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HYDROMAGNETIC TURBULENCE. Il. AN ELEMENTARY THEORY

By S. CHANDRASERHAR, F.R.S.

University of Chicago

In this paper an elementary theory of hydromagnetic turbulence is developed along the
lines of Heisenberg’s theory of ordinary turbulence. The basic physical idea underlying this
theory is to conceive the transformation of the kinetic energy at a particular wave number
into kinetic energy and magnetic energy at higher wave numbers, and similarly, the trans-
formation of the magnetic energy at a given wave number into kinetic energy and magnetic
energy of higher wave numbers, as a cascade process which can be visualized in terms of
suitably defined coefficients of eddy viscosity and eddy resistivity. The resulting equations
for the cascade process have been solved under stationary conditions in the limiting case of
zero viscosity and infinite electrical conductivity. It is shown that in this limiting case
there exist two distinct modes of turbulence; these have been distinguished as the velocity
mode and the magnetic mode respectively. In both modes equipartition between the two
forms of energy prevail among the largest eddies present (i.e. as k—0); and the spectrum
of both the kinetic energy and the magnetic energy have a Kolmogoroff behaviour for k— 0.
The two modes differ in their behaviour for k~>o0. In the velocity mode the ratio of the
magnetic energy to the kinetic energy tends to zero among the smallest eddies present (i.e. as
k—0), while in the magnetic mode the same ratio tends to about 26 as k—oc0. The bearing
of these results on the possible character of the interstellar magnetic fields is briefly discussed.
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1. INTRODUCTION

In this paper an elementary theory of hydromagnetic turbulence will be developed
which is similar in its scope and content to Heisenberg’s (1948) theory of ordinary
turbulence. The object in developing such a theory is to clarify in a simple scheme
as to what is essentially taking place in hydromagnetic turbulence.

2. THE CASCADE PROCESS IN ORDINARY TURBULENCE

The basic physical idea in current visualizations of the phenomenon of turbulence
is that of the cascade of energy from the larger to the smaller eddies (cf. Onsager
1945). More precisely, one supposes that the energy is supplied to the large-scale
eddies, i.e. to the Fourier components of the velocity field which are of the smallest
wave numbers; and that this energy cascades to the higher wave numbers till it is
finally dissipated as heat by viscosity in the region of the highest wave numbers.
One thus envisages a transition probability @, (v, k'; v, ") which will give the rate
at which thekineticenergy,3F(k'), per unit volume and per unit wave numberinterval
at the wave number %’ will be transformed into kinetic energy (again, per unit
wave number interval) at k" (> k’). This transfer of energy from &’ to k" takes place
as a result of the non-linear coupling between the different Fourier components;
and this in turn is due to the inertial term in the equation of motion. In addition
to this inertial exchange of energy, there will, of course, be the direct dissipation
of energy by viscosity at each wave number; the amount of this latter dissipation
is given by vF(k)k?. Therefore, considering the rate of change of energy at any
particular wave number k, we have

10 (k)

k 0
_ f Q, 5 v, k) Al — f Q(, ; v, k") dk" — vF (k) k2. (1)
2 ot 0 k

The first term on the right-hand side of this equation represents the gain in the
energy density at £ by the transformation of the energy at all lower wave numbers;
the second term represents the loss due to the transformation of the energy at &
into energy of higher wave numbers; and the last term represents the direct dissipa-
tion of the energy at k by viscosity.

In Heisenberg’s theory the process underlying the inertial exchange of energy
and the transition probability @(v, k'; v, k") is described in terms of an eddy viscosity

V(k'”) and one writes Q(’U, k’, v, ]C”) _ F(k/) )% V(k”). (2)

From dimensional considerations one then writes for v(k) the expression

v(k) = KJ%@ (3)

where « is a numerical constant. The expression

Q5 0, ) = () 2 [, (@

which provides the basis for Heisenberg’s theory, is thus obtained.
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3. THE CASCADE PROCESS IN HYDROMAGNETIC TURBULENCE

It would appear that in generalizing to hydromagnetic turbulence the considera-
tions set out in § 2, we should introduce, in addition to Q(v, k'; v, k"), the transition
probabilities Q(v,k’; b, k") and Q(h,k’; v, k") to describe the transformation of the
kinetic energy and the magnetic energy at the wave number £’ into magnetic
energy, respectively, kinetic energy at the wave number &” (> £’). [Note that be-
cause of the linearity of Maxwell’s equations, there can be no direct transformation
of the magnetic energy at one wave number into magnetic energy at another wave
number.]

Allowing for the transformation of the magnetic energy with %’ <k into kinetic
energy in the wave number & and the transformation of the kinetic energy at k into
magnetic energy in wave numbers exceeding %, we can now rewrite equation (1)
in the form

;aF (k) f Q, ;s v, k) Ak’ + f Qh, 15 v, ) A’

— f Q(v, k; v, k) A" — j Qo k: b k) Ak —vE(R) 2. (5)
P , k

Similarly, if G(k) denotes the spectrum of the turbulent magnetic field, we can by
considering the processes which transform kinetic energy into magnetic energy and
vice versa, write

156 (k)

S f Q(v, k's b, k) Ak’ — J Q(h, k3 v, k") A" — AG(k) K. (6)

The occurrence of the first two terms on the right-hand side of equation (6) requires
no explanation; the last term represents the direct dissipation of the magnetic
energy at k into Joule heat by electrical conductivity.

