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On the non-radial oscillations of a star
II. Further amplifications

BY SUBRAHMANYAN CHANDRASEKHAR!, VALERIA FERRARTI®
AND RoLAND WINsTON!

t University of Chicago, Chicago, Illinois 60637, U.S.A.
2JCRA (International Centre for Relativistic Astrophysics), Dipartimento di Fisica
‘G. Marconi’, Universita di Roma, Rome, Italy

The two algorisms that one uses for determining the complex characteristic
frequencies, o = o,+1i0;, belonging to the quasi-normal modes of oscillations of a
star, are shown to be equivalent. In the first algorism, one searches directly in the
complex o-plane to satisfy the requirement that at infinity there are only outgoing
waves (and no incoming waves). In the second algorism, one restricts oneself to real
os and selects the solution with the minimum flux of gravitational radiation at
infinity.

1. Introduction

The present paper is of the nature of a supplement to two recent papers
(Chandrasekhar & Ferrari 1991q, b; these papers will be referred to here after as
Papers I and II) on the non-radial oscillations of a star: it is addressed to proving the
equivalence of the two algorisms (to be described presently) by which one may obtain
the complex characteristic values belonging to the quasi-normal modes (and to
justify in particular the use of the ‘Breit—-Wigner’ formula in the context of one of
them).

2. The two algorisms for determining the characteristic frequencies
belonging to the quasi-normal modes

The problem of determining the complex frequencies belonging to quasi-normal
modes is strictly one in characteristic values of a system of linear differential
equations together with boundary conditions. The equations are

(@) equations I, (72)—(75) governing the four metric scalars L, N, V, and W for the
interior of the star, » < r;; and

(b) the Zerilli equation, I, (93) for the vacuum exterior to the star, r > r,.

The boundary conditions are the following.

(@) At the centre, r = 0: (i) freedom from singularity in all the physical variables.

(b) At the surface of the star, r = r,: (ii) W = W, = 0 (equations I, (87) and (88)),
and (iii) the continuity of Z and Z , (equations I, (95)-(97)).

(¢) At infinity, r—>oc0: (iv) we have only outgoing waves and no incoming waves.

(It may be noted that the boundary conditions (ii) ensure that the perturbation,
dp, in the pressure vanishes at r =r, and a requirement of Einstein’s vacuum
equation is satisfied.)
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It is this last boundary condition (iv), which, by its complex nature, requires the
characteristic values to be complex.

Of the two algorisms (or methods) for determining the characteristic values, one
is direct and the other is indirect. In the direct method one simply searches in the
complex o-plane with the guide that the real part of o must be in the neighbourhood
of the value given by the Newtonian theory and that the imaginary part of o must
be small compared with its real part (see (12) below). In the indirect method adopted
in Papers I and Il one restricts oneself to real os and satisfies the boundary
conditions (i)—(iii) for all o. The asymptotic behaviour of the Zerilli function, Z, for
r—>o0 will then be given by (I, eqn (98) and 11, eqn (78))

Z —a(0) cos a1y, — (o) sin o7y, (1)

where a(0) and f(o) are two functions of o determined (as described in I, §8) by the
integration of the Zerilli equation from the surface of the star at r=7r to a
sufficiently large value of r. The flux of gravitational radiation at infinity determined
by the average value of Z? and proportional to a®+ $? exhibits (as one finds) a deep
minimum at some value of o (= o, say) and in its neighbourhood the behaviour (I,
equation (99)),

o+ 2 = const. X [(0—0y)+ 2. (2)

One then interprets o, and o; as the real and the imaginary parts of the required
complex characteristic-value by appealing to the ‘Breit—Wigner’ formula. But the
Breit—Wigner formula as commonly derived and stated (as for example in Landau &
Lifshitz (1977, pp. 603-611)) is not directly applicable to the circumstances
described: what one shows in fact is that, consistently with the rules of quantum
mechanics (such as the unitarity of the S-matrix, etc.) and in the neighbourhood of
a posited resonance (at an energy level E ) the scattering cross section must have the
behaviour,

tion — const. 3

cross section = BB+ (3)

where I is the half-width of the resonance. As thus formulated, there is no direct

connection between equation (3), for the cross section, and equation (2), for the

variation of the flux of radiation at infinity. Instead of justifying on physical grounds

(as one has) the interpretation of o, and o, in an empirically established relation (2),

we shall provide an explicit demonstration of the equivalence of the two algorisms

that we have described for determining the complex characteristic frequency in the
context of the particular problem we have considered.

