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Border collision bifurcations in two-dimensional piecewise smooth maps
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Recent investigations on the bifurcations in switching circuits have shown that many atypical bifurcations
can occur in piecewise smooth maps that cannot be classified among the generic cases like saddle-node,
pitchfork, or Hopf bifurcations occurring in smooth maps. In this paper we first present experimental results to
establish the need for the development of a theoretical framework and classification of the bifurcations result-
ing from border collision. We then present a systematic analysis of such bifurcations by deriving a normal form
— the piecewise linear approximation in the neighborhood of the border. We show that there can be eleven
qualitatively different types of border collision bifurcations depending on the parameters of the normal form,
and these are classified under six cases. We present a partitioning of the parameter space of the normal form
showing the regions where different types of bifurcations occur. This theoretical framework will help in
explaining bifurcations in all systems, which can be represented by two-dimensional piecewise smooth maps.
[S1063-651%99)05204-9

PACS numbds): 05.45-a

I. INTRODUCTION . gl(;<,§/;p) for ;(,9€RA
o . , g(xy;p)= ~n “
Most studies in bifurcation theory have been done using 02(X,y;p) for x,yeRg.
smooth dynamical systems like the mten map, the Ikeda
map, and the pendulum equation. In the class of nonsmootf js assumed that the functiomg andg, are both continu-
systems, maps with square-root singularity have been studigg);s and have continuous derivatives. The rgdg continu-
extensively{1-4] because of their application in impact 0s- o5 put its derivative is discontinuous at the ling, called
cillators and other impacting mechanical systems. On thene “porder.” It is further assumed that the one-sided partial

other hand, piecewise smooth maps with finite one-sided pagerivatives at the border are finite. We study the bifurcations
tial derivatives at the discontinuity have attracted relativelyys this system as the paramejeis varied.

little attention. Though the possibility of strange bifurcations |t 5 pifurcation occurs when the fixed point of the map is
like period-2 to period-3 or period-2 to lg-piece chaotic at-in one of the smooth regionB, or Rg, it is one of the
tractor have been report¢fl], no systematic study has been generic types, namely, period doubling, saddle-node, or Hopf
made to categorize the possible bifurcations in piecewisgjsyrcation. But if a fixed point collides with the borderline,
smooth maps. Such maps were considered to be just a Malfyere is a discontinuous jump in the eigenvalue of the Jaco-
ematical possibility as no physical system with these charagsia, matrix. In such a case, an eigenvalue may not “cross”

teristics was known. the unit circle in a smooth way, but rather “jumps” over it

However, in recent years there has been a discovery thatg 5 narameter is varied continuously. One, therefore, cannot
large class of engineering systems, particularly the switching|,ssify the bifurcations arising from such border collisions

circuits used in power electronics, yield piecewise Smoothys those occurring for smooth systems where the eigenvalues
maps under discrete modeling, and border collision bifurcag,gss the unit circle smoothly. In this paper we develop a
tions are quite common in such systefis7]. This has pro- ¢ |agsification for border collision bifurcations.
vided motivation for the present study whose objective is to ¢ paper is organized as follows. In Sec. I, we illustrate
systematically analyze all different kinds of bifurcations thaty,q problem with the help of an example of switching circuit.
can occur in two-dimensional piecewise smooth maps. |, sec. 11, the normal form is derived. In Sec. IV, we ana-
We consider a general two-dimensional piecewise SMOOt;¢ the horder collision bifurcations occurring in piecewise
mapg(x,y;p), which depends on a single paramegterLet  smooth maps. We present a partitioning of the parameter
I',, given byx=h(y,p) denote a smooth curve that divides space of the normal form exhibiting various kinds of border
the phase plane into two regiof and Rg. The map is  collision bifurcations. We conclude in Sec. V.
given by

@

Il. EXAMPLES OF BORDER COLLISION BIFURCATIONS

) IN A POWER ELECTRONIC CIRCUIT
* Author to whom correspondence should be addressed. Electronic

address: soumitro@ee.iitkgp.ernet.in The subject of power electronics is concerned with high
"Electronic address: grebogi@chaos.umd.edu efficiency conversion of electric power, from the form avail-
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FIG. 2. Experimental bifurcation diagram of the buck converter.
e parameter values aR=23.5 (), C=5 uF, L=2.96 mH.
Triangular waveV=8.43VV, =3.62V, frequency 12 kHz. Bifur-
cation parameteY;, varied from 35 to 75 V.

