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Linkage mapping of quantitative trait loci in humans: an overview
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

In this article, we provide an overview of the different statistical procedures that have been

developed for linkage mapping of quantitative trait loci. We outline the model assumptions, the data

requirements and the underlying tests for linkage for the different methods.



Many quantitative traits such as blood pres-

sure and body mass index (BMI) are known to be

determined primarily, though not exclusively, by

inherited genetic factors. It is thus of considerable

importance to identify chromosomal locations of

the genes that control a quantitative character.

Linkage analysis (Ott, 1999), which deals with

the detection of linkage and estimation of re-

combination fractions among the loci controlling

a qualitative}quantitative character and marker

loci whose positions are known a priori, is widely

used for localization of genes. Although statistical

methodologies for mapping genes determining

dichotomous qualitative characters in humans

are well-developed, the development of such

methodologies, especially those that are stat-

istically and computationally efficient, for human

quantitative traits is an active area of current

research in human genetics. It has been empha-

sized that many traits that have traditionally

been treated as qualitative are inherently quan-

titative in nature.

Although the idea of mapping quantitative

trait loci (QTL mapping) can be traced back to

Sax (1923), who studied the nature of association

of seed size with seed-coat pattern and pigmen-

tation in beans, the recent development of dense

maps of highly polymorphic DNA markers in
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plants and animals has resulted in a resurgence of

interest in QTL mapping. Statistical linkage

relies on the nature and extent of co-inheritance

of alleles at the trait and marker loci. For many

plants and animals experimental crosses can be

set up such that the trait locus genotype of an

offspring can be unambiguously inferred. This

simplifies the statistical investigation of co-

inheritance of alleles at the trait and marker loci.

However, it is not possible to set up experimental

crosses for humans. Moreover, for experimental

organisms, traits are often Mendelian in nature

which facilitates the knowledge of trait geno-

types. On the other hand, most human quan-

titative traits follow a complex mode of inherit-

ance. Hence, QTL mapping in humans is stat-

istically more difficult than in experimental

plants and animals. In this article, we provide an

overview, albeit non-exhaustive, of the different

statistical procedures that have been developed

for linkage mapping of QTLs.

   

A quantitative trait (Y ) can be modelled in a

general way as Y¯G­E, where G and E are the

genetic and environmental contributions to the

phenotype, respectively. While this general form

of the model can be used in an exploratory way to

provide some broad statistical inferences about
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the quantitative trait, such as heretability of the

trait, for making specific inferences or for QTL

mapping, it is necessary to formulate a more

detailed model. Often models are formulated on

the basis of exploratory data analyses.

A quantitative trait may be determined, in

addition to an environmental component whose

expectation is usually assumed to be zero, by one

or more loci, each biallelic or multiallelic, linked

or unlinked. There may be dominance effects at

various loci, and unlinked loci may also interact

epistatically in the determination of the trait

values.

For a quantitative trait that is determined by

a single biallelic locus, a general model is :
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 

One of the most popular approaches of ana-

lyzing human linkage data is based on sib-pairs.

Some of the earliest contributions in these studies

were made by Penrose. He assessed the efficiency

of using concordant and discordant sib-pairs (in

terms of quantitative trait values) in studying

multifactorial disorders (Penrose, 1935). It was

shown by Penrose (1947) based on a linkage

study between the loci for phenylketonuria and

the presence or absence of the B allele at the ABO

locus, that the efficiency and complexity of

detection and estimation of linkage can be in-

creased by distinguishing the two types of ident-

ical sib-pairs. Penrose (1953) extended his earlier

methods to multiple alleles using data on red-hair

and the ABO locus restricted to a single gen-

eration. An extensive review of Penrose’s con-

tributions and the subsequent extensions to QTL

mapping procedures using sib-pairs is presented

in Edwards (1998).

