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Abstract. Aspartate transcarbamylase (EC 2.1.3.2) was purified to homogeniety from
germinated mung bean seedlings by treatment with carbamyl phosphate. The purified enzyme
was a hexamer with a subunit molecular weight of 20,600. The enzyme exhibited multiple
activity bands on Polyacrylamide gel electrophoresis, which could be altered by treatment with
carbamyl phosphate or UMP indicating that the enzyme was probably undergoing reversible
association or dissociation in the presence of these effectors. The carbamyl phosphate
stabilized enzyme did not exhibit positive homotropic interactions with carbamyl phosphate
and hysteresis. The enzyme which had not been exposed to carbamyl phosphate showed a
decrease in specific activity with a change in the concentration of both carbamyl phosphate and
protein. The carbamyl phosphate saturation and U M P inhibition patterns were complex with
a maximum and a plateau region. The partially purified enzyme also exhibited hysteresis and
the hysteretic response, a function of protein concentration, was abolished by preincubation
with carbamyl phosphate and enhanced by preincubation with UMP. All these observations
are compatible with a postulation that the enzyme activity may be regulated by slow reversible
association-dissociation dependent on the interaction with allosteric ligands.

Keywords. Aspartate transcarbamylase; mung bean; purification; regulation; hysteresis;
association-dissociation.

Introduction

Aspartate transcarbamylase (EC 2.1.3.2) catalyzes the carbamylation of L-aspartate to
N-carbamyl L-aspartate by carbamyl phsophate with the release of orthophosphate
(P)). This is the first committed step in pyrimidine biosynthesis in microorganisms and
plants (Bethell and Jones, 1969; Neumann and Jones, 1964). Although extensive studies
were conducted with the enzyme from Escherichia coli, relatively little information is
available on the enzyme from plant sources. The enzyme from wheatgerm (Yon, 1981)
and mung bean seedlings (Achar et al., 1974; Rao et al., 1979) has been purified to
homogeneity. Earlier methods of purification of the enzyme from mung bean yielded
preparations which were unstable and hence only a few kinetic and regulatory
properties were studied (Savithri er al., 1978a, b). It was therefore necessary to
standardize a purification procedure which yielded a stable enzyme preparation. This

Abbreviations used: P;, Orthophosphate; DEAE, diethylaminoethyl; GdmCl, guanidinium chloride, Buffer
A, 50 mM sodium acetate-acetic acid buffer, pH 4.7 containing 6 M GdmCl; M,, molecular weight; Tris, Tris-
(hydroxymethyl) aminomethane; SDS, sodium dodecyl sulphate; PALA, N-phosphonoacetyl-L-aspartate.
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paper describes a modified procedure for the purification of the enzyme and a probable
mechanism for the regulation of the enzyme activity by slow reversible
association-dissociation.

Materials and methods

Materials

All the chemicals were obtained from Sigma Chemical Co., St. Louis, Missouri, USA,
except diethyl aminoethyl-(DEAE)-cellulose (DE-52) which was obtained from
Whatman Ltd., Maidstone, Kent, UK. Mung bean seeds were purchased from the local
market.

Methods

Carbamyl phosphate was purified by the method of Gerhart and Pardee (1962). o-
Aminohexyl-Sepharose was prepared by coupling 1,6-diaminohexane to cyanogens
bromide activated Sepharose 4B (March et al., 1974). Protein was estimated by the
method of Lowry et al. (1951) using bovine serum albumin as the standard. Subunit
molecular weight (M,) of the enzyme was determined by gel filtration on Sepharose 6B
in 6 M guanidinium chloride (GdmCl) (Mann and Fish, 1972). Polyacrylamide gel
electrophoresis (PAGE) was conducted according to Davis (1964).