FIG. 1. () The buck converter with duty cycle controlled by Th
voltage feedback antb) the three ways the state can move from
one sampling instant to the next.

able at the power source, to the form required by the specifithe output voltage and the error is amplified with gairno
appliance or load. Power electronic technology is increasform a control signab .,,=A(v —V,e). The switching sig-
ingly finding application in the home and workplace: famil- nal is generated by comparing the control signal with a pe-
iar examples are domestic light dimmers, fluorescent lampiodic sawtoothramp wave form.Sturns on whenever.,,
ballasts, battery chargers, and switch-mode power suppliggoes below,m, and a latch allows it to switch off only at
of all electronic appliances including the personal computerthe end of the ramp cycle.

In contrast with mainstream electronics, power electronics Though this circuit or its variants are used in a large num-
is characterized by the use of electrosigitches which op-  ber of practical applications requiring regulated dc power
erate in an “on” or “off” state. Since electrical power sup- supply, it has been demonstrafgd-10 that the system can
plies can be either dc or ac, there are four basic types aéxhibit bifurcations and chaos for a large portion of the pa-
power converters: ac-dc, dc-ac, dc-dc, and ac-ac. Here weameter space. To investigate the dynamics analytically, we
will consider one of the simplest but most useful of powerobtain a two-dimensional Poincaneap by sampling the in-
converters — the dc-dc buck converter — which is used taductor current and capacitor voltage at the end of each ramp
convert a dc input to a dc output at a lower voltage. cycle.

The circuit diagram of the buck converter is shown in Fig.  Because of the transcendental form of the equations, the
1(a). The controlled switcl$ (generally realized by a MOS- map cannot be determined in closed form. In simulation, the
FET) opens and closes in succession, thus “chopping” themap has to be obtained numerically. It is, however, possible
dc input into a square wave that alternates between the inpt infer the form of the map. There are three ways in which
voltageV;, and zero. The pulsed wave form is then low-passthe system can move from one observation point to the next:
filtered by a simpleLC network, removing most of the (a) the control voltage is throughout above the ramp wave
switching ripple and delivering a relatively smooth dc outputform and the switch remains offh) the cycle involves anoff
voltagev to the load resistancB. The diodeD provides a  period and amn period,(c) the control voltage is throughout
path for the continuation of the inductor current during thebelow the ramp wave form and the switch remains on. The
off period. The dc output voltage can easily be varied bythree cases are shown in FigblL These are represented by
changing the duty ratio, i.e., the fraction of time that thethree different expressions of the map. The borderlines are
switch is closed in each cycle. given by the condition where the control voltage grazes the

In practice it is necessary to regulatexgainst changes in top and bottom of the ramp wave form. Therefore, there are
the input voltage and the load current. For example, if a buckhree compartments in the phase space, separated by two
converter is used to convert the standard 5-V dc supply useborderlines, and we have a piecewise smooth map.
in computers to the 3.3 V needed for the Pentium CPU chip, We present the experimentally obtained bifurcation dia-
it would be necessary to regulate the average output voltaggrams for this system for different sets of parameter values.
at 3.3 V in spite of the varying power demand of the chip. An experimental bifurcation diagram is shown in Fig.
This can be achieved by controlling the switBlioy voltage  2(a). Here we find two parameter valugshown with arrows
feedback as shown in Fig. 1. In this simple proportional confor which a periodic orbit directly bifurcates into a chaotic
troller, a constant reference voltaiyg.; is subtracted from orbit. Such bifurcations have been reported earligi8ii1—
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FIG. 4. Numerically obtained bifurcation diagram of the buck
converter. The parameter values aRe=22 (), C=47 uF, L
=20 mH. Triangular waveV;=8.2V, V =3.8V, time period
400 ps.

FIG. 3. Experimental bifurcation diagram of the buck converter.