3. The equivalence of the two algorisms

In the context of the problem considered in Paper I, it is on the solution of the
Zerilli equation (I, eqn (93)) that we must impose the complex boundary condition
that there are no incoming waves from infinity.

In the indirect algorism for determining o,+io;, we restrict ourselves to real
solutions for real o of the equation,

d*z

£
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for the potential barrier V defined in I, eqn (94). As a basis for the solutions of
equation (4), we shall take the two linearly independent solutions, Z, and Z,, which,
at infinity, have the asymptotic behaviours,

Z,—>cos orye +0(ryt) and  Z,—>sin ory, +O0(rh). (5)

To emphasize the dependence of Z, and Z, on o (as a parameter) we shall, on
occasions, write
Z(o;ry) and  Zy(o;7y). (6)

The Wronskian of these two solutions is
(21, 2Zy),, = Z1,p, Zy— 2y, Zy = const.(—o0). (7)

The solution for Z one obtains by integrating equation (4) forward from the
surface of the star at » = r, is of the form (cf. I, eqn (98))

Z = o(0) Zy(0;74) = B(T) Zy(07; 7)), (8)

where a(o) and B(o) are (as described earlier), functions of o determined by the
integrations for different initially assigned real values of o. One then identifies o at
the minimum of (a?+ %) as o, and determines o; by the curvature of the (a*+ 42, o)-
curve at o,.

In the direct algorism for solving the characteristic-value problem, one seeks a
complex solution of equation (4) for a complex o. Letting

o.,=0+ioc; and Z,=7Z+iZ, 9)

in equation (4) and separating the real and the imaginary parts of the equation, we
obtain the pair of equations,

d*Z s o

——VZ+(0*—0})Z—200;Z; =0, (10)

dr

d*Z; 2 g2

a2 —VZ+ (6*—0}) Z;+200,Z = 0. (11)
*

The case of interest in our present context is when
o, <o0. (12)

For the quadrupole oscillations of the polytropic model considered in Paper I, for
example, ;/0 ~ 1073, (It may also be noted here, that in the standard derivations
of the Breit-Wigner formula, an assumption equivalent to (12) is implicit.) One
readily infers from equations (10) and (11), that Z, is O(0;) when the condition (12)
is satisfied. Therefore, writing

Zi=0;Y (13)

and neglecting all quantities of O(g}), we find that equations (10) and (11) reduce to

2
%§+(02—V)Z=0 (14)
*

dzy .
and —+(0?=V)Y+20Z = 0. (15)
dr?
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If Z(o;r,) is one of a family of real solutions of equation (14), continuous in the
parameter o, then (as one can readily verify),

0
Y(o;ry) = $Z(0';7’*) (16)

provides a corresponding family of solutions of equation (15). The solutions for
Y(o;ry,) given by equation (16) have the unique property that they satisfy all
the boundary conditions that one may have imposed on Z(o;r,): the solutions have
none of the arbitrariness that the general solution,

T % M
Y = 2Z1J ZZ2dr*—2Z2f 27, dry, (17)

of the inhomogeneous equation (15), has.

