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Border collision bifurcations in two-dimensional piecewise smooth maps
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Recent investigations on the bifurcations in switching circuits have shown that many atypical bifurcations
can occur in piecewise smooth maps that cannot be classified among the generic cases like saddle-node,
pitchfork, or Hopf bifurcations occurring in smooth maps. In this paper we first present experimental results to
establish the need for the development of a theoretical framework and classification of the bifurcations result-
ing from border collision. We then present a systematic analysis of such bifurcations by deriving a normal form
— the piecewise linear approximation in the neighborhood of the border. We show that there can be eleven
qualitatively different types of border collision bifurcations depending on the parameters of the normal form,
and these are classified under six cases. We present a partitioning of the parameter space of the normal form
showing the regions where different types of bifurcations occur. This theoretical framework will help in
explaining bifurcations in all systems, which can be represented by two-dimensional piecewise smooth maps.
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I. INTRODUCTION

Most studies in bifurcation theory have been done us
smooth dynamical systems like the He´non map, the Ikeda
map, and the pendulum equation. In the class of nonsm
systems, maps with square-root singularity have been stu
extensively@1–4# because of their application in impact o
cillators and other impacting mechanical systems. On
other hand, piecewise smooth maps with finite one-sided
tial derivatives at the discontinuity have attracted relativ
little attention. Though the possibility of strange bifurcatio
like period-2 to period-3 or period-2 to 18-piece chaotic
tractor have been reported@5#, no systematic study has bee
made to categorize the possible bifurcations in piecew
smooth maps. Such maps were considered to be just a m
ematical possibility as no physical system with these cha
teristics was known.

However, in recent years there has been a discovery th
large class of engineering systems, particularly the switch
circuits used in power electronics, yield piecewise smo
maps under discrete modeling, and border collision bifur
tions are quite common in such systems@6,7#. This has pro-
vided motivation for the present study whose objective is
systematically analyze all different kinds of bifurcations th
can occur in two-dimensional piecewise smooth maps.

We consider a general two-dimensional piecewise smo
mapg( x̂,ŷ;r), which depends on a single parameterr. Let
Gr , given byx̂5h( ŷ,r) denote a smooth curve that divide
the phase plane into two regionsRA and RB . The map is
given by
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g~ x̂,ŷ;r!5H g1~ x̂,ŷ;r! for x̂,ŷPRA

g2~ x̂,ŷ;r! for x̂,ŷPRB .
~1!

It is assumed that the functionsg1 andg2 are both continu-
ous and have continuous derivatives. The mapg is continu-
ous but its derivative is discontinuous at the lineGr , called
the ‘‘border.’’ It is further assumed that the one-sided part
derivatives at the border are finite. We study the bifurcatio
of this system as the parameterr is varied.

If a bifurcation occurs when the fixed point of the map
in one of the smooth regionsRA or RB , it is one of the
generic types, namely, period doubling, saddle-node, or H
bifurcation. But if a fixed point collides with the borderline
there is a discontinuous jump in the eigenvalue of the Ja
bian matrix. In such a case, an eigenvalue may not ‘‘cros
the unit circle in a smooth way, but rather ‘‘jumps’’ over
as a parameter is varied continuously. One, therefore, ca
classify the bifurcations arising from such border collisio
as those occurring for smooth systems where the eigenva
cross the unit circle smoothly. In this paper we develop
classification for border collision bifurcations.

The paper is organized as follows. In Sec. II, we illustra
the problem with the help of an example of switching circu
In Sec. III, the normal form is derived. In Sec. IV, we an
lyze the border collision bifurcations occurring in piecewi
smooth maps. We present a partitioning of the param
space of the normal form exhibiting various kinds of bord
collision bifurcations. We conclude in Sec. V.

II. EXAMPLES OF BORDER COLLISION BIFURCATIONS
IN A POWER ELECTRONIC CIRCUIT

The subject of power electronics is concerned with h
efficiency conversion of electric power, from the form ava

ic
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able at the power source, to the form required by the spe
appliance or load. Power electronic technology is incre
ingly finding application in the home and workplace: fam
iar examples are domestic light dimmers, fluorescent la
ballasts, battery chargers, and switch-mode power supp
of all electronic appliances including the personal compu

In contrast with mainstream electronics, power electron
is characterized by the use of electronicswitches, which op-
erate in an ‘‘on’’ or ‘‘off’’ state. Since electrical power sup
plies can be either dc or ac, there are four basic types
power converters: ac-dc, dc-ac, dc-dc, and ac-ac. Here
will consider one of the simplest but most useful of pow
converters — the dc-dc buck converter — which is used
convert a dc input to a dc output at a lower voltage.