Some agsumptions must now be made regarding the three transition probabilities
we have introduced. We shall assume that Q(v, k'; v, k") will continue to be given
by (4). The question then remains as to the manner of choice regarding the two
remaining transition probabilities.

Considering first the transformation of the magnetic energy at a particular wave
number into kinetic energy of higher wave numbers we may argue as follows: We
know that by electrical conductivity, magnetic energy at any wave number can be
dissipated as Joule heat and that the amount of this latter dissipation is given by
AG(k) k2. And even as one pictures the inertial exchange of kinetic energy between
two wave numbers £’ and k" ( > k') in terms of an eddy viscosity v(k”), so we may now
picture the transformation of magnetic energy at k' into kinetic energy at £” in
terms of an eddy resistivity A(k"). Thus (cf. equation (2))

Q. kv, k") = QK )2 AE"). (7)

As to the choice of A(k) there is considerable arbitrariness. It is on this account that
so far no serious attempt has been made to develop a theory along the lines of
Heisenberg’s for hydromagnetics. However, the theory presented in the preceding
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paper (Chandrasekhar 1955b) narrows this arbitrariness; indeed, as we shall see,
it would seem to suggest a unique choice.
The equation (Chandrasekhar 1955a)

;(;Z szz)Q.—-—ZQ D;Q, (8)

for the defining scalar @(r,¢) of the tensor u(r’,#')u,(r”,t") in the framework of
ordinary hydrodynamics is, in the framework of hydromagnetics, replaced by

o (2 2D2Q—-2Q DQ 2H8DH 9
o\~ 5 (9)
where H is the defining scalar of 4,(r’, '), h,(r",t"). The process visualized in Heisen-
berg’s theory by Q(v, k'; v, k") is exactly that represented by the term

—2Q0(D5Q)/or

in the deductive theory leading to equation (8). The process underlying @(k, k'; v, k")
which we are now trying to visualize is represented by the additional term

— 2HA(D,H)for

in the deductive theory leading to equation (9). Accordingly, it would appear that
Q(h, k'; v, k") should be constructed out of G(k) in the same manner as Q(v, k’; v. k")
was constructed out of F(k). We shall, therefore, assume that (cf. equation (4))

(k")

QUh, K5 0, k") = KGR K [ =55,

(10)
where « is the same numerical constant as in equation (4). By comparison with
equation (7) it follows that our choice is

ey (11)

With Q(h, k’; v, k") chosen in the manner (7) and (10) we can ‘deduce’ an expres-
sion for the remaining transition probability @(v, k; 4, k") as follows:
Writing the equation of motion in the form (see Chandrasekhar (1955b) for
the notation)
ou, 0w 0

W om Yam,

we observe that the expressions (2) and (7) for Q(v,%'; v, k") and QA k'; v, k")
essentially interpret the operators

+h,5%hi+vV2ui, (12)

0 0
—u;=— and +h;—, (13)
7 0, 7 0x;
as equivalent to the multiplication of k£'2 times the spectrum of the variable on
which the differential operators act by v(k") and A(k"), respectively. By applying

this rule to the equation

o, 3 K


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on July 27, 2010

334 S. Chandrasekhar (Discussion Meeting)
we can write, the following expression for Q(v, k'; h, k"):

QW k5 h k") = GUEYE2v(k")+ F (k') k"2 A(k"). (15)
With v(k) and A(k) given by equations (3) and (11) we have

Qo 1) = kG [Z) e [0, (16)

Finally, substituting for the transition probabilities in accordance with equations
(4), (10) and (186) in the cascade equations (5) and (6) we obtain:

ol =« [ [Lavpawes Glif) f “avo) e

2 ot
) k// , kll)
—kF Ic)sz ak A/ 5 f ak A/ -

G(k")

—KF(k)sz ar 25 v ke (17)

10G(k F(k "1 G(k) [* ’ "N 7.t

and g a(t ):KA/ 723)f de(lc)Icz-i—KA/—kga—)fodkF(k)kz
— KG() 2 f:dk". G,if,“:)—m(k) . (18)

Equations (17) and (18) are the basic equations of the present theory.