Estimation of the enzyme activity

The standard assay mixture (1 ml) contained O0-1M Tris(hydroxymethyl)-
aminomethane (Tris)-acetate buffer, pH 8-0, carbamyl phosphate (2:5 mM), L-
aspartate (10 mM) was neutralised to pH 8-0 with NaOH and an appropriate amount
of the enzyme. The reaction was started by the addition of L-aspartate unless otherwise
indicated. After incubation for 20 min at 25°C, the reaction was terminated by the
addition of 0-05 ml of 20% perchloric acid. The amount of N-carbamyl L-aspartate
formed was estimated (Prescott and Jones, 1969). When partially purified enzyme
preparations were used, the denatured protein after the addition of perchloric acid was
removed by centrifugation at 1,000 g for 10 min before the addition of the reagents to
develop the colour.

Results

Isolation of aspartate transcarbamylase from germinated mung bean seedlings

All the operations were carried out at 0—4°C. All centrifugations were performed in a
Sorvall RC 5B refrigerated centrifuge at 10,000 g for the time intervals indicated.

Crude extract

Mung bean (25 kg) seedlings germinated for 48 h were thoroughly washed with
distilled water, chilled and blended in 4 batches with 200 ml each of 0-1M Tris-acetate
buffer, pH 8-:0. The homogenate was passed through two layers of cheese-cloth and the
filtrate was centrifuged for 30 min. The resulting supernatant was designated as crude
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Table 1. Purification of aspartate transcarbamylase from mung bean (Vigna radiata)

seedlings.
Total Total Specific
protein activity activity Yield Fold
Fraction (mg) (Units*) (Units/mg) per cent purification
Crude extract 24752 40-8 000165 100 —_
MnSO, supernatant 22400 406 0-00181 100 1
First (NH,);50,
fractionation 6103 254 0-0042 62 3
DEAE-Cellulose
eluate 2162 227 00105 56 6
Second (NH,),80,
fractionation 819 12:6 0-0154 3 9
AH-Sepharose
fractions 1-8 10-8 50 26 3636

* umol N-carbamyl-L-aspartate formed per min at pH 8-0 and 25°C.

extract (1820 ml, table 1). To the crude extract, MnSO, was added to a concentration of
10 mM and stirred for 30 min. The precipitated nucleoproteins were removed by
centrifugation for 30 min (1750 ml, table 1). To the MnSO, supernatant, solid
(NH4),SO, was added to 45% saturation and the supernatant fraction was raised to
60% saturation by a further addition of solid (NH,4),SO,4. The precipitate obtained was
dissolved in 001 M Tris-acetate buffer, pH 8-:0 and desalted in 2 batches on a column
(3-5%50cm) of Sephadex G-25 previously equilibrated with the same buffer (193 ml,
table 1). The desalted enzyme was loaded on to a DEAE-cellulose column (2x60cm)
equilibrated previously with 0-01 M Tris-acetate buffer, pH8-:0. The column was
washed with 500 ml of 0-05 M KClI solution and the enzyme was eluted with 0-2 M KCl
solution (198 ml, table 1). The enzyme was precipitated at 45-60% saturation and
dissolved in 0-01M potassium phosphate buffer, pH 7-6 and desalted on a column (2
x50 cm) of Sephadex G-25 in the same buffer. The desalted enzyme (15 ml, table 1) was
passed through an -aminohexyl-Sepharose column (1%x25 cm) equilibrated with
10 mM potassium phosphate buffer, pH 7-6 at a flow rate of 10 ml/h. The column was
washed with 150 ml of the equilibrating buffer followed by 150 ml of the same buffer
containing 0-05 M KCIl. The enzyme was eluted with a linear gradient (100 ml) of
0-05-0-5M KCI in 10 mM potassium phosphate buffer, pH 7-6. The eluting buffer also
contained 2mM carbamyl phosphate to stabilize the enzyme. Fractions (I ml) were
collected and the absorbance at 280 nm as well as enzyme activity of the fractions were
determined. The fractions with high specific activity (< 6-:0) were pooled and dialysed
against 1 L of 10mM potassium phosphate buffer, pH7-6 with 3—4 changes. The
dialysed enzyme (8 ml, table 1) was centrifuged at 15,000 g for 10 min and stored frozen
at —40°C in 1 ml aliquots.