The parameter values afR=28.9 O, C=5 uF, L=2.96 mH. ticular parameter value. Under what condition can such

Triangular waveV,=8.43V,V, =3.62V, frequency 8 kHz. Bifur- strange bifurcations occur?

cation parameteY;,, varied from 50 to 70 V. In the following sections we develop a complete theory of
bifurcations in piecewise smooth maps, from which the an-

13. The slight expansion of the attractor at the bifurcationswers to the above questions can be derived.

point is due to system noise and can be ignored in theoretical

studies. In Fig. &) we present the continuous time plots of

v ¢on @nd the triangular wave voltage at the bifurcation point

shown by the second arrow, where a period-3 orbit bifurcates Since the local structure of border collision bifurcations

into a 3-piece chaotic orbit. It is seen that thg,, wave form  depends only on the local properties of the map in the neigh-

grazes the top of the triangular wave, which means that &orhood of the border, we study the border collision bifurca-

border collision bifurcation has occurred. tions with the help of “normal forms” — the piecewise

The distinguishing feature of this chaotic attractor is thataffine approximations af in the neighborhood of the border.
there is no periodic window over a large range of the param- Define
eter value. We find from simulation that there are no coex- o R L
isting attractors in this range. We say a chaotic attractor is x=x—h(y;p), y=Yy.
robustif, for its parameter values there exists a neighbor-
hood in the parameter space with no periodic attractor andhis p-dependent change of variables moves the border to
the chaotic attractor is unique in that neighborhpbd]. The  they axis. Then the mag(x,y;p) can be written
chaotic attractor resulting from this border collision is there-
fore robust. The question is, under what condition does ro- gx+h(y;p).y:p)=f(X,Y;p),
bust chaos occur?

. Another experimental bifurcation diagram fgr this sys_temand the border ix=0. Suppose that whep=p, the map

is shown in Fig. 8). The arrow shows a period doubling

bifurcation, but the two bifurcated orbits do not diverge per-
pendicularly from the path of the fixed point before the criti- ~ ~
cal parameter value. This is, therefore, not a standard pitch- Po=(0Y0(po))=1(0Yo(po):po)-

fork bifurcation. This kind of bifurcation has been reported o~

in [15,16| also. Figure &) gives the continuous time plots Lete; be a tangent vector in the direction. The vectoe,
of veon and the triangular wave voltage just after the bifur-Mmaps to a vectoe,. We assumee, is not parallel toe; .
cation and shows that the period doubling occurred at a borPéefine the local coordinates as the followiief. Fig. 5.
der collision. Again the question is, under what conditionChoose the point fas the new origin foe, in they direc-

does this special type of period doubling occur? tion ande, in the x direction. In thesex-y coordinates, the

_It _has been reported earli€t7] that this system has co- fixed point B is given by (0,0), and the bordét, is given
e>.<|st|ng at.tractors for some ranges of _parametler valuesby X=0. We define the new parametErzp—po so that
Since multiple attractors cannot be seen in experimental bi—= — .
furcation diagrams, we present a numerically obtained bifurto=0- Choose the scales such thatzat-0 a unit vector
cation diagram in Fig. 4 showing the evolution of the mainalong they axis maps to a unit vector along tieaxis. The
attractor and a coexisting attractor. It is found that the chaphase space is now divided into the two haltesndR and

otic attractor comes into existence out of nothing at a parthe mapf(X,y;p) can be written a& (x,y; ).

Ill. THE NORMAL FORM

f(x,y;p) has a fixed point £on the border, that is,
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FIG. 5. The transformation of coordinates from the two-dimensional piecewise smooth map to the normal form.

We can write the mag=(x,y,x) in the sideL in the
matrix form as

fo(X,y; )

f2(X!y;M)

F(Xy,u)=

0
, F(O,O;O)=<O>.

LinearizingF(x,y; x) in the neighborhood of0,0:0, we

have
Ji1 312) ;> A(ULX
—tu
Jar J22 y ULy

for x<0, 2

F(X,Y;p)= +o(x,y; )

where

9
Ju=  Iim - —=f4(X,y;0),

;4)0_, y—0 X

F
Jio=  lim  —fi(x,y;0),
;HO*,?HO

9
Joi=  lim  —=f,(x,y;0),
X507, yo X

0 N
Joo= lim —=f,y(x,y;0),
;HO_,;HO

J N
Vix= Iimﬁ —f4(x,y;0),
x—0",y—0 (9/1’

J _
ULy:_ ||m_ —_fz(X,y,O)
x—07,y—0 O~

The particular choice of coordinates makés=1 and
J,»= 0. Further, we note thal;, is the tracgdenotedr, ) and
J,, is the negative of the determinafitenoted— 6,) of the
Jacobian matrix. Thus Eq2) becomes

+o(x,y;u) if x<O.