4. THE ENERGY INTEGRAL IN CASE OF STATIONARY TURBULENCE

Adding equations (17) and (18) we obtain after some rearrangement of the terms
that 1

55 [Fk)+G(k)] = M f dE'[F (k') + G(Ic')] k'2
~ KIP®)+ G " S P + 6]
—F (k) k2 — AG (k) k. (19)

An alternative form of this equation is

2 = O (k) +G(k)] = — VF(k) k2 — AG(k) k2

" k
,I,c WEE")+GE"]| dE'[F(E')+ G )] k2 (20)
alc x k"% o
Integrating this last equation from 0 to k, we obtain

28tf d¥'[F (k") + Q%)) —J‘ dE'[vF (k') + AG(k")] k"

©d" k
+,<f AW )+ 6] Ldk’[F(k'HG(k')]k'Z. (21)
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The quantity on the left-hand side of this equation clearly represents the rate of
net flow of energy (kinetic + magnetic) across the spectrum at the wave number k;
it is the exact analogue of ¢, which Heisenberg introduces in his theory. In stationary
turbulence this must be independent of k£ and we must require that

dk” ! II k
[ " TRNEW) +y6 e [ arRw) +ow N
0
+f dE'[vF (k') +AG(K')] k'? = constant. (22)
0

This is the energy integral in stationary turbulence.
In the framework of ordinary hydrodynamics equation (22) reduces to

{wadk” / Fk’l’ca +VU dE'k'2F (k') = constant. (23)
k

This is the equation which is used for deriving the spectrum of stationary turbulence
in Heisenberg’s theory (cf. Chandrasekhar 1949). However, in the framework of
hydromagnetics the integral (22) will not suffice to determine ' and G under con-
ditions of stationary turbulence. We must go back to equations (17) and (18) and
consider them when the left-hand sides of both equations are set equal to zero; of
the resulting equations, equation (22) is, of course, an integral.

5. STATIONARY TURBULENCE IN CASE A=p=0

The case of greatest interest is when A = v = 0 and stationary conditions prevail.
In this case the relevant equations are

e )f A F (') I+ JG(k) [Lawaqr:
© dk”

k)sz k’fg[¢F(k")+JG(k”)] G (k) k* k,,%«/F(k*’)=0 (24)

dk "

F(k) G(k) f:dk'F(k')k'Z—G(k)sz VG = 0. (25)

f dk' (k') k2 +

These equations admit the integral (cf. equation (22))
dk” " " k ’ ’ ’ !
J i WE(E")+ Gk )]f dEk'[F (k') + G(k')] k'? = constant. (26)
0

In seeking solutions of equations (24) and (25) we shall consider equation (26)
together with the equation

—[F(k)+a(k]k2f i’ /Féks [F(lc)-—G(k)]sz:dk” G0, ()

obtained by taking the difference of equations (24) and (25).
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The structure of equations (26) and (27) suggests that we make the following
transformations:
X = JF+JG, Y=,/F-)G -
F+G=4X?+7?% and F—G=XY.} (28)
In terms of X and Y equations (26) and (27) take the forms
k © dk
f di(X2+ Y?) sz — X = constant (29)
0 k k3

dk

2 2 °°dk' —
k%f kX Yk — H(X +Y2)kf A E)- %XYWL AX-D=0. (30

These equations take more convenient forms if we now let

=1k dr=—4k5dk (31)
and § =Xkt = (JF+ @k} = (JF+ @) 75, a5
n =Ykt = (JF-JO)IE = (JF - Q) T—%.} (82)

The equations then become
fw(§2+772) d'r.frgd'r= constant (33)

T 0
and of “onar = y@a [ Eenars i €-nan (34)
T 0 0

From equations (33) and (34) it is apparent that if £ and % are solutions of these
equations then so are A§ and An, where 4 is an arbitrary constant. There is, there-
fore, no loss of generality if we set the ‘constant’ in equation (33) equal to 1; in
the subsequent analysis we shall assume that this has been so chosen.

It is convenient to introduce the further change of variable

1 _NF-G
V== (35)
or, alternatively, ://G %T» (36)

The permissible range of v is, therefore,
—1<y<+1. (37)
(Note particularly that ¥ = —1 is excluded.)
Introducing the change of variable (35) we find that equations (33) and (34)

take the forms w ,
f 52(1+1ﬁ2)d'r.f gdr =1 (38)
T 0

and 4fjg21/fd7 - gl—%”fﬂg(l ) d’r+2£f;§(l~1/r)d1'. (39)
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(a) The special solutions = 1 and f = 2—,/5

Equations (38) and (39) allow two special solutions with ¢ = constant. To see
this, we first differentiate equation (38) with respect to 7 and obtain

f:o?(l +9¥?)dr = g1+ gﬁ%f;g dr. (40)

Accordingly Y = 3, = constant, (41)
will be a solution of equations (39) and (40) provided

4o = Yo (1+Y3) (L+9) +2(1 = 1hp); (42)
for, in this case both equations reduce to
f :’gzdr - gf ;gdf. (43)
On further simplification, equation (42) becomes
(o= 1) (Y5—4¥,—1) = 0. (44)

The roots of this last equation are
1 and 2+./5; (45)

of these roots 2+ ./5 is outside the permissible range of ¥ (cf. equation (37)). The
allowed solutions are therefore

Yo=1 and y,=2-.5. (46)

For each of these values of ¢, equations (39) and (40) reduce to the same equatiorn
(43); and it can be readily verified that