The circuit diagram of the buck converter is shown in F
1~a!. The controlled switchS ~generally realized by a MOS
FET! opens and closes in succession, thus ‘‘chopping’’
dc input into a square wave that alternates between the i
voltageVin and zero. The pulsed wave form is then low-pa
filtered by a simpleLC network, removing most of the
switching ripple and delivering a relatively smooth dc outp
voltagev to the load resistanceR. The diodeD provides a
path for the continuation of the inductor current during t
off period. The dc output voltage can easily be varied
changing the duty ratio, i.e., the fraction of time that t
switch is closed in each cycle.

In practice it is necessary to regulatev against changes in
the input voltage and the load current. For example, if a b
converter is used to convert the standard 5-V dc supply u
in computers to the 3.3 V needed for the Pentium CPU c
it would be necessary to regulate the average output vol
at 3.3 V in spite of the varying power demand of the ch
This can be achieved by controlling the switchS by voltage
feedback as shown in Fig. 1. In this simple proportional c
troller, a constant reference voltageVre f is subtracted from

FIG. 1. ~a! The buck converter with duty cycle controlled b
voltage feedback and~b! the three ways the state can move fro
one sampling instant to the next.
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the output voltage and the error is amplified with gainA to
form a control signalvcon5A(v2Vre f). The switching sig-
nal is generated by comparing the control signal with a
riodic sawtooth~ramp! wave form.S turns on whenevervcon
goes belowv ramp and a latch allows it to switch off only a
the end of the ramp cycle.

Though this circuit or its variants are used in a large nu
ber of practical applications requiring regulated dc pow
supply, it has been demonstrated@8–10# that the system can
exhibit bifurcations and chaos for a large portion of the p
rameter space. To investigate the dynamics analytically,
obtain a two-dimensional Poincare´ map by sampling the in-
ductor current and capacitor voltage at the end of each ra
cycle.

Because of the transcendental form of the equations,
map cannot be determined in closed form. In simulation,
map has to be obtained numerically. It is, however, poss
to infer the form of the map. There are three ways in wh
the system can move from one observation point to the n
~a! the control voltage is throughout above the ramp wa
form and the switch remains off,~b! the cycle involves anoff
period and anon period,~c! the control voltage is throughou
below the ramp wave form and the switch remains on. T
three cases are shown in Fig. 1~b!. These are represented b
three different expressions of the map. The borderlines
given by the condition where the control voltage grazes
top and bottom of the ramp wave form. Therefore, there
three compartments in the phase space, separated by
borderlines, and we have a piecewise smooth map.

We present the experimentally obtained bifurcation d
grams for this system for different sets of parameter valu

An experimental bifurcation diagram is shown in Fi
2~a!. Here we find two parameter values~shown with arrows!
for which a periodic orbit directly bifurcates into a chaot
orbit. Such bifurcations have been reported earlier in@8,11–

FIG. 2. Experimental bifurcation diagram of the buck convert
The parameter values areR523.5 V, C55 mF, L52.96 mH.
Triangular wave:VU58.43V,VL53.62V, frequency 12 kHz. Bifur-
cation parameterVin varied from 35 to 75 V.
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13. The slight expansion of the attractor at the bifurcat
point is due to system noise and can be ignored in theore
studies. In Fig. 2~b! we present the continuous time plots
vcon and the triangular wave voltage at the bifurcation po
shown by the second arrow, where a period-3 orbit bifurca
into a 3-piece chaotic orbit. It is seen that thevcon wave form
grazes the top of the triangular wave, which means tha
border collision bifurcation has occurred.

The distinguishing feature of this chaotic attractor is th
there is no periodic window over a large range of the para
eter value. We find from simulation that there are no co
isting attractors in this range. We say a chaotic attracto
robust if, for its parameter values there exists a neighb
hood in the parameter space with no periodic attractor
the chaotic attractor is unique in that neighborhood@14#. The
chaotic attractor resulting from this border collision is the
fore robust. The question is, under what condition does
bust chaos occur?

Another experimental bifurcation diagram for this syste
is shown in Fig. 3~a!. The arrow shows a period doublin
bifurcation, but the two bifurcated orbits do not diverge p
pendicularly from the path of the fixed point before the cr
cal parameter value. This is, therefore, not a standard pi
fork bifurcation. This kind of bifurcation has been report
in @15,16# also. Figure 3~b! gives the continuous time plot
of vcon and the triangular wave voltage just after the bifu
cation and shows that the period doubling occurred at a
der collision. Again the question is, under what conditi
does this special type of period doubling occur?

