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Border collision bifurcations at the change of state-space dimension
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We present the theory of border collision bifurcation for the special case where the state space is
piecewise smooth, but two-dimensional in one side of the borderline, and one dimensional in the
other side. This situation occurs in a class of switching circuits widely used in power electronic
industry. We analyze this particular class of bifurcations in terms of the normal form, where the
determinant of the Jacobian matrix at one side of the borderline is greater than unity in magnitude,
and in the other side it is zero. ©2002 American Institute of Physics.@DOI: 10.1063/1.1521390#
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Border collision bifurcations occur in piecewise smooth
„PWS… maps when a fixed point collides with a borderline
separating two smooth regions. The discontinuous chang
in the Jacobian elements results in many atypical bifur-
cation phenomena, like a periodic orbit turning directly
into a chaotic orbit, or multiple attractors coming into
existence or going out of existence as the parameter i
varied across some critical value, etc. So far the theory
for border collision bifurcations has been developed for
one- and two-dimensional PWS maps. Some results re
garding the existence and stability of period-1 and
period-2 orbits are also available for the general
n-dimensional systems. However, recent research ha
shown that there may also be systems where the map i
two dimensional in one side of the border, and one-
dimensional in the other side. In the present paper we
present various bifurcation phenomena that may occur
under that condition.

I. INTRODUCTION

Following the pioneering work of Nusse and Yorke1

many researchers have investigated the phenomenon of
der collision bifurcation that occur in piecewise smoo
maps. In such maps, the state space~or phase space! is di-
vided into two or more regions, and the dynamics are giv
by equations of the form

f ~x,y;r!55
f 1~x,y;r! for ~x,y!PR1

f 2~x,y;r! for ~x,y!PR2

]

f n~x,y;r! for ~x,y!PRn ,

~1!

whereR1 , R2 , etc., are different smooth regions of the pha
space, withborderlinesdividing these regions. Much of th
work on the dynamics of piecewise smooth maps4–6 assumed

a!Electronic mail: soumitro@ee.iitkgp.ernet.in
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that ~a! the function f is continuous across the borderline
~b! the Jacobian off is discontinuous across the borderline
and ~c! the Jacobian elements are finite.

Over the years, evidence has accumulated pointing
wards occurrence of such maps in systems of practical
portance. Most widely studied examples come from elec
cal engineering where power electronic circuits—whi
contain switches controlled by state feedback—routine
yield piecewise smooth maps under sampled-d
modeling.2,3 This has given impetus to the study of the d
namics of piecewise smooth maps. In piecewise smo
maps, a new class of bifurcation occur when a fixed po
collides with the border—which causes a discontinuo
change in the elements of the Jacobian matrix. Such bifu
tions are in general called border collision bifurcations.
recent years, the border collision bifurcations occurring
one-dimensional and two-dimensional maps have been
tematically investigated from the point of view of asympto
behavior of orbits at the two sides of a border collisi
event.4,5 In another line of development, the existence
period-one and period-two orbits have been investigated
the context of a generaln-dimensional map.6

In the above work it was always assumed that the sys
dimension is the same over the whole of the state sp
However, recent work on a class of power electronic circu
have shown that there may be systems where the state s
dimension may be different at the two sides of the bord
line. This has necessiated a thorough study of the bifur
tions that may occur under such condition.

In Sec. II we first present the example of a system wh
the state space dimension changes from two to one acro
borderline. In Sec. III the basic tools of this analysis—t
normal form and its properties—are presented. We then p
ceed to analyze the various bifurcations that may occu
such systems. There are three possible situations that re
separate treatment depending on the determinant of the
tem at one side of the border~that in the other side being
zero!:

~a! when the determinant is less than21,
4 © 2002 American Institute of Physics
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1055Chaos, Vol. 12, No. 4, 2002 Border collision bifurcations
~b! when the determinant is greater than11,
~c! when the determinant is between21 and11.

These three cases are treated in Secs. IV, V, and
respectively. Since a large number of cases depending on
parameters of the normal for need to be presented, we a
the theorem–proof format that would make the paper v
long. Instead, in each case we describe the mechanism
creation of attractors and the resulting bifurcations as a
rameter is varied. Section VII contains the conclusions
this paper.

II. A PRACTICAL EXAMPLE: THE DC–DC BOOST
CONVERTER

The circuit shown in Fig. 1, called the boost converter
widely used in industry to convert a lower dc voltage to
higher dc voltage. When the controlled switchS is on, the
input voltageVin is applied on the inductor and the induct
current rises. When it is off the inductor current falls, and
polarity of the inductor voltage reverses so that it adds to
input voltage. Therefore the output voltageVout is greater
than the input voltageVin . The capacitor acts to smoothe
the voltage across the load. The energy stored in the indu
during theon phase circulates through the load~the resis-
tanceR) and the diodeD during the off period. During the
on period, the capacitor discharges through the load, t
maintaining a continuous load current flow.

The switch can be controlled by various control logic
Here we consider the current mode control where the sw
turns off as the inductor current reaches a reference cur

FIG. 1. Circuit diagram of the boost converter.

FIG. 2. Possible evolutions of the inductor current between two clock
stants:~a! where the clock arrives beforei reachesI ref , ~b! both on and off
intervals are included in the clock period,~c! where i becomes zero for a
part of the clock cycle. These three possibilities yield different functio
forms of the map, separated by the borderline cases shown in~d! and~e!: in
situation~d! the clock arrives exactly wheni reachesI ref , and in situation
~e! i becomes zero just at the end of the clock period.
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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I ref . A periodic clock signal generated separately is used
turn on the switch: after the switch turns off, it is turned on
the next clock pulse.

There are two main operating modes of the converte
the continuous conduction mode~CCM!7 and the discontinu-
ous conduction mode~DCM!.8 In CCM, the inductor current
is always nonzero, and the switch and the diode are tur
on and off in a complementary fashion. In DCM, the indu
tor current drops to zero before the next clock period beg
and during this period bothD andS do not conduct.

The inductor currenti and the capacitor voltagevc are
the state variables of the system. We can construct
discrete-time model by observing the states in synchron
with the clock.9 During the CCM mode of operation the ma
will be two dimensional, but during the DCM mode of op
eration it will be one-dimensional since the inductor curre
is always zero at the end of a clock period. Therefore
state space dimension changes from two to one when
converter shifts from CCM to DCM.10

Figure 2 shows that the discrete-time state space is
vided into three regions, with three different equations givi
the complete model of the system. Across the first border
the state-space dimension remains the same but acros
second borderline it changes from two to one. The functio

-

l

FIG. 3. Bifurcation diagrams of the boost converter. Left, with paramet
L50.2 mH,C547 mF, Vin510 V, T533.33ms. I ref51 A, and load resis-
tance R varied from 40V to 140V. Right, with the parametersL
50.4 mH, C522 mF, Vin510 V, T533.33ms. I ref51 A and the load re-
sistance varied from 45V to 95V.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Downloaded 08 Ja
TABLE I. The possible types of fixed points of the normal form.