The enzyme obtained by this method had a specific activity of ~ 6:0 which was the
highest reported so far for this enzyme from mung bean seedlings (Ong and Jackson,
1972; Achar et al., 1974; Rao et al., 1979). The results of a typical purification procedure
are shown in table 1. The recovery of the enzyme was about 26% with 3600 fold
purification.
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Preparation of the partially purified enzyme

For some of the studies reported in this paper, a partially purified enzyme preparation
was used. The second ammonium sulphate (table 1) precipitate was dissolved in 20 mM
Tris-acetate buffer, pH 8-0 and desalted on a small column (1:5%15 c¢cm) of Sephadex G-
25 using the same buffer. The enzyme was used immediately. Control experiments
showed that the enzyme retained complete activity for 2 h under these conditions. It
was devoid of contaminating activities like carbamyl phosphate synthetase (EC 2.7.2.5),
aspartokinase (EC 2.7.2.4), aspartate aminotransferase (EC 2.6.1.1) and phosphatase
(EC 3.1.3.1). Its specific activity varied between 0-01-0-016.

One unit of enzyme activity was defined as the amount of enzyme required to
catalyze the formation of 1 umol of N-carbamyl-L-aspartate per min at 25°C and
pH 8-0. Specific activity was defined as units per mg of protein.

Physicochemical properties of the enzyme

Polyacrylamide gel electrophoresis: The purified enzyme showed multiple bands of
enzyme activity (figure 1A) on PAGE and these corresponded with the protein bands
(figure 1B). No additional protein bands were located on the enzyme when stained with
Coomassie brilliant blue. The nature of these multiple bands is discussed later. As
different staining procedures were used to locate enzyme activity and protein bands, the
correspondence between the protein bands and activity bands was not very good.

Molecular weight of the enzyme: The M, of the enzyme was determined by gel filtration
on Sephacryl S-200 (figure 1 D) to be 125,000.

Molecular weight of the subunit: The enzyme could not be denatured completely by
sodium dodecyl sulphate (SDS) even after extensive boiling in the presence of 2-
mercaptoethanol. Hence, the subunit M, of the enzyme was determined by gel filtration
on sepharose 6B in the presence of 6 M GdmCI. The enzyme gave a single symmetrical
peak and from a standard graph (figure 1C), the M, of the subunit was calculated to be
20,600.

Regulatory properties of the purified enzyme

It was interesting to examine whether the enzyme isolated by this method retained its
regulatory properties as some regulatory proteins are known to be desensitised during
purification (Reddy et al., 1980).