It has been reported earlier@17# that this system has co
existing attractors for some ranges of parameter valu
Since multiple attractors cannot be seen in experimenta
furcation diagrams, we present a numerically obtained bi
cation diagram in Fig. 4 showing the evolution of the ma
attractor and a coexisting attractor. It is found that the c
otic attractor comes into existence out of nothing at a p

FIG. 3. Experimental bifurcation diagram of the buck convert
The parameter values areR528.9 V, C55 mF, L52.96 mH.
Triangular wave:VU58.43V, VL53.62V, frequency 8 kHz. Bifur-
cation parameterVin varied from 50 to 70 V.
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ticular parameter value. Under what condition can su
strange bifurcations occur?

In the following sections we develop a complete theory
bifurcations in piecewise smooth maps, from which the a
swers to the above questions can be derived.

III. THE NORMAL FORM

Since the local structure of border collision bifurcatio
depends only on the local properties of the map in the ne
borhood of the border, we study the border collision bifurc
tions with the help of ‘‘normal forms’’ — the piecewise
affine approximations ofg in the neighborhood of the borde

Define

x̃5 x̂2h~ ŷ;r!, ỹ5 ŷ.

This r-dependent change of variables moves the borde
the ỹ axis. Then the mapg( x̂,ŷ;r) can be written

g„x̃1h~ ŷ;r!,ỹ;r…5 f ~ x̃,ỹ;r!,

and the border isx̃50. Suppose that whenr5r0 the map
f ( x̃,ỹ;r) has a fixed point P0 on the border, that is,

P05„0,ỹ0~r0!…5 f „0,ỹ0~r0!;r0….

Let e1 be a tangent vector in theỹ direction. The vectore1
maps to a vectore2 . We assumee2 is not parallel toe1 .
Define the local coordinates as the following~cf. Fig. 5!.
Choose the point P0 as the new origin fore1 in the ȳ direc-
tion ande2 in the x̄ direction. In thesex̄-ȳ coordinates, the
fixed point P0 is given by (0,0), and the borderGr is given
by x̄50. We define the new parameterm̄5r2r0 so that
m̄050. Choose the scales such that atm̄50 a unit vector
along theȳ axis maps to a unit vector along thex̄ axis. The
phase space is now divided into the two halvesL andR and
the mapf ( x̃,ỹ;r) can be written asF( x̄,ȳ;m̄).

.

FIG. 4. Numerically obtained bifurcation diagram of the bu
converter. The parameter values areR522 V, C547 mF, L
520 mH. Triangular wave:VU58.2V, VL53.8V, time period
400 ms.
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FIG. 5. The transformation of coordinates from the two-dimensional piecewise smooth map to the normal form.
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We can write the mapF( x̄,ȳ,m̄) in the sideL in the
matrix form as

F~ x̄; ȳ;m̄ !5S f 1~ x̄,ȳ;m̄ !

f 2~ x̄,ȳ;m̄ !
D , F~0,0;0!5S 0

0D .

LinearizingF( x̄,ȳ;m̄) in the neighborhood of~0,0;0!, we
have

F~ x̄,ȳ;m̄ !5S J11 J12

J21 J22
D S x̄

ȳ
D 1m̄S vLx

vLy
D 1o~ x̄,ȳ;m̄ !

for x̄<0, ~2!

where

J115 lim
x̄→02, ȳ→0

]

] x̄
f 1~ x̄,ȳ;0!,

J125 lim
x̄→02, ȳ→0

]

] ȳ
f 1~ x̄,ȳ;0!,

J215 lim
x̄→02, ȳ→0

]

] x̄
f 2~ x̄,ȳ;0!,

J225 lim
x̄→02, ȳ→0

]

] ȳ
f 2~ x̄,ȳ;0!,

vLx5 lim
x̄→02, ȳ→0

]

]m̄
f 1~ x̄,ȳ;0!,

vLy5 lim
x̄→02, ȳ→0

]

]m̄
f 2~ x̄,ȳ;0!.

The particular choice of coordinates makesJ1251 and
J2250. Further, we note thatJ11 is the trace~denotedtL) and
J21 is the negative of the determinant~denoted2dL) of the
Jacobian matrix. Thus Eq.~2! becomes
F~ x̄,ȳ;m̄ !5S tL 1

2dL 0D S x̄

ȳ
D 1m̄S vLx

vLy
D 1o~ x̄,ȳ;m̄ ! if x̄<0.