Type Eigenvalues Condition

For 0,d,1
Regular attractor 0,l1,1, 0,l2,1 2Ad,t,(11d)
Regular saddle 0,l1,1, l2.1 t.(11d)
Flip attractor 21,l1,0, 21,l2,0 2(11d),t,22Ad
Flip saddle 21,l1,0, l2,21 t,2(11d)
Spiral attractor ul1u, ul2u,1 eigenvalues complex
~a! Clockwise spiral 0,t,2Ad
~b! Counter-clockwise spiral 22Ad,t,0

For 21,d,0
Flip attractor 21,l1,0, 0,l2,1 2(11d),t,(11d)
Flip saddle l1.1, 21,l2,0 t.11d
Flip saddle 0,l1,1, l2,21 t,2(11d)

For d.1
Regular repeller l1.1, l2.1 2Ad,t,(11d)
Flip repeller l1,21, l2,21 22Ad.t.2(11d)
Flip saddle 21,l1,0, l2,21 t,2(11d)
Regular saddle l1.1, 0,l2,1 t.(11d)
Spiral repeller ul1u, ul2u.1 eigenvalues complex
~a! Clockwise spiral 0,t,2Ad
~b! Counter-clockwise spiral 22Ad,t,0

For d,21
Flip repeller l1.1, l2,21 (11d),t,2(11d)
Flip saddle 0,l1,1, l2,21 t,(11d)
Flip saddle l1.1, 21,l2,0 t,(11d)

For d50
Regular attractor 0,l1,1, l250 0,t,1
Regular saddle l1.1, l250 t.1
Flip saddle l1,21, l250 t,21
Flip attractor 21,l1,0, l250 21,t,0
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forms of the map and the borderlines can be found in R
10.

Figure 3 presents two bifurcation diagrams where a fix
point collided with the second borderline~shown with ar-
rows!. Numerical determination of the eigenvalues show t
at pointA, the determinant in one side is21.219 and that in
the other side is zero, and at pointB the determinant in one
side is21.588 and in the other side it is zero. Therefore,
such a system the determinant in one side of a border c
sion event may have magnitudegreater than one—a possi-
bility which has not been investigated so far.

Though this is the first studied case of a system w
varying state space dimension, similar phenomena are
pected to occur in many power electronic circuits and ot
types of systems. Hence the necessity of a theory for
special class of border collision bifurcations.

III. THE NORMAL FORM AND ITS PROPERTIES

It has been shown earlier1,5 that in the neighborhood of a
border collision event, the nonlinear map can be appro
mated by a piecewise linear map~normal form! given by

g~x,y;m!5

S tL 1

2dL 0D S x
yD1mS 1

0D for x<0,

S tR 1

2dR 0D S x
yD1mS 1

0D for x.0,

~2!
n 2003 to 203.197.98.3. Redistribution subject to AIP
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where the state space is divided into two halvesL andR. tL

anddL are the trace and determinant of the Jacobian ma
in the left side of the borderline andtR and dR are these
quantities in the right side, andm is the parameter.

Classifications of border collision bifurcations are gen
ally done in terms of the parameters of the normal fo
~2!,1,5,6 namelytL , dL , tR , anddR . Presently we conside
the conditiondR50, for which the locations of the fixed
points at the two halvesL andR are given by

L* 5S m

12tL1dL
,

2dLm

12tL1dL
D , ~3!

R* 5S m

12tR
,0D . ~4!

There are two basic categories of border collisi
bifurcations.5

~1! Border collision pair bifurcation: A pair of fixed point
are born on the border as the parameter is varied thro
m50. If the parameter is varied in the opposite directio
a pair of fixed points approach each other, and are a
hilated as they collide on the border. Under this con
tion, ~3! gives the location ofL* in the right half plane
and ~4! gives the position ofR* in the left half—
meaning that the two fixed points do not exist. On t
other side ofm50, both fixed points exist—one in th
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1057Chaos, Vol. 12, No. 4, 2002 Border collision bifurcations
left half and the other in the right half of the state spa
The condition for the occurrence of pair bifurcation c
be obtained from the above consideration as
tL.~11dL! and tR,1 ~5!

when no fixed point exists form,0 and a pair of fixed
points exist form.0.
Similarly there will be another parameter range in whi
no fixed point exists form.0 and two fixed points exis
for m,0. Its condition of occurrence is found to be
tL,~11dL! and tR.1. ~6!

~2! Border crossing bifurcation: If~5! or ~6! are not satisfied,
a fixed point crosses the borderline asm is varied from a
negative value to a positive value. Bifurcation occu
due to the change of the character of the fixed point a
crosses the border.

The stability of the fixed points in the above two cas
are governed by the eigenvalues which, for the locally l
earized map, are

l15 1
2 ~t1At224d!, l25 1

2 ~t2At224d!, ~7!

wheret and d refer to the trace and determinant of the
genvalue of the fixed point in question.

We can categorize fixed points depending on the na
of orbits in the neighborhood of the fixed points. The vario
types of fixed points for the normal form map~2! are defined
in Table I.

In working out the character of the attractors, we ma
use of the following properties of map~2!. First, any point on
they-axis maps to a point on thex-axis. The forward iterates
of a point on the unstable manifold will remain on the u
stable manifold. As an unstable manifold crosses the bor
i.e., the y-axis, one linear map changes to another lin
map. So the slope of the unstable manifold in two sides
the x-axis will be different unless the map is smooth, i.
tL5tR and dL5dR . Thus for a piecewise smooth map th
unstable manifold will fold at every intersection with th
x-axis. Moreover, the images of every fold point will also
a fold point. In case of stable manifold the same argum
applies for the inverse map, and we conclude that the st
manifold will fold at every intersection with they-axis and
the preimage of every fold point will be a fold point.

Second, as the system is linear in each side, period-
higher period fixed points cannot exist with all points inL or
all points in R side. Therefore, if a period-2 orbit exists,
must have one point inL and another inR. The condition for
existence of such an orbit is

2m~11tR!

tLtR2~11dL!
,0 and

2m~11tL1dL!

tLtR2~11dL!
.0. ~8!

The eigenvalues of the period-2 orbit are (tRtL2dL)
and 0. The period-2 orbit will be stable if21,tRtL2dL

,11. From this the condition for the stablity of the period
orbit is obtained as

12tLtR1dL.0, ~9!

11tLtR2dL.0. ~10!
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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IV. THE CLASSIFICATION FOR dLËÀ1 AND dRÄ0

We make a primary division of the parameter space
pending on the character of fixed points at the two regionL
andR. Since the fixed point inL can be of three types an
that in R can be of four types, the parameter space can
partitioned into 12 regions where different types of bord
collision bifurcations are expected to occur. These are sho
in Fig. 4. We now discuss briefly the phenomenology th
occur in each region.

A. Border collision pair bifurcation

If ~5! and ~6! are satisfied, there is no fixed point an
hence no attracting orbit for one side ofm50, and in the

FIG. 4. Schematic diagram of the parameter space partitioning
dL,21, dR50; ~a! for m,0 and~b! for m.0. The dynamics in the num-
bered regions are discussed in the text.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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other side ofm50 two fixed points exist. Here we explor
the character of the stable orbit when fixed points exist.

Region 1:tL.2(11dL) andtR,21
Two fixed points exist form.0 in L andR, and both are

flip saddles. Due to the flip property of the fixed poin
iterates inL move toR and iterates inR move toL. The
period-2 orbit exists if~8! is satisfied, and is stable if~9! and
~10! are satisfied. When~10! is violated the attractor be
comes chaotic. The transition from the period-2 orbit to
chaotic attractor can be seen in the bifurcation diagr
drawn withtL as the parameter~Fig. 5!. It is seen that at a
critical value of tL , a period-doubling occurs and subs
quently the resulting orbit hits the borderline. Therefore
transition from periodic to chaotic orbit occurs through
border collision.