–   

A popular model-free linkage method is to

utilise the inverse relationship between the dif-

ference between trait values of sib-pairs and their

marker identity-by-descent (i.b.d.) scores. A pair

of related individuals shares an allele i.b.d. if that

allele has a common ancestral source. For sib-

pairs, the common ancestors are their parents.

Haseman & Elston (1972) developed a regression

approach for detecting linkage based on the

squared difference in quantitative trait values of

sib-pairs (Y ) and their estimated marker i.b.d.

scores (π#
m
). The basis of the regression is the

equation:

E(Y rπW
m
)¯α­βπW

m
, (1)

where there is no dominance in the trait and β

¯®2p(1®p)a#(1®2θ)# ; p being the allele fre-

quency of A
"
, a the conditional expectation of the

trait given genotype A
"
A

"
and θ the recom-

bination fraction between the QTL and the

marker locus. Function of θ, a test for no linkage

(i.e. θ¯ 0±5) is equivalent to testing β¯ 0 in

Equation (1). The test can be performed via the

usual t statistic based on the least squares

regression estimate of β.

Amos & Elston (1989) extended the above

regression procedure to other relative pairs. For

each type of relative pair, the regression par-

ameter β is a different function of θ. However, the

test for no linkage in each case is equivalent to

testing β¯ 0. Amos et al. (1989) showed that in

the presence of dominance in the trait, the least

squares estimator of β is biased. They derived the

conditional variance of Y given π#
m

as α
!
­β

!
π#
m
­

γ
!
π# #
m
. The test for linkage is based on theweighted

least squares estimators of β
!
and γ

!
, and is more
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powerful than the original Haseman–Elston test

(1972). Olson & Wijsman (1993) used generalised

estimating equations to combine information

from different types of relative pairs in a set of

pedigree data. The test for no linkage between

the QTL and the marker locus is equivalent to

testing β¯ 0 where β is the vector of regression

coefficients of Ys on π#
m
s corresponding to the

different types of relative pairs. The test statistic

is of the form oNc«β#}²c«Var(β# )c´"/#, where c is a

vector of weights chosen proportional to

²Var(β# )´−"β# . Elston et al. (2000) suggested that

the mean-corrected cross-product of the sib-pair

trait values carry more linkage information than

the squared sib-pair trait difference used in the

traditional Haseman–Elston set-up (1972), and

have implemented these regression procedures in

the computer package SAGE. However, recent

studies have shown both analytically and empiri-

cally that a combined least squares regression

analysis with appropriate weighting of squared

sib-pair sum and squared sib-pair difference

(Drigalenko, 1998; Xu et al. 2000; Forrest, 2001;

Visscher & Hopper, 2001) may be more powerful

in detecting linkage than the traditional

Haseman–Elston method (1972) or that proposed

in Elston et al. (2000). Although the Haseman–

Elston class of regression models does not assume

any specific probability distribution for the trait

values, it has been found that a t distribution

approximation for the test statistic (based on the

slope parameter) is often anti-conservative and

leads to an inflated rate of false positives, es-

pecially when the sibship size is large (Elston et al.

2000).

Fulker & Cardon (1994) extended the

Haseman–Elston (1972) regression equation to

intervalmapping. Theyproposed amethodwhere

the i.b.d. scores at the flanking markers (π
m"

and

π
m#

) are estimated separately using marginal

marker information and the trait i.b.d. score (π
t
)

is estimated using the equation:
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Y is regressed on π#
t
and the approximate position

of the QTL is inferred based on the plot of

β#}s# .e# .(β# ), where β# is the regression estimator of Y

on π#
t
. Olson (1995) suggested that in order to

obtain maximum information, the marker i.b.d.

scores be jointly estimated using all available

marker data. The resultant regression equation

was:

E(Y rπW
m"

, πW
m#

)¯β
!
­β

"
πW
m"

­β
#
πW
m#

,

where there is no dominance in the trait loci.