)

F(—_) ( T 1) X A(ULX
X,y )= —|+

yim —5 0)ly 2 oLy
Similarly, for sideR we obtain

TR 1) X A(URX
|+
_5R 0 y K URy

F(Xy;p)= +o(x,y;u) if x>0,
4
where the corresponding quantities hare defined in a
similar way.
Continuity of the map implies

(ULX _(URX _(Ux)
ULy URy vyl

We now make another change of variables so that the
choice of axes is independent of the parameter. The coordi-

nate transformation=x, y=y—u vy, andu=u (v,+0v,)
[assuming ¢4+v,) #0] gives

T 1 X 1 f <O
+ or x<
-5, 0o/ly] ™o
Gz(xay”u’)_ TR 1 X
s 0 +u 0 for x>0,
R y )

which is the desired 2D normal form.

Note that if @ +v,)=0, then the fixed point moves
along the border ag varies. Hence we assume the generic-
ity condition (v,+vy)#0 to ensure that a border collision
occurs atu=0.

It is interesting to note that, and &, are simply the trace
and the determinant of the Jacobian matrix of the fixed point
Po on R, side of the bordel’. Let P, denote a fixed point of

g(x,y;p) defined onpy—e<p<po+e for some smalle

>0; thenP, depends continuously gn Assume thaP,, is

in regionR, whenp<p, and in regiorRg whenp>p,, and
thatP, is onT" whenp=p,. Forp<p,, the eigenvalues of
the Jacobian matrix of the fixed poiRt, are denoted ak,
and\,. Since the trace and the determinant of the Jacobian
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is invariant under the transformation of coordinates, we can If the determinant is negative, there can be only two types

obtain the values of, and§, as of fixed points: (1) For —(1+8)<7<(1+ ), one eigen-
value is positive and the other negative—which means that
7= lim (A +Xy), the fixed point is a flip attracto2) For 7> (1+6), A;>1
P Po and —1<A,<0, i.e., the fixed point is a flip saddle. H<
—(1+6), thenA,<—1 and 0<\;<1. The fixed point is
S.=1lim (N \p). (6) again a flip saddle.
p—py When referring to sidek andR, these quantities have the

appropriate subscripts, i.e\;, ,\,_are the eigenvalues in
sideL andAqg,\5R are the eigenvalues in side As a fixed
point collides with the border, its character can change from
any one of the above types to any other. This provides a way
of classifying border collision bifurcations.

It may be noted that in some portions of the parameter
space there may be no fixed point in half of the phase space.
For example, the location of* calculated by the above
formula may turn out to be in sid® In such cases, the
dynamics inL is determined by the character of the “vir-
tual” fixed point. We denote such virtual fixed points by the

(7) overbar sign, ad* and R*. If the eigenvalues are real,
invariant manifolds of these virtual fixed points still exist and
ay an important role in deciding the system dynamics.

It should also be noted that if a certain kind of bifurcation
occurs whenu is increased through zero, the same kind of
bifurcation would also occur whep is decreased through

IV. CLASSIFICATION OF BORDER COLLISION zero if the parameters ih andR are interchanged. There-
BIFURCATIONS fore, there exists a symmetry in the parameter space and in
Various combinations of the values of , 7,8, , and g the following discussion it suffices to describe the bifurca-

exhibit different kinds of bifurcation behaviors asis varied ~ tions in half the parameter space. Moreover, we first consider

through zero. To present a complete picture, we break up thie case of positive determinant, which constitutes a large
four-dimensional parameter space into regions with the samgass of physical systems. We take up the special features of

qualitative bifurcation phenomena. If the parameter combiSyStéms with negative determinant at a later stage.

The values ofrg and 6z can be calculated in a similar way
for p>py. This property is very important in numerical
computations. For a border-crossing periodic orbit with
higher period, we examine theh (if the period isp) iterate
of the map. The matrices in E¢5) then correspond to the
pth iterate rather than the first iterate of the map.

When 6§, and 6y are zero, the system becomes one-
dimensional and the normal form reduces to

a x+u forx=o0

Galxim)= b x+u forx>0,

wherea andb are the slopes of the graph at the two sides oipl
the borderx=0.