Carbamyl phosphate saturation of the enzyme

The enzyme exhibited a hyperbolic saturation with carbamyl phosphate (figure 2 inset
A). The hyperbolic nature of the carbamyl phosphate saturation was confirmed by a
Hill plot (figure 2, inset B). When the data was fitted to the Hill equation by a least
square analysis, a n, value of 1-1 and a K,s value of 0-08 mM were obtained. The
hyperbolic nature of the saturation was further confirmed by Lineweaver-Burk and an
Eadie plots (not shown) both of which were linear. This observation was not in
agreement with the results of earlier workers (Rao et al., 1979; Savithri ef al., 1978a, b),
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Figure 1. Molecular properties of mung bean ATCase. A and B. PAGE was conducted in
Tri-glycine buffer, pH 8-6, at 4°C. Bromophenol blue was used as the marker dye. The enzyme
(40 ug) was loaded on to 7-5% gels and electrophoresis was conducted using a current of
2-5mA/tube. The gels were stained for protein using Coomasie brilliant blue R250 and
destained with methanol:acetic acid:water (43:7:50). Activity staining was carried out
according to a slightly modified procedure of Grayson and Yon (1978). Aspartate trans-
carbamylase activity was revealed as a white opalescent precipitate of calcium phosphate. C. A
sepharose 6B column (1 x 50 cm) was equilibrated with 50 mM sodium acetate-acetic acid
buffer, pH 4-7 containing 6 M GdmCl (Buffer A) and was calibrated by using ovalbumin (M,
45,000), trypsinogen (M, 24,000), lysozyme (M, 14,300), cytochrome ¢ (M, 12,400) and S-
lactoglobulin (M, 18,400). Blue dextran was used to measure the void volume and methyl green
to determine the internal volume of the column. As buffer A was very viscous, the volume of the
fractions could not be measured accurately. Hence, the weight of the fractions was measured to
calibrate the elution positions of markers and the enzyme. The enzyme (1 mg) or the standard
proteins (2mg each) were denatured in 6 M GdmCl and carboxymethylated at pH 8-0. The
denatured protein solution (0-25 ml) was made upto 20 % sucrose, 0-2 %blue dextran and 0-2%
methyl green by adding the solid reagents. Fractions (0-5g) were collected and the elution
weights of protein and markers determined. D. A sephacryl S-200 column was equilibrated
with 20 mM Tris-acetate buffer, pH 80 at 4°C and calibrated using cytochrome ¢ (M, 12,400),
ovalbumin (M, 43,000), conalbumin (M, 68,000), yeast hexokinase (M, 96,000) and bovine
catalase (M, 232,000). The enzyme (100xg) was passed through this column separately and the
activity in the fractions is shown in the figure.
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Figure 2. Saturation of the enzyme with carbamyl phosphate and the effect of UMP on this
saturation.

The activity of the enzyme at concentrations of carbamyl phosphate in the range 0 to 1 mM
indicated in the inset 2A was determined. The enzyme was preincubated with 0-1 (@), or 0-3 (A)
or 10 (A) mM UMP for 15 min and the enzyme activity assayed at carbamyl phosphate
concentrations indicated in the figure inset 2B Hill plot.

who showed that the enzyme exhibited homotropic co-operative interactions with
carbamyl phosphate.

Effect of UMP on carbamyl phosphate saturation

UMP was earlier (Achar ef al., 1974; Savithri et al., 1978a, b) shown to be an allosteric
effector of the enzyme. It was therefore of interest to examine the effect of UMP on
carbamyl phosphate saturation of the enzyme. The saturation of the enzyme with carbamyl
phosphate in the presence of UMP was sigmoidal and the sigmoidicity increased with
the increasing concentration of UMP (figure 2). This is more evident in (figure 2, inset
B) where the carbamyl phosphate saturations are shown in the form of Hill plots. The
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n, and Kjs values of carbamyl phosphate saturation increased with increasing
concentrations of UMP showing that UMP produced sigmoidicity in the carbamyl
phosphate saturation. These results indicate that the purified enzyme retains its
heterotropic interaction with UMP.

Effect of UMP on the reaction velocity

The inhibition of the enzyme by UMP followed a sigmoid pattern (figure 3) and a Hill
plot analysis (figure 3 inset) gave a n,, value of 2-2 and /.5 value of 0-26 mM. This result
indicated the heterotropic nature of the UMP inhibition and was consistent with the
results reported earlier (Savithri et al., 1978b and Rao et al., 1979).
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Figure 3. The inhibition of the enzyme activity by
.\.\. UMP. The enzyme (14 ug) was preincubated with
concentrations of UMP indicated in the figure and
- —e—o .
ol 1 - = ] assayed at saturating concentrations of carbamyl
o 07 150 phosphate (1 mM) and L-aspartate (10 mM). Inset A.
[UMP] (mM) Hill plot.

Hysteretic behaviour of the purified enzyme

It was earlier shown that a partially purified enzyme exhibited hysteresis as evidenced
by a lag phase in the time course of enzyme catalysed reaction (Rao et al., 1982). It was
of interest to examine this property in the purified enzyme.