The structure of the chaotic attractor attL56.0 is shown
in Fig. 6. The attractor lies on the unstable manifold ofR* .
Any point in R maps to thex-axis and moves away fromR* .
Since the expression of the map is different at the two si
of the origin O, the extremeties of the attractor are form
by forward iterates of the origin as:O°B, B°A, A°C,
C°D, D°E—creating a two-piece chaotic attractor. Wi
the change in parameter the two pieces join to form a sin
piece attractor.

The basin boundary is formed by the stable manifold
L* which folds at the intersections with they-axis. At a
critical parameter value a boundary crisis occurs~when point

FIG. 5. The bifurcation diagram for Region 1 in negative determinant c
with tL as parameter andtR521.1, dL522, dR50, andm50.4.

FIG. 6. The basin boundary and the chaotic attractor for Region 1 in n
tive determinant case withtL56, dL522, tR521.1, dR50, and
m50.4.
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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B touches the basin boundary atN) and the attractor is an
nihilated.

Therefore in this region of the parameter space, one
have the birth of a period-2 orbit, a chaotic orbit, or an u
stable chaotic orbit asm is varied through zero.

Region 2:tL,(11dL) andtR.1
For m,0 two fixed points exist—a flip saddle inL and

a regular saddle inR. The phenomenology is similar to tha
in Region-1: the period-2 orbit is stable if~9! and ~10! are
satisfied, and when~10! is violated the attractor become
chaotic, through period doubling followed by border col
sion.

The structure of the chaotic attractor attL524.0 is
shown in Fig. 7. The attractor is formed by the unsta
manifold of L* which is located on the attractor. In the a
tractorOB°BE, FC°CD, FD°CA, BC°ED, thusA,
C, and D become the extremities. The basin boundary
formed by the stable manifold ofR* which is a saddle. At a
critical parameter value, boundary crisis may occur, ann
lating the attractor. Therefore in this region also, one c
have the birth of a period-2 orbit, a chaotic orbit or an u
stable chaotic orbit asm is varied through zero.

Region 3: (11dL),tL,2(11dL) and 0,tR,1
For m.0 there is a flip repeller inL and a regular at-

tractor in R. All initial conditions in L flip to R. All initial
conditions in theR side map to points on thex-axis and then
converge ontoR* . So we get a stable period-1 attractor f
m.0.

Region 4:tL.2(11dL) and 0,tR,1
For m.0, L* is a flip saddle andR* is a regular attrac-

tor. This is like a saddle-node bifurcation and we get a sta
period one attractor form.0.

Region 5: (11dL),tL,2(11dL) and21,tR,0
For m.0, there is a flip repeller in theL side and a flip

attractor in theR side. Initial conditions inL will be repelled
to the R side, and the initial conditions in theR side will
converge onR* . So a stable period-1 attractor exists f
m.0.

Region 6:tL.2(11dL) and21,tR,0
For m.0, L* is a flip saddle andR* is a flip attractor.

This is also like a saddle-node bifurcation and we ge
period-1 attractor form.0.

Therefore in the regions 3, 4, 5, and 6 there is a birth

e

a-

FIG. 7. The basin boundary and the chaotic attractor for Region 2 in ne
tive determinant case withtL524.0, dL523, tR51.1, dR50, and
m520.1.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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a period-1 attractor atm50 as the parameter is varied fro
a negative value to a positive value.

Region 7: (11dL),tL,2(11dL) andtR,21
For m,0 there is a flip repeller in theL side and a flip

saddle in the R side. The initial conditions in theR side
diverge due to the repelling action ofL* . The initial condi-
tions in theR side flip to L, and then diverge to infinity
Therefore no attractor can exist for any value ofm.

B. Border crossing bifurcation

In a border crossing bifurcation, a fixed point crosses
border asm is varied through zero, and may become a d
ferent kind of fixed point. When~3! shows that the fixed
point is inL, the dynamics of points in theL side are guided
by the character of the fixed pointL* . For that value of the

FIG. 8. The chaotic attractor of Region 10 in negative determinant case
tL525, dL523, tR50.9, dR50, andm520.1.
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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parameter, if we calculate the location of the fixed pointR*
from ~4!, we find that it is also located in theL side, and
therefore actually does not exist. However, such a nonex
ent fixed point has significant influence on the system
namics because the trajectories of points inR side are guided
by its location and character. Such a fixed point will
called avirtual fixed pointand will be denoted by the overba

sign R̄* . Similarly, whenR* exists, L̄* becomes a virtual
fixed point.

Region 8: (11dL),tL,2(11dL) andtR.1
~Regular saddle changes to flip repeller!

For m,0, R* exists and is a regular saddle, whileL̄* is
a flip repeller. Form,0, initial conditions inR converge on
to the unstable manifold. The segment of the unstable m
fold to the right ofR* goes to infinity, and the segment to th
left goes towardsL. In sideL, all points map toR because of

the flip property ofL̄* . A period-2 orbit can exist, with a
point each inL and R, if ~9! and ~10! are satisfied. When
~10! is violated, a period doubling occurs followed by a bo
der collision, creating a chaotic orbit. Both the period-2
tractor and the chaotic attractor are located on the unst
manifold ofR* . The basin boundary is formed by the stab
manifold of R* . At a critical parameter value the chaot
attractor is annihilated due to boundary crisis.

For m.0, L* is a flip repeller andR̄* is a regular
saddle. The action of the flip repellerL* causes all initial
conditions inL to flip to theR side in some iterate, and the

the action ofR̄* makes it diverge to infinity along its un
stable direction, i.e., thex-axis.

or
or

or
TABLE II. The nature of the fixed points and the type of bifurcations fordL,21 anddR50.

Region m,0 m.0 Type of bifurcation

Border collision pair bifurcations
Region 1:tR,21,
tL.2(11dL)

No fixed point L* -flip saddle
R* -flip saddle

Birth of period-2 attractor, chaotic attractor,
or unstable chaotic orbit form.0

Region 2:tR.1,
tL,(11dL)

L* -flip saddle
R* -regular saddle

No fixed point Birth of a period-2 attractor, or a chaotic
attractor, or an unstable chaotic orbit for
m,0

Region 3: 0,tR,1,
(11dL),tL,2(11dL)

No fixed point L* -flip repeller
R* -regular attractor

Birth of a period-1 attractor form.0

Region 4: 0,tR,1,
tL.2(11dL)

No fixed point L* -flip saddle
R* -regular attractor

Birth of a period-1 attractor form.0

Region 5:21,tR,0,
(11dL),tL,2(11tL)

No fixed point L* -flip repeller
R* -flip attractor

Birth of a period-1 attractor form.0

Region 6:21,tR,0,
tL.2(11dL)

No fixed point L* -flip saddle
R* -flip attractor

Birth of a period-1 attractor form.0

Region 7:tR,21,
(11dL),tL,2(11dL)

No fixed point L* -flip repeller
R* -flip saddle

No attractor for any value ofm

Border crossing bifurcations
Region 8:tR.1,
(11dL),tL,2(11dL)

R* -regular saddle L* -flip repeller Period-2, or chaotic attractor, or no attract
for m,0 and no attractor form.0

Region 9:tR.1,
tL.2(11dL)

R* -regular saddle L* -flip saddle No attractor for any value ofm

Region 10: 0,tR,1,
tL,(11dL)

L* -flip saddle R* -regular attractor Period-2, or chaotic attractor or no attract
for m,0 and period-1 form.0

Region 11:21,tR,0,
tL,(11dL)

L* -flip saddle R* -flip attractor No attractor form,0, period-1 form.0

Region 12:tR,21,
tL,(11dL)

L* -flip saddle R* -flip saddle No attractor for any value ofm
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Therefore in this region, ifm is increased from a nega
tive value, the attractor~either period-2 or chaotic! vanishes
at m50.

