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Summary

Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders characterized by an

abnormally low amount of melanin in the eyes, skin and hair, and associated with common developmental abnor-

malities of the eye. Defects in the tyrosinase gene (TYR) cause a common type of OCA, known as oculocutaneous

albinism type 1 (OCA1). The molecular basis of OCA has been studied extensively in different population groups,

but very little information is available on Indian patients. Our investigation covering thirteen ethnic groups of India,

some representing >20 million people, revealed that among 25 OCA families 12 were affected with OCA1, and

that these cases were primarily due to founder mutations in TYR. We detected nine mutations and eight SNPs in

TYR, of which six mutations (five point mutations & one gross deletion) were novel. In contrast to most reports

describing compound heterozygotes, the presence of homozygotes in 10 out of the 12 pedigrees underscores the

lack of intermixing between these ethnic groups in India. Haplotype analysis suggested a few founder chromosomes

causing the disease in the majority of the patients. Direct detection of the mutations prevalent in specific ethnic

groups could be used for carrier detection and genetic counselling.
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Introduction

Oculocutaneous albinism (OCA) is a heterogeneous

group of autosomal recessive disorders. It is character-

ized by abnormally low amounts of melanin in the eyes,

skin and hair and also associated with common devel-

opmental abnormalities of the eye. In addition to poor

visual acuity, the characteristic ocular features of OCA
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include nystagmus, strabismus, iris transillumination,

photophobia, foveal hypoplasia and misrouting of the

optic nerve fibres at the chiasm.

Although originally thought to be a Mendelian dis-

order caused by mutations in a single gene, subsequent

research has shown that the genetics of albinism is com-

plex (Oetting et al. 2003). The phenotypic heterogene-

ity of this condition is due to different gene mutations

affecting various steps in the melanin biosynthetic path-

way, resulting in varying degrees of decreased melanin

pigmentation. At present at least 16 different genes have

been identified which, when mutated, result in different

types of albinism (Oetting et al. 2003; Tomita & Suzuki,

2004).

OCA1 results from mutations in the tyrosinase gene

(TYR, MIM 606933) and is the second most common
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subtype, occurring in approximately 1 per 40,000 in-

dividuals in most populations (King et al. 2001). The

human tyrosinase gene (TYR, 11q14–q21), consisting

of 5 exons, spans ∼65 kb of DNA and encodes a

58-kDa glycoprotein composed of 529 amino acids

from a 1.964 kb transcript (NM 000372.3). Tyrosi-

nase is a copper-containing enzyme expressed in the

melanocytes, and catalyzes the oxidation of tyrosine

to L-dihydroxy-phenylalanine (DOPA) and the subse-

quent dehydrogenation of DOPA to dopaquinone, the

first two rate-limiting steps in the melanin biosynthetic

pathway. Partial or complete lack of functional tyrosi-

nase results in reduction or absence of melanin pig-

ment in the skin, hair, and eyes throughout life from

birth.

Despite impressive advancement in the genetics of

albinism, and a large number of reported TYR mu-

tations (http://www.cbc.umn.edu/tad/oca1mut.html),

very little information is available on Indian patients

(Sundaresan et al. 2004). To fill this void, we recruited

OCA patients from eastern and southern parts of In-

dia, covering 13 distinct ethnic groups belonging to the

Hindu caste system. The ethnic groups of these regions

are reported to be genetically quite distinct, having dif-

ferent population histories (Basu et al. 2003), which pro-

vided us with an opportunity to study whether the sets

of OCA mutations in these regions are also distinct or

not. Negative results for the tyrosinase hair-bulb assay

for most of the patients suggested that they might have

mutations in the tyrosinase gene. Hence, we initially

chose the tyrosinase gene for mutation screening.

Materials and Methods

Selection of the Study Subjects

Twenty-five OCA affected families were recruited from

West Bengal (WB) and Andhra Pradesh (AP), repre-

senting eastern and southern states of India, respectively.

Seven families representing six different ethnic groups

(Garai, Brahmin, Dhibor, Tambuli, Gowala, Kayastha)

were from WB; 14 affected individuals along with their

family members were included in the study. The re-

maining eighteen families represented seven different

ethnic groups (Vysya, Viswa Brahmin, Brahmin, Pad-

masali, Turupukapu, Perika, Reddy) from AP. From

these southern Indian population groups we recruited

29 OCA patients and their family members. In total,

the study group consisted of 180 individuals including

both the OCA1 affected and unaffected family mem-

bers. Along with ocular and cutaneous hypopigmen-

tation, the diagnosis also involved other systemic and

ocular examinations including photophobia, iris tran-

sillumination, abnormal ocular movements (nystagmus,

strabismus), decreased visual acuity (usually diminished

to as low as 6/60) and foveal hypoplasia. Patients were

also tested for other ocular involvements such as cataract,

glaucoma, retinal diseases etc. In addition, from each

ethnic group 50 normal individuals were selected with-

out any family history of ocular disease and albinism and

evaluated for the presence of novel nucleotide changes.