The progress curve of the enzyme catalysed reaction was linear when the reaction was
started by the addition of the enzyme. Similar result was obtained when the enzyme was
preincubated with 2-5 mM carbamyl phosphate and the reaction started by the addition
of 10 mM L-aspartate. This result indicated the absence of hysteretic behaviour in the
purified enzyme and was different from the results reported earlier with a partially
purified enzyme preparation (Rao et al., 1982). However, upon preincubating the
enzyme with 0-1 mM UMP and starting the reaction with carbamyl phosphate plus L-
aspartate a lag phase was observed in the time course of the reaction (figure 4).

When the enzyme was preincubated with 0-1 mM UMP for 30 min followed by a
second preincubation with 2-5 mM carbamyl phosphate for 15 min and the reaction
started by the addition of 10 mM L-aspartate the progress curve of the reaction did not
show any lag phase. No lag phase was observed when the enzyme was not preincubated
with UMP (figure 4, inset A). This indicated that the changes produced in the enzyme by
UMP leading to a hysteretic response were reversed by carbamyl phosphate. This result
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Figure 4. Progress of the reaction catalysed by the enzyme. The enzyme (12-2 ug, O) or
enzyme preincubated with carbamyl phosphate (2-5 mM, A) for 30 min or UMP (0-1 mM,®)
for 30 min in a reaction mixture scaled up to 5 ml and incubated at 25°C. Aliquots (0-5 ml) were
withdrawn at time intervals indicated and assayed for enzyme activity. Inset A. The enzyme
was preincubated with 0-1 mM UMP for 30 min followed by a second preincubation with
carbamyl phosphate (2-5 mM, @) and the reaction was started by L-aspartate (10 mM). In a
control experiment the enzyme was not preincubated with UMP but the reaction mixtures
contained 01 mM UMP (O). Inset B. The partially purified enzyme (0-5,1-0 mg) was assayed
for activity at different time points in the figure.

is in agreement with those reported for a partially purified enzyme (Rao et al., 1982).
This phenomenon was further examined by preincubating the enzyme with 2mM
carbamyl phosphate. The enzyme showed two bands on PAGE as revealed by both
protein staining (figure 5A) and activity staining (figure 5B). On the other hand in the
presence of 0-3 mM UMP the enzyme migrated as a single band on PAGE as shown by
both protein staining and activity staining (figure 5C and D). These results indicated
that the multiple forms of the enzyme observed on PAGE were interconvertible by
carbamyl phosphate and UMP. To see whether these different forms were different in
their molecular weights, the enzyme was subjected to gel filtration in the presence of
these ligands as described below.

Gel filtration behaviour of the enzyme of Sephacryl S-200

The elution profile of the enzyme on Sephacryl S-200 in the presence of 2 mM carbamyl
phosphate was similar to that in the absence of any ligands. However, in the presence of
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Figure 5.  Alteration in the molecular weight of the enzyme in the presence of effectors.

A Sephacryl column S-200 (1 x 35cm) was equilibrated with 20mM Tris-aeetate buffer, pH 8-0
at 4°C. When the gel filtration was conducted in the presence of ligands the equilibrating buffer
contained the appropriate ligands. No ligand (O), UMP (0-3 mM, a), UMP (I mM, a);
carbamyl phosphate (2mM,®) Inser A,B,C,D. PAGE was conducted under conditions
described in the legend for figure 1: When the electrophoresis of the enzyme (40 ug) was
conducted in the presence of carbamyl phosphate or UM P, the elctrode trey buffer contained
carbamyl phosphate (2mM) or UMP (0-3 mM). Before electrophoresis the enzyme was
preincubated with these legends for 10 min. A. Protein staining. B. Activity staining for the
enzyme preincubated with carbamyl phosphate. C. Protein staining. D. Activity staining for
the enzyme preincubated with U M P.

0-3 mM UMP the enzyme was eluted earlier. A greater shift in the elution position was
observed when the U M P concentration was increased to 1 mM (figure 5). The results of
the gel filtration and electrophoretic behaviour of the enzyme in the presence of ligands
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show that the enzyme exists in an equilibrium between different molecular forms and
the biospecific ligands can affect this equilibrium.