Region 9:tL.2(11dL) andtR.1
~Regular saddle changes to flip saddle!

For m,0, R* is a regular saddle andL̄* is a flip saddle.
The initial conditions in theR side diverge along the un
stable manifold ofR* . The initial conditions in theL side

flip to the R side due to the action ofL̄* and then move
outwards along the unstable direction ofR* . So no attractor
exists form,0.

For m.0, L* is a flip saddle andR̄* is a regular saddle
The flip property ofL* is along the stable direction, and th
unstable direction has a positive eigenvalue. Therefore,
initial conditions which are to the left ofL* will gradually
diverge along the unstable direction ofL* and those which
are to the right ofL* will gradually move to theR side.
Points inR diverge along thex-axis, which is the unstable

direction ofR̄* . So no attractor exists form.0.
Thus in this region of the parameter space, there is

stable attractor for any value ofm.
Region 10:tL,(11dL) and 0,tR,1
~Flip saddle changes to regular attractor!
For m,0, L* is a flip saddle. Therefore the initial con

ditions in theL side will flip along the unstable manifold o
L* and will move over to theR side in subsequent iterate

Iterates inR will be guided byR̄* which is a regular attrac
tor, and so initial conditions inR will move to theL side.

Since points inL move toR and points inR move toL,
there is a possibility of a period-2 orbit. If~8! is satisfied, a
period-2 orbit exists, and if~9! and ~10! are satisfied, it is
stable. AstL is reduced, condition~9! is approached and th
distance between the period two fixed points gradually
creases and finally becomes infinite and no attractor ex
after that.

WhentL is increased, at a point~10! is violated, and the
period-2 orbit goes through period doubling after which o
of the branches hits the border, giving rise to a chaotic
tractor in a phenomenology similar to that in Fig. 5.

Both the period-2 orbit and the chaotic attractor must
on the unstable manifold ofL* . The chaotic attractor ob
tained following the instability of the period-2 orbit is show
in Fig. 8. The extremities of the attractor are formed by f
ward iterates of the intersections withy-axis:O°B, B°G,
F°C, C°D, E°H, and D°A. The basin of attraction
spans the whole state space.

For m.0, L̄* is a flip saddle andR* is a regular attrac-
tor. All initial conditions in theR side converge on toR* and
all initial condition in theL side flip to theR side due to the
action of L̄* and finally converge on toR* . So we get a
stable period-one attractor form.0.

Therefore in this region of the parameter space asm is
decreased from a positive value to a negative value, one
a transition from period-1 to either period-2 orbit@if ~9! and
~10! are satisfied# or chaotic orbit@if ~10! is violated# or no
attractor@if ~9! is violated#.

Note that in the boost converter example, the bifurcat
pointsA andB in Fig. 3 fall under this category. The calcu
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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lated values of the normal form parameters are as follo
For point A, tL520.2526, dL521.219, tR50.9838,
and dR50. For point B, tL521.027, dL521.588,
tR50.7196, anddR50. Since~9! and ~10! are satisfied, we
see period doubling phenomenon due to border collision

Region 11:tL,(11dL) and21,tR,0
~Flip saddle changes to flip attractor!

For m,0, L* is a flip saddle andR̄* is a flip attractor.
Initial conditions in theR side flip to the other side ofR̄*
and land in theL side. Points inL move outwards along the
unstable eigenvector ofL* . Since~9! and~10! are not satis-

FIG. 9. Schematic diagram of the parameter space partitioning fordL.1,
dR50 showing existence of attractors,~a! for m,0, ~b! for m.0.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1061Chaos, Vol. 12, No. 4, 2002 Border collision bifurcations
fied, period-2 orbit is not stable. No other attractor can e
for m,0.

For m.0 R* is a flip attractor andL̄* is a flip saddle.
All initial conditions in theR side converge on toR* . The
initial conditions in theL side move to theR side due to the
action of L̄* and finally converge on toR* . So we get a
stable period one attractor form.0.

Region 12:tL,(11dL) andtR,21
~Flip saddle remains flip saddle!

For m,0, L* and R̄* are both flip saddles. The initia
conditions in theL side flip along the unstable direction o
L* and move to theR side. Points in theR side come to the
L side due to the action ofR̄* and flip along the unstable
direction ofL* . As the fixed point of the second iterate is
saddle, the points will diverge to infinity along its unstab
direction. So no attractor exists for any value ofm,0.

For m.0, the same phenomenon occurs, and no attra
can exist.

The bifurcation phenomena fordL,21 anddR50 are
summarized in Table II.

V. THE PARAMETER SPACE PARTITIONING FOR
dLÌ1 AND dRÄ0

When the determinant is positive, there can be five ty
of fixed points in the left side and 4 types of fixed points
the right side. Therefore the parameter space can be div
into 20 regions depending on the type of fixed points—
shown in Fig. 9.

A. Border collision pair bifurcation

Since no fixed point and hence no attractor exists in
side of m50, we discuss only the character of the attrac
when fixed points exist.

Region 1:2(11dL),tL,22AdL andtR.1
For m,0, L* is a flip repeller andR* is a regular

saddle. The shape of the chaotic attractor existing in
region is shown in Fig. 10.

B is location of R* . FDCEAB is the basin boundar
formed by the stable manifold ofR* . Any point on lineAB
maps to pointB. So from the map we get the slope of th
line AB as2tR . In the basin boundaryDC°EA, DF°E,
CA°AB andAB°B.

FIG. 10. The basin boundary and the chaotic attractor for Region 1
positive determinant case withtL524.5, dL54, tR51.1, dR50, and
m520.2.
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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The chaotic attractor lies on the unstable manifold
R* . Any point in sideR, lying to the left ofAB maps to the
x-axis, and then moves along this unstable manifold towa
sideL. Since the originO°H, and since the map change
across the border, the unstable manifold experiences a fo
H. The rest of the attractor is composed by line segme
obtained by the forward iterates ofOH, as OH°HF,
HM°FJ, MF°JG, OJ°HP, KP°SQ, HK°FS, thus
forming the attractor.

The repellerL* lies within the attractor, and all point
close to it move outwards, and converge on the attrac
sinceL* is enclosed from all sides by the attractor.

As the parameters are varied within Region 1, the sh
of the attractor and the basin boundary undergo quantita
changes. At some combination of parameter values, t
come in contact, and the orbit becomes unstable at boun
crisis.

Region 2:tL,2(11dL) andtR.1
For m,0, L* is a flip saddle andR* is a regular saddle

In this parameter range we have chaotic attractor form,0,
and the phenomenology is similar to that in Region 1.L* is
enclosed within the attractor formed by the unstable ma
fold of R* . The basin boundary is formed by the stab
manifold of R* . When the origin maps to a point on th
basin boundary, a boundary crisis occurs.

Region 3:tL.(11dL) andtR,21
For m.0, L* is a regular saddle andR* is a flip saddle.

A chaotic attractor is organized by the flip saddleR* , whose

FIG. 11. Basin boundary and chaotic attractor for Region 3 in posit
determinant case withtL55.1, tR521.05, dL54, dR50, andm50.4.