The study was conducted with the approval of the in-

stitutional review board (IRB), and followed the tenets

of the Declaration of Helsinki. The tyrosinase hair-bulb

assay was carried out by incubation of hair-bulbs with

0.1% L-DOPA solution, and indicated lack of enzyme

activity in most of the patient samples when the hair

bulbs did not darken in colour due to conversion of

the substrate to melanin. Therefore, TYR was used as

the first candidate gene to investigate the molecular

defects among OCA affected individuals in our study

group.

Collection of Blood Samples & Genomic

DNA Preparation

Approximately 10 ml blood samples were collected

with informed consent from OCA patients, their fam-

ily members and normal individuals. Genomic DNA

was prepared from fresh whole blood by the salting-out

method using sodium-perchlorate, and DNA was dis-

solved in TE (10 mM Tris-HCl, 0.1 mM EDTA, pH

8.0) (Johns & Paulus-Thomas, 1989).

Polymerase Chain Reaction (PCR), DNA

Sequencing and Genotyping

All five exons as well as the splice junctions of TYR

were screened for mutations in the patients as described

below, and the suspect nucleotide change was tested for

co-segregation with the OCA phenotype in the pedi-

grees. PCR was carried out in a total volume of 25.0 μl
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containing 50-100 ng genomic DNA, 0.2 μM of each

primer, 0.1 mM of each dNTP, MgCl2 (as appropriate),

and 0.5 unit of Taq polymerase (Invitrogen, Carlsbad,

California) in a thermocycler (GeneAmp-9700, Ap-

plied Biosystems, Foster City, USA). PCR conditions

and primer sequences for exons 4 and 5 were the same

as described previously (Chaki et al. 2005) and those of

exon 1 to 3 are available on request. The PCR products

were examined for specificity by polyacrylamide (6%)

or agarose (1.5%) gel electrophoresis as appropriate, and

used for sequencing in an ABI Prism 3100 (Avant) DNA

sequencer. Sequencing was done using nested primers

to avoid background noise due to non-specific amplifi-

cation products (if any) and compared with the RefSeq

reference sequence NM 000372.3.

For genotyping with microsatellite markers, 3 CA-

repeat markers were identified within (GDB: 11511691)

and flanking (GDB: 11511689 & GDB: 11511690) the

TYR locus. These repeat markers were amplified from

the affected and immediate family members using flu-

orescently labelled primers. Amplified PCR products

were subjected to Genescan analysis in an ABI Prism

3100 DNA Sequencing System using the 500 TAMRA

Size Standard (Applied Biosystems, California, USA).

The sizes of the alleles represented the length of the

amplified DNA fragment for each marker locus (in bp).

In each case, the haplotype was constructed using the

genotype data, following the Mendelian pattern of in-

heritance of the markers in the family.

Restriction Enzyme Digestion

Those mutations that were predicted to alter a restric-

tion site were assayed by digestion of the PCR products

with appropriate restriction enzymes under the condi-

tions described by the manufacturer (New England Bi-

oLabs, Beverly, MA). The DNA digests were analyzed

by electrophoresis in 6% polyacrylamide gels.

Statistical Analysis

Maximum likelihood estimates of the haplotype fre-

quencies were calculated using 50 normal ethnically

matched chromosomes, taking 5 SNPs and 3 microsatel-

lite markers linked to the TYR locus and computed

via the EM algorithm using the program HAPLOPOP

(Majumdar & Majumder, 1999).

Results and Discussion

Nine different TYR mutations were identified in 12

pedigrees representing six ethnic groups. These included

one gross deletion, one small deletion, and two null and

five missense mutations of which six represented novel

changes. None of these mutations were detected in 100

alleles from ethnically matched controls. The genotypes

of mutations in different ethnic groups, and the po-

tential implications of the TYR defects, are described in

Table 1, while detailed descriptions of the novel changes

and the locations of all the identified mutations in the

known domains of tyrosinase are illustrated in Fig 1.