Possible consequences of changes in molecular forms on the regulatory properties of the
enzyme

The kinetic properties of an aggregating enzyme depend on the protein concentration
of the different molecular forms that have different kinetic properties (Frieden, 1971,
1981). Specific activity of the purified enzyme was examined over a protein concentra-
tion range of 2-20 ug per ml. However, there was no change in the specific activity (6-0)
of the enzyme over this protein concentration range. It was not possible to increase the
enzyme concentration beyond 20 ug per ml as carbamyl phosphate consumption
became rapid and was more than 10%. Other experimental difficulties like the non-
availability of facilities to measure rapid reactions and the limited availability of the
enzyme also precluded the study of the kinetic behaviour of the enzyme at high protein
concentration. A slow association—dissociation system is not easily amenable for
examination by simple physicochemical methods due to its inherent features. A
theoretical paper of Kurganov et al. (1976) enables the use of kinetic approach to the
examination of these systems even in partially purified preparations. The experimental
procedures involve estimation of the specific activity of the enzyme, examination of the
substrate and effector saturation profiles at different protein concentrations.

Kinetic properties of a partially purified enzyme preparation

The partially purified enzyme (second ammonium sulphate fraction, table 1) showed
multiple protein bands on PAGE and activity staining gave multiple bands (data not
shown) like the purified enzyme (figures 1A and B). In all the following experiments,
precautions were taken to ensure that (a) the product formed was less than 10% of the
substrate added by adjusting the reaction times and (b) the initial velocities were being
measured.

Effect of protein concentration on the specific activity of the enzyme

The specific activity of the partially purified enzyme decreased with increasing protein
concentration both at 1 mM and 5 mM concentrations of carbamyl phosphate when
the reaction was started by the addition of the enzyme. Preincubation (30 min) with
2mM carbamyl phosphate resulted in a slight increase in the specific activity of the
enzyme as compared with the buffer preincubated control, although a similar decrease
in specific activity was observed with increasing protein concentration (data not given).

The partially purified enzyme solution (15 ml) was made up to 2mM carbamyl
phosphate by the addition of the solid reagent and was set aside for 8 h. It was then
dialysed against 1 L of 20 mM Tris-acetate, buffer, pH8-0 with 4 changes of buffer.
When the protein concentration dependence of the specific activity of this preparation
was studied, it was observed that over a 10-fold change in protein concentration, there
was no change in the specific activity (table 2). The specific activity of this preparation
was 0-027 (umol/min/mg protein) as compared to the buffer treated control which had
a specific activity of 0-012.
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Table 2. Dependence of specific activity on the
concentration of a partially purified enzyme prepar-

ation treated with carbamyl phosphate.

Protein Specific Activity
(mg/mi) (umol/min/mg)

027 0-026

054 0027

082 0:027

1-10 0026

1-35 0-026

1-63 0027

2770 0-026

The pattern of carbamyl phosphate saturation at different concentrations of the enzyme

When the reaction was started by the addition of the enzyme, the carbamyl phosphate
saturations were complex with a maximum and a plateau region at all the protein
concentrations (figure 6A). The velocity of the reaction at each concentration of
carbamyl phosphate decreased with increasing protein concentration. On the other
hand, when the enzyme was preincubated with various concentrations of carbamyl
phosphate and the reaction started by the addition of L-aspartate, classical sigmoid
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(10!/ Figure 6. A. The saturation pattern of the partially

purified enzyme with carbamyl phosphate.
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2:0, m) mg was added to reaction mixtures containing
different concentrations of carbamyl phosphate in-
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tions of carbamyl phosphate indicated in the figure.
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patterns of substrate saturation were obtained (figure 6B). The sigmoidicity increased
with increasing protein concentration (n, = 1-5-2-8). The velocity of the reaction at
all concentrations of carbamyl phosphate decreased with increasing protein
concentration.