FIG. 12. The bifurcation diagram for Region 6 withtL as parameter~varied
from 24 to 0! with tR51.1, dL54, dR50, andm520.1.

in
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 13. The chaotic attractors for different combinations of the parameters for Region 6 in positive determinant case:~a! tL523.5, dL54, tR51.1,
dR50, and m520.1. ~b! tL520.5, dL54, tR51.1, dR50, and m520.1. ~c! tL52.0, dL54, tR51.04, dR50, and m520.1 ~d! tL52.7, dL54,
tR51.01, dR50, andm520.1.
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unstable eigenvector lies along thex-axis ~Fig. 11!. Any ini-
tial condition in R maps to thex-axis and diverges awa
from R* . As it crosses the origin, the map changes and
further iterates fall away from thex-axis. By the action of
L* , the iterates map back toR. The extremities of the attrac
tor are formed by forward iterates of the origin:O°C,
C°A, A°B, B°D andD°E.

Basin bounary exists and it is formed by the stable ma
fold of the third iterate fixed point, which is a saddle.P, Q,
andX are the locations of the fixed points of the third itera
The stable manifold throughQ is alongSU, and the unstable
manifold is along thex-axis. The stable manifold folds atU
and intersects with the unstable manifold as it crosses
x-axis. One intersection between stable and unstable m
fold implies an infinite number of intersections, leading to
fractal structure of the basin boundary.

At a critical combination of parameter values, the attra
tor contacts the basin boundary. No attractor exists after
boundary crisis.

Regions 4 and 5:tL.(11dL) and21,tR,1
For m.0, one fixed point is regular saddle at theL side

and the other is an attractor in theR side. If 0,tR,1 then
R* is a regular attractor and if21,tR,0 then it is a flip
attractor. This is like a saddle-node bifurcation.

For m,0 all points diverge to infinity, and form.0 all
points are attracted toR* , thus giving a period-1 attractor.

Region 6:22AdL,tL,2AdL andtR.1
For m,0, L* is a repelling spiral andR* is a regular

saddle. We get high periodic orbits or chaotic attractor
m,0. The bifurcation diagram withtL as the parameter~and
m fixed! is shown in Fig. 12. It shows that the transition fro
chaotic orbit to high periodic orbit occurs due to border c
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
e

i-

.

e
ni-

-
is

r

-

lision pair bifurcation in the seventh iterate~one point of the
periodic orbit lies on the border at the bifurcation!.

For different values of the parameter we get chaotic
tractors of different shapes as shown in Fig. 13. The ba
boundary is formed by the stable manifold ofR* . R* is
located atS and the stable eigenvector with eigenvalue ze
is UT. ThereforeUT°S. The stable manifold folds at the
y-axis at U and at all preiterates ofU, forming the basin
boundary.

The attractor is formed in the following manner. In Fi
13~a! the origin O°B, B°A, A°D, and E°C. These
form the extremities of the attractor. The segme
OB°BA, BE°AC andEA°CD. As tL is increased, the
point A moves to theL side, and so the structure of th
attractor changes, as shown in Fig. 13~b!. In this attractor the
origin O°B, B°A, A°D, D°F, E°C, F° a point on
CF and C° a point onOC. So the segmentsBA°AD,
AE°DC, ED°CF and OB°BA. FC° a segment on
OF and further iterate of this segment°OC. As tL is in-
creased further, the pointD moves to theL side, and the
attractor assumes a pentagonal structure as shown in
13~c! whereO°B, B°A, A°D, D°F, F°G, E°C.
Likewise, with further increase intL , the attractor gets one
additional segment. In Fig. 13~d! O°B, B°A, A°D,
D°F, F°G, G°H, E°C, H° a point on CH and
C° a point onOC. L* lies within the attractor.

As any part of the attractor touches the basin bound
the attractor becomes unstable at a boundary crisis. Sinc
different parameter values we get chaotic attractors of dif
ent shapes, the condition of occurrence of the boundary c
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1063Chaos, Vol. 12, No. 4, 2002 Border collision bifurcations
changes discretely as additional segments are added in
attractor and/or the basin boundary. This gives the partic
structure of the parameter space region where attractors
as seen in Fig. 9~a! ~see Region 6!.

Region 7: 2AdL,tL,(11dL) andtR.1
A regular repeller and a regular saddle are born in thL

andR side, respectively, form.0. No attracting orbit exists
in either side ofm50.

B. Border crossing bifurcation

Region 8:22AdL.tL.2(11dL), 0,tR,1
~Flip repeller changes to regular attractor!
For m,0, there is a chaotic attractor for most part of t

parameter space. The attractor is formed by the same me
nism as in Region 1, and has structure similar to that sho
in Fig. 10 ~the only difference is thatR̄* is in theL side!.

However, since any initial condition anywhere in th
state space must ultimately move toR and converge onto the
attractor, the basin of attraction spans the whole state sp

For some parts of the parameter space within this reg
high periodic attractors can exist. To investigate how o
type of attractor changes to another, the bifurcation diag
for m,0 with tR as parameter is shown in Fig. 14.

From the period-3 orbit a period-6 orbit is created due
a period doubling bifurcation and subsequently one of
period-6 fixed points hits the border which gives rise to
chaotic attractor. From the chaotic attractor a period-4 o
is originated due to border collision pair bifurcation in th
fourth iterate. From period-4 a transition to period-8 occ
due to period doubling bifurcation and subsequently one
the period-8 fixed points collides with the border to give r
to a chaotic attractor. The same kind of bifurcation pheno
ena is observed if we varytL within this parameter region.

For m.0, R* is a regular attractor. All the initial condi
tions in R side converge on toR* and all the initial condi-
tions in L are repelled to theR side and gradually converg
on to R* . So we get a period-1 attractor form.0, and its
basin also spans the whole space.

Region 9:22AdL.tL.2(11dL), 21,tR,0
~Flip repeller changes to flip attractor!
In this region form,0, L* is a flip repeller. High peri-

odic orbits~e.g., period-3, period-5 or higher periods! or cha-
otic attractor may exist. The bifurcation diagram form,0
with tL as the parameter is shown in Fig. 15. It is found th
the high-periodic orbits are all born with one point on t
border—therefore these are border collision pair bifurcati
of higher iterates. The changeover to chaos also occurs w
one point of a high periodic orbit hits the border. Whenev
attractors exist, their basin spans the whole space.

For m.0, R* is a flip attractor and we get a stab
period-1 orbit. Therefore in this region, asm is varied from a
positive to a negative value, there is a bifurcation from
period-1 attractor to a high periodic attractor or chaos.

Region 10:tL,2(11dL), 0,tR,1
~Flip saddle changes to regular attractor!
For m,0, L* is a flip saddle. Initial conditions inR

move towards the regular attractorR̄* which is in L, and
initial conditions inL flip to R due to the action ofL* . This
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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FIG. 14. The bifurcation diagram for Region 8 in positive determinant c
with tR as parameter~varied from 0.15 to 0.5!, and tL524.5, dL54,
dR50, andm520.2.

FIG. 15. The bifurcation diagram for Region 9 in positive determinant c
with tL as parameter~varied from25.0 to24.0). The other parameters ar
tR520.9, dL54, dR50, andm520.2.

FIG. 16. The chaotic attractor for Region 10 in positive determinant c
with tL526, dL54, tR50.9, anddR50.

FIG. 17. The bifurcation diagram for Region 11 in positive determinant c
with tR as parameter~varied from 20.7 to 0.0! and tL526.0, dL54,
dR50, andm520.2.
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creates the possibility of high period orbits or chaos. T
bifurcation diagram is similar to the one shown in Fig. 1
and exhibit the same phenomenology. The structure of
chaotic attractor is shown in Fig. 16. The extremities of
attractor are formed byO°A, A°B and B°C. The for-
ward iterates ofOA forms the attractor as shown in th
figure.