£ = constant7—% (47)

satisfies this equation and represents its unique solution. Normalizing the solution
(47) so as to satisfy equation (38), we have

% ks

TR T )
From equations (32) it now follows that

VF+G =gk = Mlli~———:;~(2))—]%, (49)
and NF -G = [%’};%—)]%. (50)
Hence = 41‘ [%(2))%% k3 i
and 6 = ittt ()

23 Vol. 233. A,
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For ¢y =1, G =0 and the solution for F represents the usual Kolmogoroff
spectrum. Clearly, this solution must be included as a singular case of hydro-
magnetic turbulence. But the occurrence of the second solution ¢y = 2—,/5 is
unexpected. In this case

G = (—@_——1)21' = 3(8+4/6)F = 2-618F (52)
3—4/5 ’

The energy in the magnetic field is therefore 2-6 times the energy in the turbulent

motions. Nevertheless, the spectrum of both F and ¢ follows the Kolmogoroff law.
It is to be particularly noted that the case of the equipartition of energy between

the kinetic and the magnetic forms does not occur as a special solution of the

equations. Equipartition requires Y = 0; and this is not a solution of equations (38)

and (39) except in the trivial case £ = 0.

(b) The reduction of equations (38) and (39) to a system
of ordinary differential equations
Returning to equations (38) and (39) we shall now show how these integral equa-
tions can be reduced to a system of ordinary differential equations. The differential
equation equivalent to (38) can be directly written down by making use of the
following elementary lemmas:

Lremuma. The integral equation

jwf(T) deTg(T) dr =1 (53)
T 0
is equivalent to either of the differential equations

a /f_ d fg_

a;'\/g ‘— -—f and E‘,\/f—-}-g. (54)
Thus Ly = ey, (55)
or, alternatively, (% [E(L+y2)] = — 283(1 +y2)R, (56)

Next differentiating equation (39) with respect to 7 and rearranging we obtain

EA+y)y d ( L+ [ 9 ovar =
” +d1'( 7 )f0§(1+i/f)d7+2d7f0§(l Y)dr = 0. (57)

Now letting x =f;§(l +¢)dr and y =J:§(1 —)dr, (58)

we can rewrite equation (57) in the form

x_g(€1+¢2)+2yd§__w (59)

dr\®> ¢ dr v
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while equations (58) are themselves equivalent to the pair of differential equations
dz

o= E1+y) (60)
dy

and i E1—1v). (61)

Multiplying equations (56), (569) and (61) by dr/dx in accordance with equation (60)
we obtain the following system of differential equations:

d 2 d 2

o (E50) v E - - E2 (62)
d 2))
gole+ym) = -2 BT (63)
d -
and (Tg = %:_T/z/: (64)
Equation (63) suggests the substitution

E1+y?) =62 (65)

Making this substitution and eliminating £, we find

[ yepsalyolol <D py-2f (14per2ly)]. o9)

1+y
3—2 = l—i—i& an % = % (67)
This system of equations is completed by (cf. equations (60) and (65))
%i—c = 62—(11?{72)’ (68)
or T= :Qi—(ll}jz) dx. (69)

In writing this last equation we have made use of the boundary condition, 7->0
as x— 0, which is justified below (equation (74)).

(¢) The behaviour of the solutions of equations (66) and (67)

An important property of the solutions of equations (66) and (67) is that they
allow a homology transformation. Thus, if {¥(z), O(z) and y(x) are solutions, then so
are Y(Ax), A70(Azx) and A-1y(Ax), where A is an arbitrary constant.

Next we may note that the special solutions obtained in §(a) above can be
recovered from the present equations. For if

Y = Y, = constant, (70)

equations (67) allow the solutions

i _ =¥, (71)

23-2
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and the vanishing of the right-hand side of equation (65) requires (if ¥y = 0) that
Vo,
2 2
(1 = 214 g3+ 210 ). (72)

On simplifying this last equation we find that it is the same as equation (44).
We are thus led to the same special solutions as those considered in §(a). [Note,
however, that ¥ = 0, 6 = y = x is also a solution of equations (66) and (67); but
as we have already pointed out (cf. remarks at the end of §(a)) ¥ = 0 is not a
solution of the original equations; it has been ‘manufactured on the way’ by succes-
sive differentiations which were necessary to derive equations (66) and (67).]

We shall now show that for a solution of equations (66) and (67) to be physically
acceptable, yy must tend toeither of the two special solutions, ¢y = 1and ¥, = 2—,/5,
as x—0.