Effect of protein concentration on the UMP inhibition patterns of the partially purified
enzyme

The UMP inhibition pattern of the enzyme at different protein concentrations was
sigmoid as indicated by ny values greater than 2-:0 when the reaction was started by the
addition of the enzyme (figure 7A). On the other hand, when the enzyme was
preincubated with varying concentrations of UMP and the reaction started by the
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Figure 7. A. Inhibition of activity at increasing concentrations of UMP at different fixed
concentrations of the partially purified enzyme.

The partially purified enzyme (0-7, @, 1-3, O; 2-0, A)mg was added to the reaction mixtures
containing UMP at concentrations indicated in the figure. B. The partially purified enzyme
(07, ®.1-4, O; 2:9, A) mg was preincubated with varying concentrations of UMP indicated in
the figure and assayed in the standard reaction mixtures containing the same concentrations of
UMP.
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addition of carbamyl phosphate plus L-aspartate, the UMP inhibition patterns showed
complex behaviour with intermediary plateaus (figure 7B). The velocity of the reaction
at all concentrations of UMP decreased with increasing protein concentration.

Time course of the reaction at different protein concentrations

The partially purified enzyme exhibited hysteresis as indicated by a lag phase followed
by a fast phase in the progress curve and this response was dependent on protein
concentration (figure 4B).

Discussion

The enzyme obtained by the method of purification, described in table 1 was extremely
stable, probably due to its interaction with carbamyl phosphate. Omission of this
ligand in the eluting buffer resulted in a rapid loss of enzyme activity (4, = 3 h).
Exposure to 2 mM carbamyl phosphate and subsequent dialysis resulted in an enzyme
preparation which was stable for months when stored frozen at —40°C, and this effect
was dependent on the ligand concentration. The interaction of the enzyme with AH-
Sepharose was probably through a combination of electrostatic and hydrophobic
forces (Adler et al., 1975; Shaltiel and Er-El, 1973). The mechanism of stabilization by
carbamyl phosphate may not be due to the tight binding of this ligand to the enzyme.
This is suggested by the following observations: (i) The enzyme when incubated with
L-aspartate in the absence of added carbamyl phosphate did not give rise to the
products of the reaction. The amount of enzyme used in this study was sufficient to
yield a detectable amount of product; (ii) extensive dialysis had no effect on the
stability of the enzyme; (iii) an affinity matrix prepared by coupling the transition state
analog, N-phosphonacetyl-L-aspartate (PALA) which has structural features of
carbamyl phosphate and aspartate (Collins and Stark, 1971) to AH-Sepharose could
also be used for the purification of the enzyme. The enzyme preparation thus obtained
was stable even without the addition of carbamyl phosphate and had kinetic properties
similar to the carbamyl phosphate-treated enzyme. It could be postulated that the
exposure to this compound had stabilized the enzyme in a manner similar to that
caused by carbamyl phosphate due to the presence of the structurally similar
component in the transition state analogue.

Attempts at dissociating the enzyme into subunits by SDS were unsuccessful. Similar
incomplete dissociation by SDS was observed for some hydrophobic proteins (Maddy,
1976; Koistinen, 1980; Graf et al., 1982). The determination of subunit M, by gel
filtration in 6 M GdmCI indicated a hexameric structure for the mung bean aspartate
transcarbamylose. Wheatgerm aspartate transcorbamylose was shown to be a trimer
(Yon et al., 1982) which aggregated to higher M, forms in the presence of UMP
(Grayson and Yon, 1978). The enzyme from B. subtilis (Brabson and Switzer, 1975) and
the catalytic subunit of E. coli ATCase (Weber, 1968) are also trimeric. The enzymes
associated with carbamyl phosphate metabolism appear to be mostly trimeric (Vickers,
1981). Thus a trimeric or a multiple of trimeric structure may be a general feature of
transcarbamylases.

The purified and stabilized enzyme obtained in this study had properties different
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from the earlier preparations (Achar et al., 1974; Rao et al., 1979) in that it did not
exhibit homotropic interactions with carbamyl phosphate and hysteresis. However, the
enzyme retained the heterotopic interactions with UMP which also induced
hysteresis.