~3!

Similarly, for sideR we obtain

F~ x̄,ȳ;m̄ !5S tR 1

2dR 0D S x̄

ȳ
D 1m̄S vRx

vRy
D 1o~ x̄,ȳ;m̄ ! if x̄.0,

~4!

where the corresponding quantities inR are defined in a
similar way.

Continuity of the map implies

S vLx

vLy
D 5S vRx

vRy
D 5S vx

vy
D .

We now make another change of variables so that
choice of axes is independent of the parameter. The coo
nate transformationx5 x̄, y5 ȳ2m̄ vy , andm5m̄ (vx1vy)
@assuming (vx1vy)Þ0] gives

G2~x,y;m!55 S tL 1

2dL 0D S x

yD 1mS 1

0D for x<0

S tR 1

2dR 0D S x

yD 1mS 1

0D for x.0,

~5!

which is the desired 2D normal form.
Note that if (vx1vy)50, then the fixed point moves

along the border asm varies. Hence we assume the gener
ity condition (vx1vy)Þ0 to ensure that a border collisio
occurs atm50.

It is interesting to note thattL anddL are simply the trace
and the determinant of the Jacobian matrix of the fixed po
P0 on RA side of the borderG. Let Pr denote a fixed point of
g( x̂,ŷ;r) defined onr02e,r,r01e for some smalle
.0; thenPr depends continuously onr. Assume thatPr is
in regionRA whenr,r0 and in regionRB whenr.r0 , and
that Pr is on G whenr5r0 . For r,r0 , the eigenvalues of
the Jacobian matrix of the fixed pointPr are denoted asl1
andl2 . Since the trace and the determinant of the Jacob
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is invariant under the transformation of coordinates, we
obtain the values oftL anddL as

tL5 lim
r→r0

2
~l11l2!,

dL5 lim
r→r0

2
~l1 l2!. ~6!

The values oftR anddR can be calculated in a similar wa
for r.r0 . This property is very important in numerica
computations. For a border-crossing periodic orbit w
higher period, we examine thepth ~if the period isp) iterate
of the map. The matrices in Eq.~5! then correspond to the
pth iterate rather than the first iterate of the map.

When dL and dR are zero, the system becomes on
dimensional and the normal form reduces to

G1~x;m!5H a x1m for x<0

b x1m for x.0,
~7!

wherea andb are the slopes of the graph at the two sides
the borderx50.

IV. CLASSIFICATION OF BORDER COLLISION
BIFURCATIONS

Various combinations of the values oftL ,tR ,dL , anddR
exhibit different kinds of bifurcation behaviors asm is varied
through zero. To present a complete picture, we break up
four-dimensional parameter space into regions with the s
qualitative bifurcation phenomena. If the parameter com
nation is inside a region, theng andG2 will have the same
types of bifurcations. If it is on a boundary, then higher-ord
terms are needed to determine the bifurcations ofg.

The fixed points of the system in both sides of the bou
ary are given by

L* 5S m

12tL1dL
,

2dLm

12tL1dL
D ,

R* 5S m

12tR1dR
,

2dRm

12tR1dR
D ,

and the stability of each of them is determined by the eig
valuesl1,25

1
2 (t6At224d). If the eigenvalues are real, th

slopes of the corresponding eigenvectors are given
2(d/l1) and2(d/l2), respectively. Since we consider on
dissipative systems, we assumeudLu,1 and udRu,1. For a
positive determination there can be four types of fix
points. ~1! Whend.t2/4, both eigenvalues of the Jacobia
are complex, indicating that the fixed point is spirally attra
ing. If t.0, it is a clockwise spiral, and ift,0, the spiraling
motion is counterclockwise.~2! When d,t2/4, both eigen-
values are real. If 2Ad,t,(11d), then the eigenvalues ar
positive and the fixed point is a regular attractor. If22Ad
.t.2(11d), then the eigenvalues are negative and it i
flip attractor.~3! If t.11d, then 0,l2,1 andl1.1. The
fixed point is a regular saddle.~4! If t,2(11d), thenl2
,21 and21,l1,0. The fixed point is a flip saddle.
n

-

f

he
e

i-

r

-

-

y
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a

If the determinant is negative, there can be only two typ
of fixed points: ~1! For 2(11d),t,(11d), one eigen-
value is positive and the other negative—which means
the fixed point is a flip attractor.~2! For t.(11d), l1.1
and21,l2,0, i.e., the fixed point is a flip saddle. Ift,
2(11d), then l2,21 and 0,l1,1. The fixed point is
again a flip saddle.