Fulker, Cherny & Cardon (1995) extended the

interval mapping procedure of Fulker & Cardon

(1994) to take account of information from all

marker loci simultaneously. They showed that

the power of the traditional Haseman–Elston

method (1972) can be substantially improved by

this strategy when the markers differ in their

information content. Their method has provided

a framework for multipoint i.b.d. estimation not

restricted to the class of Haseman–Elston regres-

sion methods.

Tiwari & Elston (1997) extended the tradi-

tional Haseman–Elston (1972) procedure to the

case of two unlinked QTLs which might interact

epistatically. They showed that under a fairly

general model of epistasis, where they assumed

that the marginal genotypic effects of the QTLs

as well as those of the epistatic interactions are

additive, the expectation of Y is a linear function

of π#
m"

, π#
m#

, f
"
, f

#
and their pairwise cross-product

terms, where f
"
and f

#
are the probabilities that a

sib-pair shares 1 and 2 alleles i.b.d., respectively.

Under a restricted set-up, Ghosh & Majumder

(2001) derived a regression equation for multiple

unlinked QTLs using a generalized digenic in-

teraction model (Kearsey & Pooni, 1996) and

examined the marginal effects of the different

trait and linkage parameters in mapping the

underlying QTLs.

 

Another popular statistical approach for QTL

mapping is to dissect the genetic variation within

the quantitative trait. Although parametric in

nature (i.e. the methods assume specific prob-

ability distributions for trait values), the ad-

vantage of using these methods is that larger

sibships or entire pedigrees can be simultaneously
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analyzed. Although Goldgar (1990) developed

a variance components model which assumed

that several genetic factors from a chromosomal

region influence the quantitative trait, and

Schork (1993) studied its power extensively, the

basic framework for variance components linkage

analysis was provided by Amos (1994).

The general variance components model is

given by:

Y¯µ­g­G­e,

where µ is the overall mean of the quantitative

trait, g is a random effect due to a major gene with

additive variance σ#
a
and dominance variance σ#

d
,

G is a random polygenic effect with variance σ#
G

and e is the non-shared environmental effect (or

random error) with variance σ#
e
. The trait values

of individuals in a pedigree are usually assumed

to be distributed as multivariate normal with

dispersion matrix V, where the variance of the

trait value of each individual is σ#
a
­σ#

d
­σ#

G
­σ#

e

and the covariance between the trait values of

two individuals is given by φσ#
a
­∆σ#

d
­φσ#

G
,

where φ is the coefficient of relationship between

the two individuals and ∆ is the probability that

the two individuals share both their alleles i.b.d.

at the major locus (Amos, 1994). Conditioned on

i.b.d. score (π) at a marker locus, the above

covariance is given by f(θ, π)σ#
a
­g(θ, ∆)σ#

d
­φσ#

G
,

where θ is the recombination fraction between

the QTL and the marker locus. The log-likelihood

of the data is given by:

c®
1

2
3
P

log rV r®
1

2
3
P

(Y®µ1)«V−"(Y®µ1),

where c is a constant, Y and µ1 are respectively

the vector of trait values and that of the means

within a pedigree and the summation is over

independent pedigrees. The variance components

methods use the maximum likelihood method to

estimate the parameters. The test for linkage is

equivalent to testing σ#
a
¯ 0 versus σ#

a
" 0. The

usual likelihood ratio test statistic is distributed

as a 50:50 mixture of a χ# distribution with 1 ..

and a χ # distribution with 0 .. (defined as a

degenerate variable at 0). The model can also

incorporate other environmental covariates.

Almasy & Blangero (1998) developed a general

framework of multipoint i.b.d. probability calcu-

lations using pedigrees of arbitrary sizes. The

correlations in i.b.d. scores were shown to be a

function of the chromosomal distances for dif-

ferent relative pairs in a general pedigree. They

extended themodel ofAmos (1994) to incorporate

multiple QTLs. Their variance components

method considers increase in log-likelihood of the

data with sequential addition of QTLs and has

been implemented in a computer package, SO-

LAR. The computer package GENEHUNTER 2

also includes a maximum likelihood-based vari-

ance components model with a provision of fixing

the dominance variance of the underlying QTL

and}or other unlinked QTLs at zero.