Since the real part of Z, satisfies the same equation (4) (for the real part of o) and
satisfies, also, the necessary boundary conditions (i)—(iii), we may consistently choose
for it the same family of solutions (8). The corresponding family of solutions for Y is
given by

0
Y =0/ (0)Z(0;74) = () Zy(0;74) +t(0) =

)
aUZ(U;T*)—ﬂ(G)a—OZ(U;T*), (18)

where primes denote differentiations with respect to o. It is important to note in this
connection that Z,(o;r,), and Zy(o;r,), have, at infinity, the asymptotic

behaviours:
0 . [sin 3Aor .
I o s L A
and
0 . [sin 3Aory)
I e s L 0
The required solution for Z, belonging to o +1io; is, therefore,
Z,=a(0) Zy— (o) Zy+ioy [ (0) Zy— f'(0) Zy+(0) Zy ,— B(0) Zy ], (21)

where we have suppressed the dlstlngulshlng parentheses, (0;7,), as no longer
necessary. Under the circumstances we are presently considering the problem,
namely o > oy, we can ignore the terms in Z, , and Z, , (with the factors « and f)
in comparison with the terms in Z, and Z, (with the factors &’ and f’): in the case
considered below for example (cf. equation (29) and the entries in table 1) while
o & 27 and ' =~ —94, a and g are of order 1072, (Some additional remarks concerning
the neglect of the forms in Z, , and Z, , are made at the end of this section.)

Ignoring then the terms in Z, , and Z, , we have for the asymptotic behaviour of
the solution (21) at infinity:

2o~ (a+ioya’) cos ory — (B +i0oy f') sin o7
=illa—of)+i(f+o;a) e +il(at o f)—i(f—oa) e (22)

The condition that there be no incoming waves from infinity requires that the
coefficient of ¢!+ in the foregoing expansion vanishes, i.e.

a—o;f/ =0 and p+o;0 =0. (23)
Proc. R. Soc. Lond. A (1991)
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Table 1. The values of e, f, and (a®+ (%) for some assigned values of o for the polytropic model
considered in Paper I

o o £ o+ 2

0.324825 —0.9198x 102  0.4658 x 107® 0.1063 x 1073
0.324845 —0.9734x10%  0.2750 x 1072 0.1023x 1073
0.324865 —0.1026x 10" 0.8620 x 1073 0.1061 x 1073

It follows that
oy=a/f =—=p/a, (24)
and a4+ B = 0. (25)

Therefore, the real part (o,) of the complex characteristic frequency belonging to the
quasi-normal mode occurs where (a*+ ), as a function of o, attains its minimum : and
the imaginary part (o) is given by a /' = — /o’ at the minimum. The first part of this
statement is in accord with the prescription that was adopted: the second part
provides an alternative formula (new in this connection) for the imaginary part.

Letting (a?+f?), denote the minimum value of «*+f* at o, then in its
neighbourhood, we have the Taylor expansion,

o= (@4 )y 4O+ By, (=)

p (o + %) :
= %(0‘2+/>’2)o=%[(0—00)2+2m;£—% . (26)
In the algorism adopted the second term in the square brackets is interpreted as o}:
2 2
o= zﬁ.i_f_)_()_,‘ (27)

(az +ﬂ2)rr=(ro

The alternative formulae for o, given in equation (24), requires:

(2 +/% _ (g)zz(ﬁ):_gﬁ_
2(a2+/>’2>:;=(,0 B o “p 2

The origin of this last relation is not clear. But we have verified it numerically, with
sufficient precision, in particular cases. With the numerical data provided in table 1,
we find:

o,=0.324845, o' =—26.6556, [ =—94.9041, } (29)
0;=1.026x 10" (=a/f) and o;=1.032%x107*(=—p/a’),

while by a parabolic fitting to the (a®+ %, o)-curve in Paper I, we found (I, eqn (102))

0,=0.3248 and o; = 1.026x 107" (29")

It will be noted that a very high precision in the numerical integrations is needed
before we can attain even a few percent reliability in the derived values of o;.

It is perhaps worth emphasizing that the relations (24) and (25) are valid only in
an asymptotic sense in the limit |o;|/|o| = 0. The limit is to be understood in the sense
that while the terms in Z, , and Z, , (with the coefficients « and ) in equation (21)
must eventually dominate over the terms in Z, and Z, (with the coefficients o’ and
f), the asymptotic behaviour (22) will be established long before the neglected terms
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begin to dominate ; and this will increasingly be the case as |o;|/|o| > 0. Or, as Bernard
Schutz has expressed more clearly (in a personal communication), the assumed
behaviour will be valid for ‘the field far away at a finite value of r, which is in the
far zone but not so far that the exponential growth has taken over: for |oy| < |o| such
a radius should exist’.