The apparent differences between this enzyme preparation and those reported earlier
(Achar et al., 1974; Rao et al., 1979) could be reconciled by assuming that treatment with
carbamyl phosphate had altered the structure of the enzyme (figure 7B). This
explanation finds support in the observation that the ammonium sulphate fraction
treated with carbamyl phosphate behaves in an identical manner as that of the purified
enzyme.

The multiple activity bands observed on PAGE (figures 1A and B) of the purified
enzyme were inter-convertible by carbamyl phosphate (figures SA and B) and UMP
(figures 5Cand D) suggesting that they may not be isoenzymes. Similar multiple activity
bands on PAGE which were inter-convertible by ligands were observed for some as-
sociating-dissociating systems like wheatgerm aspartate transcarbamylase (Grayson
and Yon, 1978), bio-synthetic L-threonine dehydratase of E. coli (Kagan et al., 1975)
and L-threonine deaminase of Rhodospirillum rubrum (Feldberg and Datta, 1971). The
aggregation of mung bean aspartate transcarbamylase was further confirmed by gel
filtration on Sephacryl S-200. UMP shifted the elution profiles of the enzyme towards
higher M, region. Similar displacement of elution profiles in the presence of allosteric
effectors was observed for some aggregating enzymes like isocitrate dehydrogenase
(Kelly and Plant, 1981) and homoserine dehydrogenase (Datta et al., 1964).

The complete thermodynamic and kinetic characterisation of an associ-
ating-dissociating system requires the use of a number of sophisticated tech-
niques like sedimentation, light scattering, fluorescence polarization etc. (Freiden,
1971). However, the kinetic properties of an associating-dissociating system depends
on protein concentration, as an alteration in protein concentration affects the
distribution of various M, species in equilibrium (Frieden, 1981). Hence, simple kinetic
measurements can be used with reasonable success to gain a qualitative understanding
of such systems.

The purified enzyme was exposed to carbamyl phosphate which was demonstrated to
alter the equilibrium between the different molecular forms of the enzyme. In order to
establish that such inter convertions may have a regulatory significance, it was
necessary to use a preparation which was not exposed to carbamyl phosphate and hence
second ammonium sulphate fraction free from contaminating activities was used.

The partially purified enzyme showed a decrease in specific activity with increasing
protein concentration suggesting that the aggregated forms were less active. Since
UMP also caused aggregation to higher M, forms, the observed inhibition by UMP can
be explained on the basis of the lower catalytic activity of the aggregated forms.

The complex substrate and allosteric effector saturation plots with maxima and
plateau regions observed in some regulatory enzymes were the subject of two
theoretical studies (Tiepel and Koshland, 1969; Kurganov et al., 1976; Kurganov, 1977).
Tiepel and Koshland (1969) showed that an enzyme exhibiting mixed co-operativity
with negative co-operativity followed by positive co-operativity, gave bumpy satur-
ation curves. Kurganov et al. (1976) showed that a hysteretic associating-dissociating
enzyme could also produce such complex substrate and allosteric effector saturation



Purification and regulation of aspartate transcarbamylase 247

patterns. Since the complex substrate and allosteric effector saturation plots in mung
bean aspartate transcarbamylase disappeared depending on the conditions of pre-
incubation (figures 7,8), a hysteretic mechanism was more probable than a mechanism
involving site-site interactions. Such complex saturation curves were observed for some
enzymes like E. coli biosynthetic L-threonine dehydratase (Hatfield, 1971; Calhoun et
al., 1973; Kagan et al., 1975) and erythrocyte pyruvate kinase (Boivin ef al., 1972) which
were shown to exhibit a slow association—dissociation of the phenomena (Kagan et al.,
1975). The similarities in the properties of mung bean aspartate transcarbamylase and
theonine dehydratase permit the postulation of slow association—dissociation phenom-
enon in the regulation of mung bean enzyme.
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