For m.0, R* is a regular attractor. All the initial condi

tions in theR side converge on toR* . L̄* is a flip saddle
which is in theR side. All the initial conditions in theL side
flip to the R side and finally converge ontoR* . So we get a
unique period-1 attractor.

Region 11:tL,2(11dL), 21,tR,0
~Flip saddle changes to flip attractor!

For m,0, L* is a flip-saddle andR̄* is a flip attractor—
both located in theL side. Form,0 there may be period-2
period-3 or chaotic attractor. Coexisting attractors may a
exist. The bifurcation diagram is shown in Fig. 17, whi
shows the evolution of the coexisting attractors. A period
orbit is created due to pair bifurcation at bifurcation po
‘‘A.’’ A period-2 orbit coexists so long as~9! and ~10! are
satisfied. IftR is decreased, as~10! is violated, the period-2
orbit goes through period-doubling at ‘‘B.’’ Subsequent
one of the bifurcated orbits hits the border and at the ensu
border crossing bifurcation, a chaotic orbit develops. As
parametertR is increased, the seperation between the t
period-2 fixed points gradually increases and finally becom
infinite ~not shown in Fig. 17!. So for some value of the
parameter the attractor does not exist.

For m.0, R* is a flip attractor andL̄* is a flip saddle.
All the initial conditions in theR side converge ontoR* and
all the initial conditions in theL side flip to theR side due to

the action of theL̄* and finally converge ontoR* . So a
period-1 attractor exists form.0.

Region 12:22AdL,tL,2AdL, 0,tR,1
~Repelling spiral changes to regular attractor!
In this region of the parameter spaceL* is a repelling

spiral. For22AdL,tL,0, it has counter-clockwise sense
rotation while for 0,tL,2AdL it has clockwise sense o

rotation. R̄* is a regular attractor and is in theL side for
m,0, which makes all initial conditions inR move towards
L along thex-axis. The effect of the spiral fixed point make
them to go back toR in some iterate and this causes hi
periodic orbits or a chaotic attractor to exist form,0.

A few different types of chaotic attractors observ
in this region are shown in Fig. 18 which are forme
in the following manner. In Fig. 18~a! O°B°A°D
and E°C. This forms the extremities of the attracto
The segmentsOB°BA, BE°AC, EA°CD. Keeping
other parameters fixed astL is increased we find a 4-piec
chaotic attractor as shown in Fig. 18~b! where
O°B°A°D°C°E°I °H°F°G°J andJ maps to
a point onHD. As tL is further increased we get an attract
as shown in Fig. 18~c! where the extremeties are formed
this manner:O°B°A°C. For different set oftL , tR and
dL values we get attractors of different shape. One exam
is shown in Fig. 18~d! where originO°B°A°D°F and
E°C.
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FIG. 18. Chaotic attractors of different shapes for different combinati
of the parameters for Region 12 in positive determinant case.~a! tL523,
tR50.5, dL54, dR50, and m520.2. ~b! tL522, tR50.5, dL54,
dR50, andm520.2. ~c! tL521, tR50.5, dL54, dR50, andm520.2.
~d! tL52, dL59, tR50.8, dR50, andm520.05.

FIG. 19. The bifurcation diagram for Region 12 in positive determinant c
with tR as the parameter~varied from 0 to 1! andtL52, dL59, dR50, and
m520.05.

FIG. 20. Chaotic attractor for Region 13 in positive determinant case w
tL523.0, tR521.7, dL54, dR50, andm520.1.
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1065Chaos, Vol. 12, No. 4, 2002 Border collision bifurcations
The basin of attraction spans the whole state space. I
the casesL* lies within the attractor. One important featu
of these chaotic attractors is that they are organized b
spiral repeller and a virtual attracting fixed point, and hen
do not occur on the unstable manifold of a saddle. The s
sitive dependence on initial condition is caused by the re
ler.

To investigate the transitions between high periodic
bits and chaotic orbits, the bifurcation diagram is shown
Fig. 19. It is seen that repeated border collisions cause
transitions between various periodic orbits and chaos.
some bifurcation points the periodic orbit goes through
riod doubling and subsequently one of the points hits
border to give rise to chaotic attractor. Subsequently, h
periodic orbits are created due to border collision pair bif
cation.

For m.0, R* is a regular attractor and a stable period
orbit exists.

Region 13:22AdL,tL,2AdL, tR,21
~Repelling spiral changes to flip saddle!
It can be seen from~8! that for tLtR,(11dL) the

period-2 orbit exists form.0, while for tLtR.(11dL) it

FIG. 21. The basin boundary and the chaotic attractor for Region 1
positive determinant case withtL51.5, tR521.2, dL54, dR50, and
m50.1.

FIG. 22. The basin boundary and the chaotic attractor for Region 1
positive determinant case fortL521.0, tR521.2, dL54, dR50, and
m50.1.
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exists form,0. Condition~9! implies that in a part of Re-
gion 13 there is a subcritical period doubling caused by b
der collision.

For m,0, L* is a repelling spiral. A high periodic orbi
or a chaotic attractor may exist, which may be annihilated
some parts of the parameter space due to boundary c
Chaotic attractors of different shapes exist for different v
ues of the parameter.

One such attractor and its basin of attraction are sho
in Fig. 20.H andS are the locations of the fixed points of th
second iterate, which is a saddle. The basin boundar
formed by the stable manifold of this second iterate fix
point. The stable eigenvector atS is alongUT, and the stable
eigenvector atH is NHP—which fold at the intersections
with the y-axis, forming the stable manifold:ST°NM,
PN°S, andM°S. The stable manifold bends atT and the
preiterate ofT is K which is also a fold point. The extremi
ties of the chaotic attractor are formed in the following ma
ner. Origin O°D, D°B, F°E, E°C, C°A and A
maps to a point onDC. For some parameter ranges with
this region, the separation between the period-2 saddle
forms the basin boundary increases to large dimension,
hence the basin becomes very large.

As tR is decreased ortL is increased within this region
high periodic orbits and chaotic attractors exist, each wit
different condition of occurrence of boundary crisis. Th
gives the fine structure of the parameters space as show
Fig. 9~a!.

For m.0, there can be period-2@when ~9! and ~10! are
satisfied#, high periodic orbit, chaotic attractor or no attra

in

in

FIG. 23. Chaotic attractors for Region 14 in positive determinant case w
tL524.62,tR521.1, dL54, dR50, andm520.1.

FIG. 24. The bifurcation diagram for Region 14 in positive determinant c
with tL as parameter~varied from24.63 to24.0) andtR521.1, dL54,
dR50, andm520.1.
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TABLE III. The nature of the fixed points and the type of bifurcations fordL.1 anddR50.