When referring to sidesL andR, these quantities have th
appropriate subscripts, i.e.,l1L ,l2L are the eigenvalues in
sideL andl1R ,l2R are the eigenvalues in sideR. As a fixed
point collides with the border, its character can change fr
any one of the above types to any other. This provides a w
of classifying border collision bifurcations.

It may be noted that in some portions of the parame
space there may be no fixed point in half of the phase sp
For example, the location ofL* calculated by the above
formula may turn out to be in sideR. In such cases, the
dynamics inL is determined by the character of the ‘‘vir
tual’’ fixed point. We denote such virtual fixed points by th
overbar sign, asL *̄ and R*̄ . If the eigenvalues are rea
invariant manifolds of these virtual fixed points still exist an
play an important role in deciding the system dynamics.

It should also be noted that if a certain kind of bifurcatio
occurs whenm is increased through zero, the same kind
bifurcation would also occur whenm is decreased through
zero if the parameters inL and R are interchanged. There
fore, there exists a symmetry in the parameter space an
the following discussion it suffices to describe the bifurc
tions in half the parameter space. Moreover, we first cons
the case of positive determinant, which constitutes a la
class of physical systems. We take up the special feature
systems with negative determinant at a later stage.

A special feature of the normal form~5! is that the un-
stable manifolds fold at every intersection with thex axis,
and the image of every fold point is a fold point. The stab
manifolds fold at every intersection with they axis and the
preimage of every fold point is a fold point. The argument
as follows. Forward iterate of points on the unstable ma
fold remain on the same manifold. In the normal form, poin
on the y axis map to points on thex axis. As an unstable
manifold crosses they axis, one linear map changes to a
other linear map. Therefore, the slope of the unstable m
fold in the two sides of thex axis cannot be the same unle
the parameters of the normal form in the two sides of
border are the same~implying a smooth map!. In case of the
stable manifold, the same argument applies for the inve
map. The inverse map of the normal form is given by

G2
21~x,y;m!55 S

0 2
1

dL

1
tL

dL

D S x

yD 1mS 0

21D for y.0

S 0 2
1

dR

1
tR

dR

D S x

yD 1mS 0

21D for y<0.

~8!

Since its borderline is along thex axis, and points on the
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FIG. 6. The partitioning of the parameter space into regions with the same qualitative bifurcation phenomena. The numberin
regions are the cases as discussed in the text. The regions shown in primed numbers have the same bifurcation behavior as the un
whenm is varied in the opposite direction.
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x axis map to points on they axis, we conclude that the
stable manifold must have different slopes in the two side
the y axis.

We now present the partitioning of the parameter spac
shown in Fig. 6. The system behavior in the various regi
of the parameter space are taken up in the following sub
tions.

A. Border collision pair bifurcation

Case 1.If

tL.~11dL!, tR,~11dR!, ~9!

then there is no fixed point form,0 and there are two fixed
points, one each inL andR, for m.0. The two fixed points
are born on the border atm50. We call this aborder colli-
sion pair bifurcation. An analogous situation occurs iftL
,(11dL) and tR.(11dR) as m is reduced through zero
Due to the symmetry of the two cases, we consider only
parameter region~9!. There can be three types of bord
collision pair bifurcations depending on the character of
orbits for m.0.

Case 1(a). If (1 1dR).tR.2(11dR), then R* is
stable. Therefore, it is like a saddle-node bifurcation, whe
periodic attractor appears atm50. There are two specia
features of this saddle node bifurcation. First, the fixed po
are born on the border and move away from it asm is in-
creased. Second, there is no intermittency associated
this bifurcation.
f
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Case 1(b).If

tL.~11dL!, tR,2~11dR!, ~10!

dLtRl1L2dRl1Ll2L1dRl2L2dLtR

1tLdL2dL
22l2LdL.0, ~11!

there is a bifurcation from no attractor to a chaotic attract
The chaotic attractor form.0 is robust@14#.

Case 1(c).If tL.(11dL) andtR,2(11dR) and

dLtRl1L2dRl1Ll2L1dRl2L2dLtR

1tLdL2dL
22l2LdL<0,

then there is an unstable chaotic orbit form.0.
For Eq. ~10!, L* is a regular saddle andR* is a flip

saddle. LetUL andSL be the unstable and stable manifol
of L* andUR andSR be the unstable and stable manifolds
R* , respectively. As shown earlier,UL and UR experience
folds along the x axis, and all images of fold points are fo
points.SL andSR fold along the y axis, and all preimages o
fold points are fold points.