nation is inside a region, themand G, will have the same A special feature of the normal forii) is that the un-
types of bifurcations. If it is on a boundary, then higher-orderStable manifolds fold at every intersection with theaxis,
terms are needed to determine the bifurcationg. of and the image of every fold point is a fold point. The stable
The fixed points of the system in both sides of the boungManifolds fold at every intersection with theaxis and the
ary are given by preimage of every fol_d point is a f_old point. The argument is
as follows. Forward iterate of points on the unstable mani-
u —Su fold remain on the same manifold. In the normal form, points
L*=<1—TL+5L , 1—TL+5L)' on the y axis map to points on theaxis. As an unstable

manifold crosses thg axis, one linear map changes to an-
other linear map. Therefore, the slope of the unstable mani-
fold in the two sides of the axis cannot be the same unless
the parameters of the normal form in the two sides of the
border are the sam@mplying a smooth map In case of the
and the stability of each of them is determined by the eigengiaple manifold, the same argument applies for the inverse

valuesk; =3 (7 \77—44). If the eigenvalues are real, the map. The inverse map of the normal form is given by
slopes of the corresponding eigenvectors are given by

R¥ = M — Opp
1- TR+ ER’ 1_TR+ 6R

—(6/\1) and—(8/\,), respectively. Since we consider only ( 1

dissipative systems, we assum®|<1 and|édg/<1. For a 0 - 5| /x 0

positive determination there can be four types of fixed L + i ) for y>0
points. (1) When 6> 72/4, both eigenvalues of the Jacobian 1 y -1

are complex, indicating that the fixed point is spirally attract- S

ing. If >0, it is a clockwise spiral, and <0, the spiraling Gz "(X,y;u)= < 1

motion is counterclockwisg2) When 6< 72/4, both eigen- 0 ——

values are real. If 6<7<(1+ &), then the eigenvalues are 5r | (X I 0 ) for y<0
positive and the fixed point is a regular attractor—2/s TR y # '
>r>—(1+ ), then the eigenvalues are negative and it is a \ 1 5_R

flip attractor.(3) If 7>1+ 8, then 0<A,<1 and\;>1. The (8)
fixed point is a regular saddl¢4) If 7<<—(1+ ), then),
<—1 and—1<\;<0. The fixed point is a flip saddle. Since its borderline is along theaxis, and points on the
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FIG. 6. The partitioning of the parameter space into regions with the same qualitative bifurcation phenomena. The numbering of the
regions are the cases as discussed in the text. The regions shown in primed numbers have the same bifurcation behavior as the unprimed one
when u is varied in the opposite direction.

X axis map to points on thg axis, we conclude that the Case 1(b)If
stable manifold must have different slopes in the two sides of

they axis. n>(1+46), 7R<—(1+6Rr), (10
We now present the partitioning of the parameter space as

shown in Fig. 6. The system behavior in the various regions OLTRN 1L~ ORN 1AL+ ORN L — 0L TR

g(f)rtga parameter space are taken up in the following subsec- - 55_)\2L 5,50, (11)

there is a bifurcation from no attractor to a chaotic attractor.

A. Border collision pair bifurcation The chaotic attractor for>0 is robust14].

Case 1lf Case 1(c)If 7.>(1+6,) andg<—(1+ dR) and
TL>(1+5L), ’TR<(1+5R), (g) 5LTR)\1L_5R)\1L)\2L+ 5R)\2L_5LTR
then there is no fixed point fqe <0 and there are two fixed + 76— 82— Ny 6, <0,
points, one each ih andR, for «>0. The two fixed points
are born on the border at=0. We call this aborder colli-  then there is an unstable chaotic orbit for-0.
sion pair bifurcation. An analogous situation occurs 7if For Eq. (10), L* is a regular saddle anB* is a flip

<(1+6) and 7> (1+ 8gr) asu is reduced through zero. saddle. Let, andS_ be the unstable and stable manifolds
Due to the symmetry of the two cases, we consider only thef L* andUg andSg be the unstable and stable manifolds of
parameter region(9). There can be three types of border R*, respectively. As shown earliet), and Ug experience
collision pair bifurcations depending on the character of thefolds along the x axis, and all images of fold points are fold
orbits for u>0. points.S_ and Sy fold along the y axis, and all preimages of
Case 1(a).If (1+68g)>mr>—(1+6g), then R* is  fold points are fold points.

stable. Therefore, it is like a saddle-node bifurcation, where a For condition(10), Ay, >\, >0 and 0>\ g>\,g. The
periodic attractor appears at=0. There are two special stable eigenvector &®* has a slopen;=(— 6g/\1g) and
features of this saddle node bifurcation. First, the fixed pointshe unstable eigenvector has a slopg=(— 6g/\,g). Since
are born on the border and move away from itgags in-  points on an eigenvector map to points on the same eigen-
creased. Second, there is no intermittency associated witkector and since points on theaxis map to thex axis, we
this bifurcation. conclude that points oflg to the left of they-axis map to
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FIG. 7. The stable and unstable manifoldsLdf for 7, =1.7,
8,=0.5, 7r=—1.7, 5g=0.5. R* is marked by the small cross
inside the attractor.

points above thex axis. From this we find thallr has an
anglems= (5 \or)/(Sg— 7 \or) after the first fold. Under
condition (10) we havem;>m,>0 andm3;<0. Therefore,
there must be a transverse homoclinic intersectioR. ifihis
implies an infinity of homoclinic intersections and the exis-
tence of a chaotic orbit.