First, we may observe that the physical conditions of the problem require that
the integrals defining # and y (equations (58)) exist and are convergent for all
finite 7. This is apparent for example from equations (37) and (38): the latter
requiring the convergence of the integral

f "tar (73)
for ¢— 0 and the former ensuring the boundedness of 1. Hence (cf. equation (31))
z—>0 and y—-0 as 70 and k->o0. (74)
At the same time U->r, (say) (—1<iyre<1). (75)
Hence (cf. equations (67) and (74))
1- g&* .
y—> 1+¢ (x—0). (76)
Since (cf. equation (67)) (}Q_9 1 (w—0),
de "1+,
(77)
0>a+—
L+’

where @ is a constant. But the boundedness of ¢ as -0 requires that a = 0;
otherwise, it would follow from equations (66) and (75), that

[(1+¢1)2+4i+$*¢3]x—¢->¢*(1+¢2 ) (L+ ) (78)
and Y —>constantlnx  (x—0), (79)

contradicting the boundedness of ¢ at = 0. Hence
0»%3&* as x—>0. (80)

[Note that this last implies that £—o00 as x>0 (cf. equation (65)); but this sin-
gularity of £ at = 0 should be such as to leave the convergence of the integral (73)
for ¢ 0 unaffected.]
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With 6 — 0 as z— 0,1t follows from equation (66) that if ¢, is not one of the values
which make the right-hand side of this equation vanish (i.e. if ¢, is not one of the
special values 1 and 2 —,/5; we are excluding the values 0 and 2 +,/5), then we shall
again be led to an equation of the form

xgx—;& — constant, (81)
and the same contradiction (79) would follow. Thus, we have shown that the physic-
ally acceptable solutions of equations (66) and (67) must be such that

Y=Y, (=1 or 2-./5),
x 1—4y (82)
Ty m«‘;x as x—0.

The behaviour of the solutions which tend to either of the singular points,
Yo =1 and ¢, = 2—./5, of the differential equations (66) and (67) can be deter-
mined by making the substitutions

V=v%+¢, 0=0,+0, and y=y,+vy,, (83)

and regarding ¥, 6; and y, as small compared to ¥, 6, and y,, respectively. In
this manner we can linearize the equations (66) and (67) and we obtain after some
straightforward reductions that

0—>06,= and y=y,=

%{[(Hﬁfﬂi;z"vfﬁ] d‘“mlwo)""’]f‘j;’“wl}
4 1"’1”0

We shall now distinguish the two cases ¥, = 1 and ¢, = 2—.,/5.
Case (i): ¥, = 1. In this case equation (84) reduces to

dx( d—'/'l—xwl) = 0. (85)

The general solution of this equation is
¥ = Cx+Cya?, (86)

where C,; and C, are arbitrary constants. For the physically acceptable solutions
C, = 0; also since 3 cannot exceed 1, C; must be chosen negative. Thus, in this
case, the solution for ¢ at the origin must have the behaviour

U =1—ax+0(@?) (a>0 and z—0). (87)

In view of the homology property of the solutions of equations (66) and (67) it will
suffice to consider the solution for any particular a; the solntion for any other value
of a can be derived by a simple homology transformation.

Expressing i as a power series in « in which the first two terms are 1 and —«

we find that = 1—a+ia®+ 42t + ... (88)
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and 0= 1}96(1+%;x+2—¥£w2-——1—%,—2—w3+...),} (89)
y = 231+ ir—La?+...).
Case (ii): Yy = 2—,/5. In this case equation (84) reduces to
dxy dyry
2 . — =] = U
a? k4 1:216 542 dw- 2 — 1-751 8645, = 0; (90)
and the general solution of this equation is found to be
Yy = axf +bx, (91)
where a and b are arbitrary constants and
£ =12197300 and 7y = 1-4362723. (92)

For the physically acceptable solutions b = 0; also the boundedness of i for
increasing x requires that o be positive. Again, in view of the homology property
of the solutions of equations (66) and (67) it will suffice to consider the solution for
any particular a.

Expressing ¥ as a power series in ## in which the first two terms are 2 —,/5 and
0-12#, we find that

Y= —0-236067 98 + 0-128 —0:062 319 204228 4 0-046 457 707238 + ..., (93)
and .

6 = 2(1-309 017 0 — 0-077 195 2222 + 0-037 568 65422 — 0-023 716 45123 + ...) 04
y = (1-618 034 0 — 0-154 390 44 + 0-075 137 30922 — 0-047 432 903236 + ...). } )

0-8

¥ 04

(=3

Ficure 6. The two fundamental solutions of equations (66) and (67) which tend to ¥ =1
and ¥ = 2—,/5 (= —0-2361) as 0. (The scale of x is arbitrary.)

It can be readily verified that solutions of equations (66) and (67) which have
the behaviours (88) and (93) at the origin tend to 3 = 0 as x—o00 and k—0 (see
figure 6). Since yr = 0 corresponds to an equipartition among the two forms of
energy, we may summarize the results of the present discussion as follows:
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There exist two distinct modes of hydromagnetic turbulence which we may
distinguish as the velocity mode and the magnetic mode, respectively. For both modes
there is an equipartition of energy between the kinetic and the magnetic forms as
k-0 (i.e. among the largest eddies). On the other hand, in the velocity mode the
energy in the magnetic field tends to zero as £ — o (i.e. among the smallest eddies),
while in the magnetic mode the energy in the magnetic field tends to $(3+4/5)
(=2-61...) times the energy in the turbulent motions in the smallest eddies.