For condition~10!, l1L.l2L.0 and 0.l1R.l2R . The
stable eigenvector atR* has a slopem15(2dR /l1R) and
the unstable eigenvector has a slopem25(2dR /l2R). Since
points on an eigenvector map to points on the same eig
vector and since points on they-axis map to thex axis, we
conclude that points ofUR to the left of they-axis map to
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points above thex axis. From this we find thatUR has an
anglem35(dLl2R)/(dR2tLl2R) after the first fold. Under
condition ~10! we havem1.m2.0 andm3,0. Therefore,
there must be a transverse homoclinic intersection inR. This
implies an infinity of homoclinic intersections and the ex
tence of a chaotic orbit.

We now investigate the stability of this orbit. The bas
boundary is formed bySL .SL folds at the y axis and inter
sects thex axis at pointC. The portion ofUL to the left ofL*
goes to infinity and the portion to the right ofL* leads to the
chaotic orbit.UL meets thex axis at pointD, and then un-
dergoes repeated foldings leading to an intricately fold
compact structure as shown in Fig. 7.

The unstable eigenvector atL* has a negative slope give
by (2dL /l1L). Therefore, it must have a heteroclinic inte
section withSR . Since bothUL andUR have transverse in
tersections withSR , by the Lambda Lemma@18# we con-
clude that for each pointq on UR and for each
e-neighborhoodNe(q), there exist points ofUL in Ne(q).
SinceUL comes arbitrarily close toUR , the attractor must
spanUL on one side of the heteroclinic point.

Since all initial conditions inL converge onUL and all
initial conditions inR converge onUR , and since there are
points ofUL in every neighborhood ofUR , we conclude that
the attractor is unique. This chaotic attractor cannot be
stroyed by small changes in the parameters. Since s
changes in the parameters can only cause small chang
the Lyapunov exponents, where the chaotic attractor
stable, it is also robust.

It is clear from this geometrical structure that no point
the attractor can be to the right of pointD. If D lies towards
the left ofC, the chaotic orbit is stable. IfD falls outside the
basin of attraction, it is an unstable chaotic orbit or chao
saddle. From this, the condition~11! of stability of the cha-
otic attractor is obtained. IfdL5dR5d, this condition re-

FIG. 7. The stable and unstable manifolds ofL* for tL51.7,
dL50.5, tR521.7, dR50.5. R* is marked by the small cros
inside the attractor.
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B. Border crossing bifurcations

In all regions of the parameter space except Eq.~9!, a
fixed point crosses the border asm is varied through zero.
The resulting bifurcations are calledborder crossingbifur-
cations. In the following discussions we consider the bif
cations asm varies from a negative value to a positive valu

Case 2. Regular attractor to flip saddle.This occurs if

2AdL,tL,~11dL!, tR,2~11dR!.

There is a bifurcation from a period-1 attractor to a chao
attractor asm is increased through zero. This chaotic attra
tor is robust.

For m,0, L* is a regular attractor whileR̄* is a flip
saddle. All initial conditions inL converge on toL* , while
initial conditions in R converge on toUR . SinceUR must
have a heteroclinic intersection with one of the stable ma
folds of L, all initial conditions inR also converge on toL* .

For m.0, R* is a flip saddle. As shown in the discussio
for Case 1~b!, there is a homoclinic intersection inR imply-
ing the existence of a chaotic orbit. AsL̄* is in R, its stable
manifolds point towardR. Since there is an intersection ofSR
with the invariant manifold associated withl1L , all initial
conditions converge onUR , making the chaotic attracto
unique.

Case 3.There is a unique period-1 attractor for both po
tive and negative values ofm in the following cases. At
border collision, only the path of the fixed point changes

Regular attractor to spiral attractor:This occurs if

2AdL,tL,~11dL!, 22AdR,tR,2AdR.

For m,0, all initial conditions inR are attracted toR̄* ,
which is in L. All initial conditions in L converge on toL* .
Therefore, the fixed point is the unique attractor. Form.0,
all initial conditions inL move linearly towardsL̄* , which is
in R, and all points inR spiral towardsR* . Therefore,R* is
the unique attractor.

Spiral attractor to spiral attractor having the same sen
of rotation: This occurs if

0,tL,2AdL, 0,tR,2AdR,

or

22AdL,tL,0, 22AdR,tR,0.

If the spiraling orbits inL andR have the same sense, the
is an overall spiraling orbit converging on the fixed poin
Therefore, there is an unique period-1 attractor for bothm
,0 andm.0.