We emphasize here that the variance com-

ponents methods are dependent on the assump-

tion of a specific probability distribution (multi-

variate normal in most scenarios) for the trait

values. If the underlying quantitative trait dis-

tribution is indeed normal, one would expect

these methods to be much more powerful than

distribution-free methods (discussed in the next

section). However, it is often not feasible to verify

distributional and other model assumptions.

When underlying assumptions are violated, the

behaviour of parametric methods is unclear as it

could yield either a high rate of false positives or

a high rate of false negatives. For example,

leptokurtosis of trait distribution and the pres-

ence of gene-environment interaction can lead to

inflated false positive error rates (Allison et al.

2000).

- 

Statistical methods for mapping QTLs, which

involve assumptions of specific probability distri-

butions for trait values, are often susceptible to

deviations from underlying distributional as-

sumptions. Some of the non-parametric (distri-

bution-free) methods proposed a test statistic

based on the rank correlation between the ab-

solute differences in trait values of sib-pairs and

their estimated marker i.b.d. scores. Kruglyak &

Lander (1995a) proposed a Wilcoxon rank sum
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test based on ranks of squared differences in sib-

pair trait values and an indicator variable de-

pending on the marker genotype. A detailed

discussion on some of the distribution-based and

distribution-free multipoint sib-pair linkage ap-

proaches, which have been implemented in the

computer package MAPMAKER}SIBS, is pre-

sented in Kruglyak & Lander (1995b). The

computer package GENEHUNTER 2 includes

the Haseman–Elston class of regressions as well

as the different analytical methods of MAP-

MAKER}SIBS. Ghosh & Majumder (2000a)

have developed a two-stage linkage procedure, in

which rank correlation between the squared sib-

pair trait difference and their estimated marker

i.b.d. score is used at the coarse-mapping stage

and a non-parametric regression procedure based

on kernel smoothing is implemented for fine-

mapping.

 -

Risch & Zhang (1995) observed that analysis of

extremely discordant sib-pairs (i.e. one sib has

the quantitative trait value in the upper decile of

the trait distribution, while the other has a trait

value in the lower decile) yields more power than

random sib-pairs, thereby reducing the sample

size requirements for genotyping over conven-

tional designs. However, it is often not feasible to

obtain extremely discordant sib-pairs. Moreover,

under oligogenic QTL models, where heterozygo-

sities of different loci vary widely, using ex-

tremely discordant sib-pairs may not be an

optimal strategy for mapping the more hetero-

zygous loci (Allison et al. 1998). An alternative is

to include extremely concordant sibs in the

analysis (Eaves & Meyer, 1994; Zhang & Risch,

1996; Gu et al. 1996; Gu & Rao, 1997) which

provides a compromise between the power to

detect linkage and the availability of extreme sib-

pairs.

 

An interestingmethod for linkage analysis with

pedigree data was proposed by Heath (1997), in

which reversible jump Markov Chain Monte Carlo

(MCMC) methods were used to implement a

sampling scheme in which the Markov chain can

jump between parameter subspaces correspond-

ing to models with different numbers of QTLs.

Though the method involves assumption of spe-

cific probability distributions for the trait, it

avoids the problem of misspecification of the

number of QTLs. The method has been imple-

mented in a computer package, LOKI. Lee &

Thomas (2000) have developed a refined MCMC

procedure by improving on themarker-haplotype

updating algorithm.

Another approach has been motivated by the

classical LOD score statistic (Morton, 1955) using

inclusion and exclusion mapping. Page et al.

(1998) have proposed a QLOD score statistic for

detecting linkage in QTLs, where the traditional

critical values of 3 and ®2 for the underlying

sequential tests were used.