In one of the Vysya pedigrees from southern India

we detected a homozygous gross deletion in two pa-

tients (sibs) encompassing the 3′-region of TYR – we

could amplify exons 1, 2 and 3 of TYR but not exons 4

and 5. In this context, it is worthwhile mentioning that

the 3′ region (∼68 kb) of TYR, encompassing exons 4

and 5, has 98.55% sequence identity with a pseudogene

(TYRL, 11p11.2, MIM 191270) (Takeda et al. 1989;

Giebel et al. 1991; Takeda et al. 1991) which makes it

difficult to distinguish between these two homologous

regions. Recently we devised a PCR strategy to amplify

each locus separately (Chaki et al. 2005). Our results

demonstrated that sequence corresponding to exons 4

and 5 only from TYRL, but not TYR, could be am-

plified from the affected sibs (Fig. 2). Next, we used

another set of primer pairs which would coamplify ex-

ons 4 & 5 from both TYR and TYRL. On sequencing

of these PCR products it was revealed that the vari-

ant bases between TYR and TYRL (Fig. 2, panel C)

were heterozygous in the chromatograms for the control

(Fig. 2, panel A), but contained the bases corresponding

to TYRL only in the case of the patient (Fig. 2, panel

B). This experiment allayed any suspicions regarding

a PCR-related problem, and unequivocally proved the

presence of a gross deletion encompassing exons 4 and

5 of TYR. Since exons 4 and 5 are flanked by a large

intron (∼57 kb) and the 3′-flanking region of the gene,

any PCR based strategy could not be used to map the

extent of the deletion. Even a successful, interpretable

result from a southern blot would likely be complex
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Figure 1 Tyrosinase mutations detected in eastern and southern Indian OCA1 patients. Panel A, The known protein domains of

Tyrosinase (Protein RefSeq NP 000363.1) and the location of the mutations are shown. Italicized letters indicate novel mutations.

Panel B, The novel point mutations (bolded and underlined) are indicated by arrowheads. Nucleotide sequences (Genbank accession

no. NM 000372.3) are shown as triplet codons and italicized single letters underneath each codon indicate the corresponding amino

acid. The mutant amino acids and the null mutations are shown by bold letters and asterisks, respectively.

and confusing, due to ∼68 kb duplicated region of the

genome with 98.55% sequence identity (Giebel et al.

1991).

We detected four novel missense mutations

(Asp42Asn, c124G > A; Cys91Ser, c.272G > C;

Glu219Lys, c.655 G > A and Gly372Arg, c.1114G >

A) (Table 1). All four changes are non-conservative

and the affected residues are conserved across different

species; three (Cys91Ser, Glu219Lys and Gly372Arg)

are even conserved within the TRP protein family

(tyrosinase, tyrosinase related protein 1 and tyrosinase

related protein 2). All these novel missense mutations

were also observed to co-segregate with the disease

phenotype in the affected pedigrees, and would be

predicted to cause loss of the normal function of

tyrosinase (Table 1). Loss of a PshAI site due to

one mutation (Asp42Asn), and gain of a DrdI site

for another (Cys91Ser) were utilized to score these

mutations in normal individuals and additional patients.

The Tambuli patient was found to be a compound

heterozygote for two previously reported mutations – a

frameshift mutation, c.1379delTT, identified in Indian

patients (Sundaresan et al. 2004) and Arg278Stop

(R278X, c.832C > T), which represented a CpG

change, and was previously reported among people of

Asian ancestry (Tripathi et al. 1993).

OCA patients from two Brahmin pedigrees from

southern India were detected as being homozygous

for the missense mutation (c.1255G > A; Gly419Arg)

which had been reported previously (King et al. 1991).

Another novel nonsense mutation (Q326X, c.976C >

T) was identified in a homozygous state among four out

of seven Vysya-pedigrees from southern India. Although

both these ethnic groups (Brahmin & Vysya) have large

population sizes (currently >20 million), inbreeding has

long been practiced in both groups. Thus, the finding of
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Figure 2 Detection of a gross deletion encompassing exons 4 and 5 of TYR. Panel A. Exons 4 and 5, along with their flanking

sequences, were amplified from a control sample using different sets of primers, viz. common primer pairs that would amplify the

homologous regions from both TYR and the pseudogene TYRL (exon 4 = 740 bp, & exon 5 = 823 bp for both loci); TYR

specific primers (exon 4 = 790 bp, & exon 5 = 924 bp) and TYRL specific primers (exon 4 = 781 bp, & exon 5 = 917 bp). The

PCR products were separated in an agarose gel (1.5%) as shown in the upper panel. The higher intensities of DNA-bands in the

‘TYR & TYRL’ lanes are due to co-amplification from both loci. Chromatograms shown in the lower panel were obtained on

sequencing the coamplified PCR products and show the variant bases between TYR and TYRL (e.g. c.1236A > G, c.1305T > C

for exon 4 and c.1413G > A, c.1446G > C for exon 5; coordinates of bases given based on TYR sequence accession no.

NM 000372.3), as indicated by the arrows. Panel B, The same set of experiments done with both Vysya sibs affected with OCA1;

data corresponding to one patient is shown. No PCR product was obtained for TYR and the chromatograms show the presence of

bases corresponding only to TYRL. Panel C. Variant bases between TYR (Contig Accession No. NT 008984.17) and TYRL

(Contig Accession No. NT 009237.16) which are shown in the chromatograms are indicated by boxes.

the same mutation in multiple unrelated families in each

ethnic group may be the consequence of a founder effect

and inbreeding. This was also evidenced by haplotype

analysis using microsatellite and SNP markers encom-

passing the TYR locus (Table 1).