We now investigate the stability of this orbit. The basin
boundary is formed by .S folds at the y axis and inter-
sects thec axis at pointC. The portion ofU, to the left ofL*
goes to infinity and the portion to the right bt leads to the
chaotic orbit.U, meets thex axis at pointD, and then un-

dergoes repeated foldings leading to an intricately folded

compact structure as shown in Fig. 7.

The unstable eigenvector lat has a negative slope given
by (=6, /\1.). Therefore, it must have a heteroclinic inter-
section withSg. Since bothU, and Ui have transverse in-
tersections withSz, by the Lambda Lemm@§l8] we con-
clude that for each pointg on Ug and for each
e-neighborhoodN .(q), there exist points ofJ, in N.(q).
SinceU, comes arbitrarily close tdJg, the attractor must
spanU,_ on one side of the heteroclinic point.

Since all initial conditions inL converge onUJ, and all
initial conditions inR converge orJg, and since there are
points ofU, in every neighborhood dfiz, we conclude that
the attractor is unique. This chaotic attractor cannot be
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B. Border crossing bifurcations

In all regions of the parameter space except &), a
fixed point crosses the border asis varied through zero.
The resulting bifurcations are calldgbrder crossingbifur-
cations. In the following discussions we consider the bifur-
cations asu varies from a negative value to a positive value.

Case 2. Regular attractor to flip saddl€his occurs if

2V8, <m <(1+4y),

There is a bifurcation from a period-1 attractor to a chaotic
attractor asu is increased through zero. This chaotic attrac-
tor is robust.

For u<0, L* is a regular attractor whil&R* is a flip
saddle. All initial conditions inL converge on td_*, while
initial conditions inR converge on tdJg. SinceUg must
have a heteroclinic intersection with one of the stable mani-
folds of L, all initial conditions inR also converge on th*.

For u>0, R* is a flip saddle. As shown in the discussion
for Case 1b), there is a homoclinic intersection Rimply-

ing the existence of a chaotic orbit. AS is in R, its stable
manifolds point towardR. Since there is an intersection &f
with the invariant manifold associated witty, , all initial
conditions converge otJg, making the chaotic attractor
unique.

Case 3.There is a unique period-1 attractor for both posi-
tive and negative values g& in the following cases. At
border collision, only the path of the fixed point changes.

Regular attractor to spiral attractorThis occurs if

2o <7 <(1+6)), —2or<tr<2\dg.

For x<0, all initial conditions inR are attracted tdR*,
which is inL. All initial conditions inL converge on td_*.
Therefore, the fixed point is the unique attractor. o¥ 0,

TR<_(1+ 5R)

all initial conditions inL move linearly toward& *, which is
in R, and all points irR spiral towardsR*. ThereforeR* is
the unique attractor.

Spiral attractor to spiral attractor having the same sense
of rotation: This occurs if

0<7 <25, 0<7r<2\8g,
or
-2\, <7 <0, —2/8r< r<0.

If the spiraling orbits inL andR have the same sense, there
is an overall spiraling orbit converging on the fixed point.

stroyed by small changes in the parameters. Since smalinerefore, there is an unique period-1 attractor for hoth

changes in the parameters can only cause small changesﬁ
the Lyapunov exponents, where the chaotic attractor is

stable, it is also robust.

It is clear from this geometrical structure that no point of
the attractor can be to the right of poidt If D lies towards
the left of C, the chaotic orbit is stable. D falls outside the

basin of attraction, it is an unstable chaotic orbit or chaotic —2./5 >7 >—(1+4,),

saddle. From this, the conditiqiil) of stability of the cha-
otic attractor is obtained. 15 = 6g= 6, this condition re-

0 andu>0.
Regular attractor to regular attractor:

28 <m <(1+38)), 2or<tr<(1+6R).
Flip attractor to flip attractor:
— 26> 1> — (1+ 5R).