3. Concluding remark

We may first draw attention to the fact that the analysis of §3 provides an entirely
general method for determining the characteristic values, £,—3il", of any quantal
system that scatters radiation such as, for example, a radioactive nucleus that
decays with the emission of an a-particle. But the analysis leaves open the question
whether equation (2), together with the relations (24) and (25), and the Breit—Wigner
formula (3) represent alternative formulations of the same underlying physical
problem. In the appendix to this paper, Roland Winston addresses this question.

We are grateful to Bernard Schutz for a critical reading of an earlier version of the paper and for
the elimination of a basic misunderstanding. The research reported in this paper has, in part, been
supported by grants from the National Science Foundation under Grant PHY-89-18388 and the
Department of Energy, DE-FG02-87ER-13726, with the University of Chicago. We are also
grateful for a grant from the Division of Physical Sciences of the University of Chicago which has
enabled our continued collaboration by making possible periodic visits by Valeria Ferrari to the
University of Chicago.

Appendix A. The Breit-Wigner formula

In this appendix we establish a connection between the calculational methods of
this paper and conventional discussions of scattering. In particular, we make explicit
the relationship between equation (2) and the so-called Breit—Wigner resonances
derived from quasi-stationary states. In describing scattering by a centrally
symmetric field, the wave function and the scattering amplitude for some fixed value
of angular momentum, /, are treated as analytic functions of the complex energy £
(in the notation of this paper o = const. 4/E, and the constant of proportionality is
real and positive) ; and one makes this function single valued by cutting the complex
plane along the positive real £-axis. This choice of cut makes Re 4/ (—E) everywhere
positive. By writing the asymptotic solution for large values of r, in the form,

Z(E) =~ A(E)e "+ B(H)e™", (A1)
one readily verifies that 4(¥) = B*(E) for real £ > 0. In other words, the solution
Z(E) is real for real E. The scattering amplitude follows in the usual way:

Sy = e = (— 1)1 (B¥/B), (A 2)

where 8, is the phase shift.

One knows now that the scattering amplitude may have poles which from the
relation (A 2) corresponds to zeros of the function B(#). From equation (A 1) the
solution at a pole possesses only outgoing waves. Suppose we postulate that such a
pole in fact exists and lies close to the positive real o-axis at some ‘complex’ energy
E = E,—1rI'; then we may expand about the zero:

B(E) =~ b(E,)(E—E,+%4I). (A3)
From this expansion, the Breit—Wigner resonance formula for the scattering cross-
section and phase shift readily follow. Equation (25) (in the text) corresponds to
Proc. R. Soc. Lond. A (1991)
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|B(E)|? attaining its minimum value along the real axis at £ = £, while the ‘width’
(at which twice the minimum value is attained) determines I". Further, the complex
‘energy’ B = E,—3iI is interpreted as the eigenvalue of a quasi-stationary state or
resonance which decays exponentially with a lifetime 7 = %/ since the probability
[#/? of the initial state decays with time as e™/%/%,

Conversely, if the characteristic value problem is solved for a range of real o and
the function |B(E)|? is found to have a minimum at £ in the manner described in the
text, then at £,

BB¥ +B*B'=0 or B/B=—(B*/B¥) (A 4)

(where B’ denotes dB/dH). Setting aside the trivial case B’ =0, we conclude that

B’/B is imaginary at E,, say, —2i/I". The logarithmic derwative is purely tmaginary

at E,. Then we may analytically continue the function B in the complex plane and
expand in the vicinity of E:

B(l) ~ B(li,) [1+(B'/B)z (E—E,)] ~ B(E,) [1+21(E —E,)/I']. (A 5)

Therefore, a zero of the function B(#) will lie just below E, at £ = E,—3#iI provided
I is positive and small compared with £,. All the results leading to the foregoing
discussion of the Breit—-Wigner formula follow from this property.
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