Regular attractor to regular attractor:

2AdL,tL,~11dL!, 2AdR,tR,~11dR!.

Flip attractor to flip attractor:

22AdL.tL.2~11dL!, 22AdR.tR.2~11dR!.

Regular attractor to flip attractor:
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2AdL,tL,~11dL!, 22AdR.tR.2~11dR!.

In the above three cases, form,0, initial conditions inR

move linearly toR̄* . Since there must be a heteroclinic i
tersection of the stable manifolds, all initial conditions co
verge onL* . The situation form.0 is similar.

Case 4.In the following cases there can be bifurcatio
from multiple attractors to multiple attractors. There are g
eral mechanisms for the occurrence of coexisting attract

Spiral attractor to spiral attractor with opposite sense
rotation: This occurs if

0,tL,2AdL, 22AdR,tR,0,

or

22AdL,tL,0, 0,tR,2AdR.

Spiral attractor to flip attractor:This occurs if

22AdL,tL,2AdL, 22AdR.tR.2~11dR!.

There can be multiple attractors on both sides ofm, one of
which is a fixed point.

Case 5.In the parameter space region

tR,2~11dR!, tL,0,

initial conditions inL move toR and vice versa. Therefore
the dynamics is governed by the stability of the second i
ate with one point inL and the other inR.

The eigenvalues of the second iterate are

1
2 ~tLtR2dR2dL

6AtL
2tR

222 tLtRdR22 tLdLtR1dR
222 dRdL1dL

2!.

From this, the condition of stability of the period-2 orb
is obtained as

12tLtR1dL1dR1dLdR.0 for l1,11,

11tLtR2dL2dR1dLdR.0 for l2.21.

~12!

~13!

There are three subcases:
Case 5(a).If

tR,2~11dR!, tL,22AdL,

and

12tLtR1dL1dR1dLdR.0,

then there is a unique period-1 attractor form,0 and a
unique period-2 attractor form.0.

For m,0, L* is a flip attractor andR̄* is a flip saddle. All
initial conditions inL converge onL* and all initial condi-
tions in R go to L in the first iteration and then converge o
to L* . For m.0, the condition~12! ensures the stability o
the period-2 orbit. The existence of heteroclinic intersect
makes the attractor unique.

This is like a period-doubling bifurcation occurring on th
borderline. In contrast with standard period-doubling bifu
-

-
s.

r-

n

-

cation, the distinctive feature of the border collision peri
doubling is that asm is varied through zero, the bifurcate
orbit does not emerge orthogonally from the orbit before
bifurcation.

Case 5(b).If

tR,2~11dR!, 22AdL,tL,0,

and

12tLtR1dL1dR1dLdR.0,

then form,0 there can be multiple attractors, one of whi
is a period-1 fixed point. Form.0, the period-2 orbit involv-
ing both L and R is stable. Therefore, there is a uniqu
period-2 attractor.

Case 5(c).If

tR,2~11dR!, 2~11dL!,tL ,

and

12tLtR1dL1dR1dLdR,0,

then there is a period-1 attractor form,0. For 2(11dL)
,tL,22AdL, the eigenvalues ofL* are real and coexisting
attractors cannot occur. Otherwise multiple attractors m
exist. Form.0, since Eq.~12! is not satisfied, it implies tha
the fixed point of the twice iterated map is unstable. Its
genvalues are real and initial conditions diverge away from
along the unstable eigenvector. Therefore, there can be
attractor form.0.

Case 5(d).If

tL,2~11dL!, tR,2~11dR!,

there is no attractor for both positive and negative values
m since all the fixed points of the first and second iterate
unstable.

Case 6. Spiral attractor to flip saddle:This occurs if

0,tL,2AdL, tR,2~11dR!.

For m,0, there can be multiple attractors, one of which is
period-1 fixed point. The asymptotic behavior form.0 may
be a periodic attractor~of periodicity greater than unity!, or
chaotic attractor. AstL is increased, periodic windows o
successively higher periodicities~2,3,4, . . .! occur, and there
are windows of chaos between two such periodic windo
The period-n attractor comes into existence through a bord
collision pair bifurcation in thenth iterate and goes out o
existence when the period-n fixed point becomes unstable
The stability boundary of period-2 attractor is given by
1tLtR2dL2dR1dLdR50. For higher iterates such analyt
cal expressions for the boundary of periodic windows b
come involved and are not presented here. There is
mechanism to prevent the occurrence of multiple attracto