Regular attractor to flip attractor:
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2o, <m <(1+6)), —2V6r>7r>—(1+5R). cation, the distinctive feature of the border collision period
doubling is that asu is varied through zero, the bifurcated

In the above three cases, far<0, initial conditions inR  orbit does not emerge orthogonally from the orbit before the

move linearly toR*. Since there must be a heteroclinic in- bifurcation.
tersection of the stable manifolds, all initial conditions con- ~ Case 5(b)If
verge onL*. The situation foru>0 is similar.
Case 4.In the following cases there can be bifurcation TR<—(1+8r), —2V6 <7 <0,
from multiple attractors to multiple attractors. There are gen-
eral mechanisms for the occurrence of coexisting attractors2nd
Spiral attractor to spiral attractor with opposite sense of

rotation: This occurs if 1=7 7r+ 6L+ Ort 6.6r>0,
0<7 <28, —2or<mR<0, then for u <0 there can be multiple attractors, one of which
is a period-1 fixed point. For >0, the period-2 orbit involv-
or ing both L and R is stable. Therefore, there is a unique
period-2 attractor.

Spiral attractor to flip attractor:This occurs if

—2Js <m <25, —2Vor>1>—(1+5R).

There can be multiple attractors on both sidesuofone of
which is a fixed point. 1— 7 7+ 6+ gt 8 6r<0O,
Case 5.In the parameter space region

TR<_(1+5R), _(1+5L)<T|_,

and

then there is a period-1 attractor fpr<<O. For —(1+4,)
< —(1+6r), 7.<O, <71 <-26,, the eigenvalues df* are real and coexisting
- . : . attractors cannot occur. Otherwise multiple attractors may
initial conditions inL move toR and vice versa. Therefore, ' . ; PR,
L » ' _exist. Foru>0, since Eq(12) is not satisfied, it implies that
the dynamics is governed by the stability of the second iter;;” ™. : NN A .
4 A : the fixed point of the twice iterated map is unstable. Its ei-
ate with one point irL and the other irR. | | and initial diti di f .
The eigenvalues of the second iterate are genvalues are real and initial conditions diverge away from it
along the unstable eigenvector. Therefore, there can be no
1 — 5 foru>0.
(7 TR— 6r— & attractor foru
LR TR Case 5(d)If

+ L TR—2 T TROR— 2 T8 T+ 03— 2 SRS+ &7).
n<-(1+6), 7r<—(1+5br),
From this, the condition of stability of the period-2 orbit

is obtained as there is no attractor for both positive and negative values of
i Il the fi [ f the fi i
1 1 rrt 8L+ St 8.0:>0 for \<+1, (12) ﬁn?tg(l;a?ea the fixed points of the first and second iterate are
l+7 7R— 6 —Ort+ 0. 6g>0 for A,>—1. (13) Case 6. Spiral attractor to flip saddl&his occurs if

0<TL<2\/5—’ TR<_(1+5R)

Th(éraesgrg(grﬁe subcases: For_,u< O,_there can be multiple att_ractors, one of which is a
' period-1 fixed point. The asymptotic behavior for-0 may
< —(1+ 8p), 7'L<_2\/5—! be a periodic attracto(lof pgriodicity greatgr t.han.uni)yor
chaotic attractor. Asr_ is increased, periodic windows of
and successively higher periodiciti€®,3,4 . . ) occur, and there
are windows of chaos between two such periodic windows.
1— 7 7R+ 6+ 6t 6. 6r>0, The periodn attractor comes into existence through a border
collision pair bifurcation in thenth iterate and goes out of
then there is a unique period-1 attractor for<0 and a existence when the periatfixed point becomes unstable.
unique period-2 attractor fgu>0. The stability boundary of period-2 attractor is given by 1
For <0, L* is a flip attractor andR* is a flip saddle. Al + 7 7r— 8, — Sg+ 8 5g=0. For higher iterates such analyti-
initial conditions inL converge orL* and all initial condi- cal expressions for the boundary of periodic windows be-
tions inR go toL in the first iteration and then converge on come involved and are not presented here. There is no
to L*. For >0, the condition(12) ensures the stability of mechanism to prevent the occurrence of multiple attractors.
the period-2 orbit. The existence of heteroclinic intersection This gives a complete description of the bifurcations that
makes the attractor unique. can occur at various regions of the parameter space of the
This is like a period-doubling bifurcation occurring on the normal form(5). Representative bifurcation diagrams of the
borderline. In contrast with standard period-doubling bifur-casegwhere attractors exisare shown in Fig. 8.
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1(a)