The frequencies of each mutant haplotype were com-

puted from analyzing 50 normal chromosomes from

the same ethnic group using the HAPLOPOP pro-

gram (Majumdar & Majumder, 1999). Among the con-

trol samples from eastern India (Garai and Kayastha

ethnic groups) considerable diversity in haplotypes

was observed. The total number of haplotypes was

44, with estimated frequencies ranging from 0.2% to

13.4%. The Asp42Asn mutation in the Garai, was as-

sociated with a single haplotype background (177-

G-C-C-C-G-95-155); this haplotype was observed

among controls with an estimated frequency of only

8.3%. A similar scenario was also observed among

the Kayastha, where the Cys91Ser mutation occurred

on a single haplotype background (179-G-C-C-C-G-

95-161). This haplotype was observed in only 2.5%

of the normal chromosomes. On the other hand, in
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Table 2 TYR SNPs detected in different ethnic groups of India

Nucleotide Change Frequency

Sl. No. (amino acid change) Location Ethnic Groups (Heterozygosity) Remarks

1† 1–533 G > C Promoter Viswa Brahmin; Brahmin (S) 0.32 dbSNP no. rs5021654

2† 1–301 C > T Promoter Viswa Brahmin; Brahmin (S) 0.375 dbSNP no. rs4547091

3 1–199 C > A Promoter

(CAAT Box)

Viswa Brahmin; Perika 0.18 dbSNP no. rs1799989

4 c.575C > A (Ser192Tyr) Exon 1 Padmasali; Vysya 0.095 dbSNP no. rs1042602

5∗ c.1037 −201 G > A Intron 2 Brahmin (E) 0.049 dbSNP no. rs12804012

6 T ins into a poly T

sequence (−21 to

−27 from exon 3)

Intron 2 Dhibor 0.047 Reported (Tanita et al. 2002)

7∗ c.1184 +50 G > A Intron 3 Brahmin (E) 0.095 dbSNP no. rs3793975

8∗ c.1184 +383 A > T Intron 3 Brahmin (E) 0.049 dbSNP no. rs3793974

S, South Indian; E, Eastern Indian.
∗These three iSNPs in West Bengal (WB) Brahmins were in linkage disequilibrium with Gly372Arg mutation.
†These two pSNPs in Andhra Pradesh (AP) Brahmins were in linkage disequilibrium with Gly419Arg.

southern India the haplotype diversity among con-

trols was lower (i.e. 25) with frequencies ranging

from 1% to 16.6%. Each of the three distinct mu-

tations found in southern India – the gross deletion

(in Vysya), Gln326Stop (in Vysya) and Gly419Arg

(in Brahmin) – was observed on a homogeneous but

different haplotype background – 179-G-C-C-C-G-

95-157, 177-G-C-C-C-G-95-161 and 181-C-T-C-C-

G-99-155, respectively. None of these haplotypes was

observed among the controls. However, in each case the

closest haplotype differed from the mutant haplotype by

one CA-repeat unit in a single microsatellite marker.

Thus, in view of the high mutation rates known to pre-

vail at microsatellite loci (Falush & Iwasa, 1999) and the

small number of repeat size differences observed, it is

likely that these three mutations originally occurred on

the three different haplotype backgrounds found in nor-

mal chromosomes, and that haplotype divergence due

to single allelic variation occurred subsequently.

In two pedigrees only one of the two mutations was

identified in TYR, despite scanning the entire gene in-

cluding the promoter region, which suggests that the

second uncharacterized mutation may be located in the

proposed Locus Controlling Region (LCR) almost 9 kb

upstream of TYR (Fryer et al. 2003).

While screening the patient samples for TYR mu-

tations we also detected several polymorphisms among

the patients and unrelated normal individuals. A total of

eight SNPs were detected – 3 in the promoter region

(pSNP), one in the coding sequence (cSNP) and four in

the introns (iSNP), including an in/del type polymor-

phism (Table 2). These SNPs, particularly those present

in the promoter region, could modulate tyrosinase ex-

pression, and the involvement of such subtle variations in

the complex mechanism of melanin biosynthesis result-

ing in the development of the varied OCA phenotype

cannot be ruled out.

Our study shows that among ethnic groups of eastern

and southern Indians OCA1 is caused primarily by a

few founder mutations, and this underscores the lack of

intermixing between these groups. Direct detection of

these mutations prevalent in the specific ethnic groups

could be used for carrier detection and genetic coun-

selling to further contain the spread of this disorder.
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