This gives a complete description of the bifurcations th
can occur at various regions of the parameter space of
normal form~5!. Representative bifurcation diagrams of th
cases~where attractors exist! are shown in Fig. 8.
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FIG. 8. Representative bifurcation diagrams of the normal form whenm is varied from a negative value to a positive value. For the ca
where multiple attractors can exist, only one of many possibilities is shown.Case 1(a),no attractor to period-1 attractor;Case 1(b),no
attractor to chaos;Case 2,period-1 to chaos;Case 3,period-1 to period-1;Case 4,period-11 period-3 coexisting attractors to period-11
period-4 coexisting attractors;Case 5(a),period-1 to period-2;Case 5(b),period-11 period-11 coexisting attractors to period-2 attract
Case 6,period-1 to coexisting period-51 chaotic attractors.
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C. The case of negative determinant

If the determinant is negative, one has to find out wh
type of fixed-point changes to which type as it moves acr
the border. Depending on the type of the fixed point at
two sides of the border, the bifurcations will be of the sa
kind as discussed in the previous section. For example
dL ,dR,0, then the eigenvalues are real for all values oftL

andtR . Therefore, there can be no coexisting attractors a
where in the parameter space. The region of stability
period-2 attractor, given by conditions~12! and~13!, is much
larger. Moreover, there is a region of parameter space w
a border collision pair bifurcation results in the creation o
period-2 attractor since condition~13! is satisfied. The parti-
tioning of the parameter space for negative determinant
given in Fig. 9.

There is, however, a difference in the equation for
boundary crisis in border collision pair bifurcation. For21
,dR,0, we have 1.l1R.0, l2R,21, andR* is located
above the x axis. A positive value ofl1R implies thatUL
converges onUR from one side. If

l1L21

tL212dL
.

l2R21

tR212dR
, ~14!

then the intersection ofUL with the x axis remains the right
most point of the attractor and Eq.~11! still gives the param-
eter range for boundary crisis. But if Eq.~14! is not satisfied,
the intersection ofUR with the x axis becomes the rightmo
point of the attractor, and the condition of existence of
chaotic attractor changes to
h
s
e
e
if

y-
f

re

is

e

e

l2R21

tR212dR
,

dL~tL2dL2l2L!

~tL212dL!~dRl2L2dLtR!
. ~15!

For dL,0 and dR,0, L* is below the x axis and the
same logic as above applies. But ifdL,0 and dR.0, the
stable manifold ofR* has a negative eigenvalue and hen
UL does not approachUR from one side. Therefore, if Eq
~13! is not satisfied, there is no analytic condition for boun
ary crisis — it has to be determined numerically.

V. CONCLUSIONS

In this paper we have investigated the various types
border collision bifurcations that can occur in piecewi
smooth maps by deriving a piecewise affine approximat
of the map in the neighborhood of the border. We ha
shown that there can be basically eleven different types
border collision bifurcations, classified under six ‘‘cases
We have presented a partitioning of the parameter space
regions where qualitatively different bifurcations occur.

This body of knowledge helps us in explaining the bifu
cations observed in experimental and numerical invest
tions of switching circuits, some of which have been p
sented in Sec. II. For example, the experimental bifurcati
of the type seen in Fig. 2 can occur in Case 2 and in a pa
Case 6. A period-doubling bifurcation of the type shown
Fig. 3 can occur in the second iterate of the map if the
rameters fall under Cases 5~a!, 5~b!, and a part of Case 6
~coexisting attractors cannot be observed in experimenta
furcation diagrams!. The sudden appearance of a chaotic
tractor as in Fig. 4 can occur in border collision pair bifu
cation and can be categorized under Case 1~b!. Note that this
bifurcation occurs in the third iterate while the period-1 a
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FIG. 9. Schematic diagram of the paramet
space partitioning for21,dL,0 and 21,dR

,0 into regions with the same qualitative bifu
cation phenomena.~1! No fixed point to period-1;
~2! no fixed point to period-2;~3! no fixed point
to chaos;~4! no fixed point to unstable chaoti
orbit, no attractor;~5! period-1 to period-2;~6!
period-1 to chaos;~7! period-1 to period-1;~8!
period-1 to no attractor;~9! no attractor to no
attractor. The regions shown in primed numbe
have the same bifurcation behavior as t
unprimed ones whenm is varied in the opposite
direction.
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tractor is present, and therefore, the resulting chaotic att
tor is not robust.

The theoretical problem dealt in this paper was posed
the recent investigations in switching electrical circuits, b
we believe that such atypical bifurcations will be observed
other nonsmooth physical systems also and the theory de
oped in this paper will help in understanding the nonline
phenomena and bifurcations in such systems.
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