G N

4 5(a) 5(b)

FIG. 8. Representative bifurcation diagrams of the normal form whé&varied from a negative value to a positive value. For the cases
where multiple attractors can exist, only one of many possibilities is sh@ase 1(a),no attractor to period-1 attracto€ase 1(b),no
attractor to chaosCase 2 period-1 to chaosCase 3period-1 to period-1Case 4 period-1+ period-3 coexisting attractors to period+l
period-4 coexisting attractor§ase 5(a)period-1 to period-2Case 5(b)period-1+ period-11 coexisting attractors to period-2 attractor;
Case 6,period-1 to coexisting period-3 chaotic attractors.

C. The case of negative determinant Ar—1 SL(TL— 8.~ NaL)

If the determinant is negative, one has to find out which TR—1-6r (7.—1—6)(OrN2 = O TR (15

type of fixed-point changes to which type as it moves across ] .
the border. Depending on the type of the fixed point at the For 6.<0 and 6g<0, L* is below the x axis and the
two sides of the border, the bifurcations will be of the same3@Me logic as abol/e applies. Butdf<0 and 5g>0, the
kind as discussed in the previous section. For example, FtaPle manifold oR™ has a negative eigenvalue and hence,
8 ,6r<0, then the eigenvalues are real for all valuesrof U d_oes not gp_proachJR from one suje. Thgrgfore, if Eq.
and 7. Therefore, there can be no coexisting attractors any£13) IS not sapsﬁed, there is no "’!”a'y“c conQ|t|t|)|n for bound-
where in the parameter space. The region of stability oft Y CISIS — ithas to be determined numerically.
period-2 attractor, given by conditioi$2) and(13), is much
larger. Moreover, there is a region of parameter space where
a border collision pair bifurcation results in the creation of a In this paper we have investigated the various types of
period-2 attractor since conditiqi3) is satisfied. The parti- border collision bifurcations that can occur in piecewise
tioning of the parameter space for negative determinants ismooth maps by deriving a piecewise affine approximation
given in Fig. 9. of the map in the neighborhood of the border. We have
There is, however, a difference in the equation for theshown that there can be basically eleven different types of
boundary crisis in border collision pair bifurcation. Ferl border collision bifurcations, classified under six “cases.”
<8g<0, we have B\;z>0, \,g<—1, andR* is located We have presented a partitioning of the parameter space into
above the x axis. A positive value of, implies thatU,  regions where qualitatively different bifurcations occur.
converges o, from one side. If This body of knowledge helps us in explaining the bifur-
cations observed in experimental and numerical investiga-
N o1 tions of switching circuits, some of which have been pre-
L 2R (14)  sented in Sec. Il. For example, the experimental bifurcations
n—1-96 17r—1-6g’ of the type seen in Fig. 2 can occur in Case 2 and in a part of
Case 6. A period-doubling bifurcation of the type shown in
Fig. 3 can occur in the second iterate of the map if the pa-
then the intersection dfi, with the x axis remains the right- rameters fall under Casegah, 5(b), and a part of Case 6
most point of the attractor and E@.1) still gives the param- (coexisting attractors cannot be observed in experimental bi-
eter range for boundary crisis. But if EG.4) is not satisfied, furcation diagrams The sudden appearance of a chaotic at-
the intersection oblg with the x axis becomes the rightmost tractor as in Fig. 4 can occur in border collision pair bifur-
point of the attractor, and the condition of existence of thecation and can be categorized under Ca&. Note that this
chaotic attractor changes to bifurcation occurs in the third iterate while the period-1 at-

V. CONCLUSIONS
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(1+8g)
—(1+8R)

FIG. 9. Schematic diagram of the parameter
space partitioning for-1< 6, <0 and —1<4dR
9 <0 into regions with the same qualitative bifur-
cation phenomendl) No fixed point to period-1;
(2) no fixed point to period-2(3) no fixed point
(1+5L) to chaos;(4) no fixed point to unstable chaotic
6' ! orbit, no attractor;(5) period-1 to period-2{6)
1 period-1 to chaos(7) period-1 to period-118)
period-1 to no attractor(9) no attractor to no
attractor. The regions shown in primed numbers

2 _(1+5L) have the same bifurcation behavior as the
5 / unprimed ones whep is varied in the opposite
direction.

1|

|
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