The theory developed in this paper will help in understand- géggg%%ee and K. Chakrabarty, [EEE Trans. Power ElecttBn252

ing the dynamics and bifurcation phenomena in such SYS$c. K. Tse, IEEE Trans. Circuits Syst., I: Fundam. Theory Aggl.16—-23
tems. (1994.
The study has indicated that very complicated bifurca- ®Nonlinear Phenomena in Power Electronieslited by S. Banerjee and G.
tion structures may exist under this condition, caused by re, S Yer9heseIEEE, New York, 2001 . .
. . . . S. Parui and S. Banerjee, Bifurcations due to transition from continuous
peated border collisions and changing conditions of occur- ¢onguction mode to discontinuous conduction mode in the boost converter

rence of boundary crisis. Generally in two-dimensional (communicateg
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