(d) The numerical forms of solutions

Solutions of equations (66) and (67) whose behaviours at the origin are those
described by the series expansions (88) and (89), and (93) and (94) have been
obtained by numerical integration. In each case the integration was started with
the aid of the series expansions and then continued forward by standard methods.
The solution was then completed by the further quadrature (equation (69)) needed
to relate 7 (and hence & (=7-%)) with . The results of these numerical calculations
are summarized in tables 2 and 3.

TABLE 2. THE SPECTRAL CHARACTERISTIC OF THE VELOCITY
MODE OF HYDROMAGNETIC TURBULENCE

© v k C(k) G/F
0 1-0000 © 0-582387 0
0-04 0-9604 20-81 0-5820 4-080 x 10~
0-08 0-9216 12-37 0-5811 1-663 x 10-3
0-12 0-8837 9-123 0-5795 3-810 x 103
0-16 0-8467 7-349 0-5771 6-890 x 103
0-20 0-8106 6-212 0-5740 1-094 x 10-2
0-24 0-7755 5-414 0-5701 1599 x 10-2
0-28 0-7413 4-818 0-5655 2-206 x 10~
0-32 0-7082 4-354 0-5602 2:918 x 102
0-36 0-6761 3-981 0-5542 3-735 x 102
0-40 0-6450 3-673 0-5474 4-656 x 102
0-48 0-5862 3-192 0-5322 6-806 x 102
0-56 0-5318 2-832 0-5150 9-343 x 102
0-64 0-4819 2:549 0-4964 0-1222
0-72 0-4365 2-321 0-4773 0-1539
0-80 0-3955 2-132 0-4581 0-1876
0-90 0-3502 1-937 0-4350 0-2316
1-0 0-3109 1775 0-4135 0-2763
1-2 0-2480 1-521 0-3767 0-3631
14 0-2015 1332 0-3483 0-4416
16 0-1670 1185 0-3268 0-5094
1-8 0-1410 1-068 0-3107 0-5667
2:0 0-1210 0-9736 0-2984 0-6147
25 0-08767 0-7997 0-2782 0-7036
30 0-06769 0-6817 0-2666 0-7625
35 0-05466 0-5964 0-2592 0-8034
40 0-04562 0-5318 0-2542 0-8331
50 0-03402 0-4401 0-2480 0-8727
6-0 0-02698 0-3780 0-2443 0-8977
80 0-01896 0-2984 0-2402 0-9269

0 k 0 0 0-231120 1-0000
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In figure 6 the two solutions for y(x) are illustrated. In view of the homology
transformation which equations (66) and (67) admit, the solutions illustrated (and
tabulated) represent all the solutions which tend to iy = 1 or ¢ = 2—,/5 (as > 0)
if we regard the scale of  as arbitrary.

TasBLE 3. THE SPECTRAL CHARACTERISTICS OF THE MAGNETIC
MODE OF HYDROMAGNETIC TURBULENCE

© W k O(k) Q/F
0 —0-236068 © 0-130091 2-61802
0-04 —0-2341 11-87 01309 2-597
0-08 —0-2316 7-069 0-1319 2-569
0-12 —0-2289 5-223 0-1330 2-540
0-16 —0-2260 4-216 0-1341 2-509
0-20 —0-2231 3-572 0-1353 2-479
0-24 —0-2202 3-120 0-1365 2-449
0-28 —~0-2173 2784 0-1377 2-419
0-32 —0-2144 2-523 0-1389 2-390
0-36 —0-2116 2-313 0-1400 2-361
0-40 —0-2087 2-141 0-1412 2:334
0-50 ~0-2019 1-818 0-1440 2-268
0-60 —0-1954 1-592 0-1467 2:207
0-70 —0-1892 1423 0-1493 2:151
0-80 —0-1833 1-292 0-1517 2-099
1-0 ~0-1726 1-100 0-1563 2-008
12 —0-1630 0-9654 0-1603 1-930
16 —0-1466 0-7865 0-1672 1-805
2:0 ~0-1333 0-6715 0-1729 1710
25 —0-1199 0-5736 0-1787 1-619
3-0 —0-1089 0-5045 0-1833 1-549
40 —0-09231 0-4121 0-1905 1-448
50 —0-08024 0-3523 0-1957 1-379
60 —0-07105 0-3099 0-1997 1-329
8-0 —0-05795 0-2530 0-2054 1-261

10-0 —0-04903 0-2161 0-2093 1-217
12:0 —0-04254 0-1898 0-2121 1186
0 0 0 0-231120 1-000

The quantities which are of the greatest interest are, of course, the spectral
functions F(k) and G(k). From the analysis of the preceding sections it follows that
F is a Kolmogoroff spectrum both for £ — 0 and for £ — co. In view of the consequent
great variation in F(k) it is convenient to consider instead F(k)k%. According to
the definitions of the various quantities (cf. equations (31), (32) and (35))