Region m,0 m.0 Type of bifurcation

Border collision pair bifurcations
Region 1:tR.1,
22AdL.tL.2(11dL)

L* -flip repeller
R* -regular saddle

No fixed point Birth of a stable chaotic attractor, or no attract
for m,0

Region 2:tR.1,
tL,2(11dL)

L* -flip saddle
R* -regular saddle

No fixed point Birth of a chaotic attractor, or no attractor
for m,0

Region 3:tR,21,
tL.(11dL)

No fixed point L* -regular saddle
R* -flip saddle

Birth of a chaotic attractor, or no attractor
for m.0

Region 4: 0,tR,1,
tL.(11dL)

No fixed point L* -regular saddle
R* -regular attractor

Birth of a period-1 attractor form.0

Region 5:21,tR,0,
tL.(11dL)

No fixed point L* -regular saddle
R* -flip attractor

Birth of a period-1 attractor form.0

Region 6:tR.1,
22AdL,tL,2AdL

L* -repelling spiral
R* -regular saddle

No fixed point Birth of a chaotic attractor, or high periodic
orbit, or no attractor form,0

Region 7:tR.1,
2AdL,tL,(11dL)

L* -regular repeller
R* -regular saddle

No fixed point No attractor for any value ofm

Border crossing bifurcations
Region 8: 0,tR,1,
2(11dL),tL,22AdL

L* -flip repeller R* -regular attractor High periodic orbit or chaos form,0 and
period-1 form.0

Region 9:21,tR,0,
2(11dL),tL,22AdL

L* -flip repeller R* -flip attractor High periodic orbit or chaos form,0 and
period-1 form.0

Region 10: 0,tR,1,
tL,2(11dL)

L* -flip saddle R* -regular attractor High periodic orbit or chaos form,0 and
period-1 form.0

Region 11:21,tR,0,
tL,2(11dL)

L* -flip saddle R* -flip attractor Period-2, high-period orbit or chaos plus
coexisting attractor form,0 and period-1
for m.0

Region 12: 0,tR,1,
22AdL,tL,2AdL

L* -repelling spiral R* -regular attractor High periodic orbit or chaos form,0 and
period-1 form.0

Region 13:tR,21,
22AdL,tL,2AdL

L* -repelling spiral R* -flip saddle High periodic orbit or chaotic attractor or
no attractor form,0 and period-2, high
periodic orbit or chaotic attractor form.0

Region 14:tR,21,
2(11dL),tL,22AdL

L* -flip repeller R* -flip saddle High periodic orbit or chaotic attractor or
no attractor form,0 and period-2 or no
attractor form.0

Region 15:tR,21,
2AdL,tL,(11dL)

L* -regular repeller R* -flip saddle No attractor form,0 and chaotic attractor
or no attractor form.0

Region 16:21,tR,0,
22AdL,tL,2AdL

L* -repelling spiral R* -flip attractor High periodic orbit plus coexisting attractor
or no attractor form,0 and period-1
for m.0

Region 17: 0,tR,1,
2AdL,tL,(11dL)

L* -regular repeller R* -regular attractor No attractor form,0 and period-1 for
m.0

Region 18:21,tR,0,
2AdL,tL,(11dL)

L* -regular repeller R* -flip attractor No attractor form,0 and period-1 form.0

Region 19:tR.1,
tL.(11dL)

L* -regular saddle R* -regular saddle No attractor for any value ofm

Region 20:tR,21,
tL,2(11dL)

L* -flip saddle R* -flip saddle No attractor for any value ofm
y
s

bl

i-
nd
c
n
to

the
. 22
his
are

eter

of

ei-

ble
nd
tor. R* is a flip saddle situated inR side, andL̄* is a repel-
ling spiral also in theR side.

If L̄* is a clockwise rotating spiral repellor~which hap-
pens for 0,tL,2AdL) then the basin boundary, formed b
the stable manifold of the third iterate fixed point, assume
fractal structure as shown in Fig. 21.Q, K and S are the
locations of the fixed point of the third iterate. The unsta
manifold is along thex-axis. The stable manifold atK is
alongTK which folds atN and intersects the unstable man
fold ~i.e., x-axis! at M . One intersection between stable a
unstable manifold signifies an infinite number of interse
tions. So the basin boundary takes fractal structure. Bou
ary crisis may lead to the annihilation of the chaotic attrac
when pointC touches the basin boundary.
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However, the character of the attractor and that of
basin boundary are not always the same as shown in Figs
and 23. The chaotic attractor has two disjoint pieces for t
setting of the parameters. The extremities of the attractor
formed in this manner:O°B, B°A, A°C, C°E,
E°D, andD maps to a point onAE. The chaotic attractor
is annihilated due to boundary crisis at a certain param
value.

The basin boundary is formed by the stable manifold
the third iterate fixed point which is a saddle.F, N, T are the
locations of the third iterate fixed points and the stable
genvector atT is alongSU, which folds at every intersection
with the y-axis and their preiterates, thus forming the sta
manifold. In this case there is no homoclinic intersection a
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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TABLE IV. The nature of the fixed points and the type of bifurcations for21,dL,0 anddR50.

Region m,0 m.0 Type of bifurcation

Border collision pair bifurcations
Region 1:tR.1,
tL,2(11dL)

L* -flip saddle
R* -regular saddle

No fixed point Birth of period-2 attractor, or chaotic attractor,
or unstable chaotic orbit form,0

Region 2:tR.1,
2(11dL),tL,(11dL)

L* -flip attractor
R* -regular saddle

No fixed point Birth of a period-1 attractor form,0

Region 3: 0,tR,1,
tL.(11dL)

No fixed point L* -flip saddle
R* -regular attractor

Birth of a period-1 attractor form.0

Region 4:21,tR,0,
tL.(11dL)

No fixed point L* -flip saddle
R* -flip attractor

Birth of a period-1 attractor form.0

Region 5:tR,21,
tL.(11dL)

No fixed point L* -flip saddle
R* -flip saddle

Birth of a period-2 or chaotic attractor or no attracto
for m.0

Border crossing bifurcations
Region 6:tR.1,
tL.(11dL)

R* -regular saddle L* -flip saddle No attractor for any value ofm

Region 7: 0,tR,1,
tL,2(11dL)

L* -flip saddle R* -regular attractor Period-2, or chaotic attractor form,0 and
period-1 attractor form.0

Region 8: 0,tR,1,
2(11dL),tL,(11dL)

L* -flip attractor R* -regular attractor period-1 for any value ofm

Region 9:21,tR,0,
tL,2(11dL)

L* -flip saddle R* -flip attractor Period-2 or no attractor form,0, period-1 for
m.0

Region 10:21,tR,0,
2(11dL),tL,(11dL)

L* -flip attractor R* -flip attractor period-1 for any value ofm

Period 11:tR,21,
tL,2(11dL)

L* -flip saddle R* -flip saddle No attractor for any value ofm

Region 12:tR,21,
2(11dL),tL,(11dL)

L* -flip attractor R* -flip saddle Period-1 form,0 and period-2, or chaotic attractor
or no attractor form.0
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the basin boundary is composed of line segments.
Region 14:2(11dL),tL,22AdL, tR,21
~Flip repeller changes to flip saddle!
Due to condition~8!, there is a supercritical period dou

bling if ~9! is satisfied, and a subcritical period doubling
~9! is violated. Form,0, L* is a flip repeller.R̄* is a flip
saddle, and if~9! is violated the period-2 orbit exists but
unstable. Under such condition high periodic orbit or chao
attractor may exist due to the same mechanism as discu
in Region 13~Fig. 20!.

The bifurcation diagram withtL as the bifurcation pa-
rameter is shown in Fig. 24. We find that due to repea
border colision bifurcations the high periodic orbits or ch
otic attractors are alternatively created—a phenomenon
served in many of the parameter space regions.

For m.0 we get period-2 orbit or no attractor in th
parameter range. So long as~9! and ~10! are satisfied
period-2 orbit exists. But as the parameters are varied
point is reached when~9! is violated and the seperation b
tween the period-2 fixed points becomes infinite and
period-2 orbit exists after that.

Region 15: 2AdL,tL,(11dL), tR,21
~Regular repeller changes to flip saddle!

For m,0 L* is a regular repeller andR̄* is a flip saddle.
So all initial conditions inL are repelled away and initia
conditions inR flip to L and then are repelled to infinity
Therefore no attractor exists in this region of the parame
space form,0.