Alcais & Abel (1999) have developed a maxi-

mum-likelihood-binomial method of mapping

QTLs using sibship data. The idea is to introduce

a latent binary variable Z which captures linkage

information between the QTL and the marker

locus. The likelihood is formulated in terms of:

P(M
"
, M

#
rY )¯3

Z

P(Z rY )P(M
"
, M

#
rZ),

where Y is the observed phenotype and M
"
, M

#
are

the alleles at the marker locus. P (Z rY ) is mod-

elled by a probit distribution and P (M
"
, M

#
rZ) by

a Bernoulli distribution. The test for linkage is

based on a likelihood ratio test of the Bernoulli

parameter¯ 0±5.

 

There have been a few comparative studies

between the different statistical techniques for

QTL mapping in humans. Alcais & Abel (2000)

showed that larger sibships contain more linkage

information than independent sib-pairs. They

also showed that their maximum-likelihood-

binomial approach, which does not require de-

composition of sibships into sib-pairs, is more

powerful and cost-effective compared to ex-

tremely discordant sib-pair analyses. Visscher &
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Hopper (2001) compared three sib-pair methods

in the Haseman–Elston class of regressions and

four maximum likelihood methods under the

assumption of normality for the trait values.

They showed that the Elston et al. (2000) method

may be less powerful than both the traditional

Haseman–Elston method and a complete maxi-

mum-likelihood analysis, especially if the sib-pair

correlation is high. Efficiencies of variance com-

ponents versus sib-pair based linkage methods

was examined by Williams & Blangero (1999),

where they observed that these have similar

performances with respect to unbiasedness of the

estimate of QTL location and Type I error rate;

but within the single sib-pair and sibship sam-

pling units, the variance components approach

gave consistently superior power and efficiency of

parameter estimation. However, Sham & Purcell

(2001) have highlighted the asymptotic equiv-

alence in power between a combined Haseman–

Elston regression based on the squared sum and

the squared difference of sib-pair trait values and

variance components analyses.

 

One of the major current challenges in genetic

epidemiology is to unravel genetic architectures

of complex traits. Quantitative variables, poss-

ibly correlated, generally underlie complex traits.

Many models and approaches have been devel-

oped, including variance components (Lange &

Boehnke, 1983; Schork, 1993), regressive model

(Bonney et al. 1998; Moldin & van Eerdewegh,

1995), multivariate extension of the Haseman–

Elston model (Amos et al. 1990; Amos & Liang,

1996) and structural equations model (Eaves et

al. 1996; Todorov et al. 1998) to jointly analyze

data on several correlated quantitative pheno-

types as a single multivariate phenotype. How-

ever, the power of a multivariate analysis to

detect linkage can be substantially low (Ott &

Rabinowitz, 1999). Data reduction techniques,

such as principal components analysis or factor

analysis, (Zlotnik et al. 1983; Hasstedt et al. 1994;

Boomsma, 1996; Allison & Beasley, 1998; Ott &

Rabinowitz, 1999) help in circumventing this

problem of reduced power. However, it is im-

portant to realize that unless the variables in-

cluded in a principal component are significantly

correlated, inferences on linkage could be highly

misleading (Majumder et al. 1998; Ghosh &

Majumder, 2000b).



The aim of this article was to provide an

overview of the different linkage methodologies

developed for mapping quantitative trait loci. As

mentioned in the Introduction, this is a non-

exhaustive set of existing methods and we have

simply tried to highlight the various statistical

techniques along with the underlying data re-

quirements and model assumptions.

While there is clearly no uniformly most

powerful method for detecting linkage, certain

methods are more optimal than others under

relevant assumptions. As mentioned in a previous

section, likelihood-based variance components

methods are expected to perform better than

distribution-free methods if assumptions (like

normality) for the underlying quantitative trait

distribution are valid. Non-parametric methods,

which are more robust to deviations from under-

lying assumptions, can be viewed as complemen-

tary to the distribution-based approaches. Thus,

a possible way to enhance confidence in a linkage

finding is to verify whether multiple methods,

under varying assumptions, replicate the finding

not only with the same data but also with

independent sets of data.
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