AFIE = L4y P = B+ et
= O(k) (say). (95)
Since by setting the ‘constant’ on the right-hand side of equation (33) equal to
unity and by considering the scale of « (and, therefore, also of k) as arbitrary, we
have allowed ourselves complete freedom in the choice of units for measuring ¥

and k, we can regard C(k) as specifying the variation, in hydromagnetics, of what
is a constant in hydrodynamies. The functions C(k) for the two modes of turbulence
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are given in tables 2 and 3; they are further illustrated in figure 7. 1t may be noted

here that corresponding to the behaviour (82) of ¥, d and y we have

(L+1)
C(k)— mi/j%)]% (x—0, k- o00). (96)

0-6,

1

0-582

0-231

Ficure 7. The variation of Fk¥ with k for the two modes of hydromagnetic turbulence
(I, velocity mode; II, magnetic mode). The values to which these curves become
asymptotic for k— co are shown. (The scales of F' and k are arbitrary.)

On the other hand, from the Kolmogoroff behaviour of F(k) for £—0 and k- o0,
it follows that (cf. equations (51))

0(0) = C(eo) LHEDE _

1
m_§=0-2311..., (97)

which is the same for the two modes of turbulence.

Finally, considering the spectrum, G(k), of the turbulent magnetic field, we have
for both modes a Kolmogoroff spectrum for k-0 where equipartition prevails.
The two modes differ in their behaviour for £ co. In the velocity mode the density
of energy in the magnetic field tends to zero as k — oo, while in the magnetic mode it
tends to about 2-6 times the density of energy in the turbulent motions. In the latter
case the spectrum has a Kolmogoroff behaviour also for £—co. A quantity of special
interest when considering the spectrum of the magnetic energy is therefore the ratio,
G/F (= (1—y)?/(1 +1¢)3?), of the energy in the twoforms as a function of the wave
number k. This ratio for the two modes of turbulence is listed in tables 2 and 3 and
illustrated in figures 8 and 9.
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Q/F

Ficurr 8. The ratio of the magnetic energy to the kinetic energy as a function of the wave
number in the velocity mode of turbulence. This ratio tends to zero as k—oco. (The
scale of k is arbitrary.)

261 2:62

Q/F

Ficure 9. The ratio of the magnetic energy to the kinetic energy as a function of the wave
number in the magnetic modeof turbulence. The value to which this ratio tends as k— co,
is shown. (The scale of k is arbitrary.)
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6. THE TWO MODES OF HYDROMAGNETIC TURBULENCE

In hydrodynamics it is generally supposed that under stationary conditions the
spectrum of turbulence in the limit of infinite Reynolds number is uniquely deter-
mined apart from permissible changes of scale. Thus, Kolmogoroff’s law,

F(k) = constant k3, (98)

is assumed to be universally applicable though the units in which F and k are mea-
sured will differ from case to case depending on initial conditions. In hydromagnetic
turbulence one might, therefore, have expected that under stationary conditions
the spectral distributions of u® and h? are similarly uniquely determined (again,
apart from permissible changes of scale) with the reservation that the case of zero
magnetic energy occur as a singular member of a homologous family of solutions.
These expectations are realized in what we have called the velocity mode. For,
the solutions describing this mode (¥r—1 as £—0) do form a homologous family
and the case of zero magnetic energy does occur as a singular member of the family
(by the choice a = 0 in equation (87) when yr=1). But there is one element of sur-
prise. While equipartition prevails among the largest eddies, the magnetic energy
relative to the kinetic energy tends to zero very rapidly as we go to smaller eddies.
This contradicts what has sometimes been argued from the close similarity of the
equation governing the magnetic field and the equation governing the vorticity
in hydrodynamics (cf. Batchelor 1950), namely, that G(k) should be similar to
k2F(k). However, it should be mentioned here that contrary to these views, Fermi
(1949) and Schliiter and Biermann (cf. Biermann 1953) have always maintained that
among the large eddies equipartition must prevail whether or not it prevails among
the small eddies.

While the occurrence of the velocity mode is in general conformity with one’s
expectations, the occurrence of the magnetic mode is unexpected. In this second
mode the magnetic energy in the small eddies predominates over the kinetic energy
of motions though equipartition prevails among the large eddies. A further point
to be noticed is that the case of zero magnetic energy is not included in this second
family of solutions.