For m.0 R* is a flip saddle and is in theR side. We get
chaotic attractor which may become unstable at some pa
eter value. The structure of the chaotic attractor and the b
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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boundary~formed by the stable manifold of the third itera
saddle! are similar to Fig. 21.

Region 16:22AdL,tL,2AdL, 21,tR,0
~Repelling spiral changes to flip attractor!
For m,0, there is a repelling spiral inL side. We get

high periodic orbit or no attractor. Coexisting attractors m
also exist. The initial conditions in theL side move to theR

side after a finite number of iterations and asR̄* is a flip
attractor the next iterate will be on the negativex-axis. Thus
there exists a possibility of having stable high periodic
bits. It is possible to work out the conditions for existence
each high periodic orbit, but that results in cumbersome
pressions which we omit here. It is however notable that
high periodic orbits are created due to pair bifurcation. A
tractors exist in narrow strips@see Fig. 9~a!# in the param-
eters space due to the same phenomenology as discuss
Region 13.

For m.0 R* is a flip attractor, and we get a stab
period-1 orbit.

Region 17: 2AdL,tL,(11dL), 0,tR,1
~Regular repeller changes to regular attractor!
Region 18: 2AdL,tL,(11dL), 21,tR,0
~Regular repeller changes to flip attractor!
For m,0, L* is regular repeller. All the initial condi-

tions inL side either go to infinity due to the repelling actio
of L* or moves to theR side. In the latter case it will fall on
thex-axis in the next iterate and gradually move to theL side

due to the action ofR̄* and subsequently go to infinity due t
the repelling action ofL* . So there will be no attractor fo
m,0.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



r

1068 Chaos, Vol. 12, No. 4, 2002 S. Parui and S. Banerjee
TABLE V. The nature of the fixed points and the type of bifurcations for 0,dL,1 anddR50.

Region m,0 m.0 Type of bifurcation

Border collision pair bifurcations
Region 1:tR.1,
tL,2(11dL)

L* -flip saddle
R* -regular saddle

No fixed point Birth of a stable chaotic attractor, or unstable
chaotic orbit or no attractor form,0

Region 2:tR.1,
2(11dL),tL,22AdL

L* -flip attractor
R* -regular saddle

No fixed point Birth of a period-1 attractor form,0

Region 3:tR.1,
22AdL,tL,2AdL

L* -attracting spiral
R* -regular saddle

No fixed point Birth of a period-1 attractor form,0

Region 4:tR.1,
2AdL,tL,(11dL)

L* -regular attractor
R* -regular saddle

No fixed point Birth of a period-1 attractor form,0

Region 5: 0,tR,1,
tL.(11dL)

No fixed point L* -regular saddle
R* -regular attractor

Birth of a period-1 attractor form.0

Region 6:21,tR,0,
tL.(11dL)

No fixed point L* -regular saddle
R* -flip attractor

Birth of a period-1 attractor form.0

Region 7:tR,21,
tL.(11dL)

No fixed point L* -regular saddle
R* -flip saddle

Birth of a stable chaotic attractor, or unstable
chatic attractor or no attractor form.0

Border crossing bifurcations
Region 8:tR.1,
tL.(11dL)

R* -regular saddle L* -regular saddle No attractor for any value ofm

Region 9: 0,tR,1,
tL,2(11dL)

L* -flip saddle R* -regular attractor Period-2 or chaos form,0 and period-1
for m.0

Region 10: 0,tR,1,
2(11dL),tL,22AdL

L* -flip attractor R* -regular attractor Period-1 plus coexisting attractors form,0
and period-1 form.0

Region 11: 0,tR,1,
22AdL,tL,2AdL

L* -attracting spiral R* -regular attractor Period-1 plus coexisting attractor~if
22AdL,tL,0) and period-1~if 0 ,tL,2AdL)
for any value ofm

Region 12: 0,tR,1,
2AdL,tL,(11dL)

L* -regular attractor R* -regular attractor Period-1 for any value ofm

Region 13:21,tR,0,
tL,2(11dL)

L* -flip saddle R* -flip attractor Period-2 plus coexisting attractor or no attracto
for m,0 and period-1 plus coexisting
attractor form.0

Region 14:21,tR,0,
2(11dL),tL,22AdL

L* -flip attractor R* -flip attractor Period-1 plus coexisting attractor form,0
and period-1 plus different coexisting attractor
for m.0

Region 15:21,tR,0,
22AdL,tL,2AdL

L* -attracting spiral R* -flip attractor Period-1~if 22AdL,tL,0) and period-1
plus coexisting attractors~if 0 ,tL,2AdL)
for any value ofm

Region 16:21,tR,0,
2AdL,tL,(11dL)

L* -regular attractor R* -flip attractor Period-1 attractor for any value ofm

Region 17:tR,21,
tL,2(11dL)

L* -flip saddle R* -flip saddle No attractor for any value ofm

Region 18:tR,21
2(11dL),tL,22AdL

L* -flip attractor R* -flip saddle Period-1 form,0 and period-2 or no attractor
for m.0

Region 19:tR,21,
22AdL,tL,2AdL

L* -attracting spiral R* -flip saddle Period-1 plus coexisting attractor form,0
and chaos or high periodic orbit plus coexisting
attractor or period-2 plus coexisting
attractor or no attractor form.0

Region 20:tR,21,
2AdL,tL,(11dL)

L* -regular attractor R* -flip saddle Period-1 form,0, period-2 or chaos for
m.0
or

ng

ti-
co-
lie
For m.0 andL̄* is a regular repeller andR* is a regu-
lar attractor~if 0 ,tR,1) or flip attractor~if 21,tR,0).
All the initial conditions in theR side will converge on to
R* . All the initial conditions in theL side will come to theR
side due to the repelling action ofL̄* and finally converge on
to R* . So there will be a stable period-1 attractor f
m.0.

Region 19:tL.(11dL), tR.1
~Regular saddle changes to regular saddle!
Region 20:tL,2(11dL), tR,21
~Flip saddle changes to flip saddle!
For m,0, all initial conditions go to infinity along the
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
unstable eigenvector ofL* and for m.0, all initial condi-
tions go to infinity along the unstable eigen vector ofR* .
Therefore there will be no attractor for both sides ofm50.

Table III summarizes the various bifurcations occurri
whendL.1 anddR50.

VI. WHEN THE DETERMINANT LIES BETWEEN À1
AND ¿1

In Ref. 5 the border collision bifurcations were inves
gated under the condition that the determinants of the Ja
bian matrices at the two sides of a border collision event
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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between21 and 11. Since a two-dimensional map wit
determinant zero is a one-dimensional map, the above w
gives proper prediction of the border collision events un
the special case where the determinant in one side is z
Therefore, without describing each individual case, we su
marize in Tables IV and V, and the results obtained fro
Ref. 5 regarding thedR50 situation.

VII. CONCLUSIONS

In this paper we have presented the border collision
furcation phenomena that occur in piecewise smooth m
which are two dimensional in one side of the borderline a
one dimensional in the other side. It has recently been fo
that such a situation occurs in systems of practical inter
most important examples coming from switching circui
The theory developed in this paper will help in understa
ing the dynamics and bifurcation phenomena in such s
tems.

The study has indicated that very complicated bifur
tion structures may exist under this condition, caused by
peated border collisions and changing conditions of occ
rence of boundary crisis. Generally in two-dimension
Downloaded 08 Jan 2003 to 203.197.98.3. Redistribution subject to AIP
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maps, chaotic attractors are known to occur only on the
stable manifold of saddles. The present study has shown
chaotic attractors can also be organized around repellers,
need not be associated with saddle fixed points.
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