Lacking detailed analysis, we may surmise that the origin of these two modes
of turbulence is the following: In hydromagnetic turbulence the dissipation of
energy takes place by viscosity and by electrical conductivity. The spectral func-
tions F(k) and G(k) must therefore depend on the manner of energy dissipation which
dominates. In particular, we may expect that the solution obtained by first setting
A = 0 and then letting v— 0 will be different from the solution obtained by first
setting v = 0 and then letting A — 0. In the latter case since energy can be dissipated
only by Joule heating, it is clear that the magnetic energy must predominate over
the kinetic energy at all wave numbers. This is not necessary if A = 0 and viscosity
provides the only means of energy dissipation. The velocity and the magnetic modes
of turbulence may originate in this way. By considering equations (17) and (18)
under stationary conditions and retaining the terms in A and v one should be able
to decide whether or not the two modes originate in the manner suggested.
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7. ON THE POSSIBLE CHARACTER OF THE INTERSTELLAR MAGNETIC FIELD

In discussing the role of interstellar magnetic fields for the problem of the origin
of the cosmic rays, Fermi (1949, 1954) has taken one of two points of view dictated
largely by what the astronomical evidence at the moment seemed to indicate as the
most. probable. Since the astronomical evidence continues to be inconclusive, it is
important that we keep in mind both his points of view. In estimating the strength
of the interstellar magnetic fields on either point of view, we shall use astronomical
data which appear most likely at the present time.* The data we need are the root-
mean-square velocity, v, of the interstellar clouds, the density, p, of the interstellar
matter and the density p, (of stars, gas and dust) in the local spiral arm of the
galaxy. The best estimates of these quantities appear to be

v=14km/s, p=24x10"2g/em® and p,=6x10"22g/cm3. (99)

Now Fermi’s two points of view have been the following:
(1) The magnetic field is a random turbulent field and equipartition exists between
the two forms of energy. On this view

lov? = H%/8m or H = (4mp)tv. (100)
With the estimated values of p and v, we find '
H, = 7-0 x 10-%gauss, (101)

where we have used a subscript e to denote that this is the equipartition value of
the field strength.

(ii) The field is essentially uniform along the spiral arm. In taking this point of
view one is largely guided by the results on interstellar polarization (Hiltner 1951)
which exhibit a surprising alinement of the directions of polarization over wide
regions of the sky. But appreciable and apparently irregular fluctuations in the
directions of polarization do exist; and this would indicate that the magnetic lines
of force are not strictly straight and that appreciable deviations are caused by the
motions of the interstellar clouds attached to the lines of force. On this picture the
mean angular deviation, «, of the directions of polarization should be related to the
strength of the field, the root-mean-square velocity of the clouds and the density p
by (cf. Leverett Davis, Jr. 1951; Chandrasekhar & Fermi 1953, equation (7))

H = (%np)%g. (102)

The observations suggest that ¢~ 0-2 radian. With this value of o and the earlier

estimates of p and v, we find
H, = 2-0x 10-5gauss, (103)

where we have used a subscript 4 to denote that this is the field strength on the
uniform field hypothesis.

It has been pointed out by Fermi (cf. Chandrasekhar & Fermi 1953; see also
Leverett Davis Jr. 1954) that there is a further condition which one might impose

* I am indebted to Dr A. Blaauw for steering me through the often conflicting astronomical
evidence.
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as a check on the derived values of the magnetic fields. This condition arises from the
requirement of gravitational equilibrium of the spiral arm. If we idealize the spiral
arm as a cylinder of radius, R, of uniform density, the required condition is

Pgrav. = ﬂGppt.Rz = Pxin. +Pmag.
2

H
= 1pv?+ Py (104)

Inserting for v, p and p, their estimated values, we obtain
2-4 x 10-13(R/100pc)? = 1-65 x 10712+ H?/(87). (105)

Now the ‘radius’ of a spiral arm is a very indefinite notion, since the observations
indicate not only considerable non-uniformity of the arms but also that the different
spiral arms have widely different cross-sections; and the cross-sections are by no
means circular. Nevertheless, it appears safe to estimate that

200p¢ < R < 500pc. (106)

Since the gravitational pressure depends on the square of the assumed radius,
it is perhaps best that we determine R from equation (105) and the two estimates,
(100) and (103), for the strength of the magnetic field. We find that

R =400pc when H = H,="Tx10"%gauss
} (107)

and R = 800pc when H = H,=2x10"5gauss.

The large value of the magnetic field (103) leading to B = 800p¢ would seem to be in
contradiction with the astronomical evidence (106). If on the strength of this
evidence one reverts to Fermi’s original picture of a turbulent magnetic field, how
then are we to account for the polarization results? The theory of hydromagnetic
turbulence presented in this paper would seem to provide a way for reconciling
Fermi’s two pictures.

First we may observe that since for both modes of turbulence equipartition
prevails among the largest eddies, the root-mean-square field can in both cases be
estimated by (100), since the principal contribution to the kinetic energy density
of turbulence always comes from the largest eddies. If we now suppose that the
interstellar magnetic fields are turbulent fields belonging to the velocity mode, then
small-scale Fourier components in the magnetic field will be absent and the magnetic
field would in fact be relatively uniform over large regionsof space. At the same time
there could be occasional regions in which the turbulence is of the second type; in
this case we shall have strong local fields and these might be the regions, which
Fermi (1954) had to postulate, where the direction of the magnetic field changes
relatively abruptly. In other words, Fermi’s two pictures appear as two extremes
of idealization; and the actual picture may in reality have features common with
both.

In conclusion, I wish to record my indebtedness to Miss Donna Elbert who
performed the numerical integration of equations (66) and (67) and the required
quadratures.
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