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The Compton Scattering and the New Statistics.

By 8. CHANDRASEKHAR‘,, The Presidency College, Madras.
(Communicated by R. H. Fowler, F.R.S.—Received June 20, 1929.)

1. Introduction.

Great success has been achieved by Sommerfeld in the electron theory of
metals by assuming that there are free electrons in them which obey the
Fermi-Dirac statistics. It has been assumed in the case of univalent metals
that on the average one electron per atom is free. In general, however, the
valency electrons can be considered as free.* These free electrons will take
part in the Compton scattering. The analysis of such a Compton effect
reduces to the analysis of the collisions between radiation quanta and an
electron gas. The general features of such a scattering was first considered
by Dirac.t But he has assumed a Maxwellian distribution for the electrons
which will not be applicable to the case under consideration, because the
electrons in a conductor being degenerate do not obey the Maxwell’s law, but
the Fermian distribution.

In considering such a process we take it that the conservation of momentum
and energy principles are satisfied for each particular collision just as in
Compton’s theory—only we are here dealing with moving electrons instead of
stationary electrons which Compton considers. Thus electrons of different
momenta components will produce different Compton shifts, and the intensity
of any particular shift will depend on the number of electrons in that state.
Thus we have to average for the radiation falling on an assembly of electrons
whose momenta are distributed according to the Fermi-Dirac law.

The above is just a natural extension of Compton’s theory. In this con-
nection mention should be made of Jauncey’s} theory of bound electrons whose
arguments are essentially what we have put forward in the previous paragraph.
But his theory has not been quite satisfactory because he has not assumed any
definite distribution of the electrons.

* Rosenfeld, ‘ Naturw.,” p. 49 (1929).
1 ‘M.N.R.A.S.,” vol. 85, p. 825 (1925).
1 ¢ Phys. Rev.,” vol. 25, p. 723 (1925).
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2. Comgpton scattering with Moving Electrons.

Let m,, m,, m, be the momentum of the scattering electron and g¢,, g,, 9.
those of the quantum, g, m, represent the masses of the electron and the
quantum multiplied by the velocity of light ¢. If we take polar co-ordinates

g =hvcos 0/c; g,=hvsin Ocos d/c; g, =sin Osin ¢ ¢; = hvje. (1)

Then the conservation of momentum and energy gives

(Ms Gu) — (mm gu') = (gw gu’)' (2)

The above equation gives the frequency of the scattered quantum in terms
of the initial momentum of the electron and the incident quantum, and the
directions of the incident and scattered quanta.

Equation (2) reduces to

my — my, cos 0° — m, sin 0’ = %;(m, — M) — }ic\i (1 — cos. 0, (3)
if we assume that the directions of the incident quantum is along the x axis
and that of the scattered quantum in the xy plane. Here 0'is simply the angle
of scattering.

3. The Spectral-intensity Distribution Function.

Before considering the case of scattering of monochromatic X-radiation,
we will consider first the more general case when the incident radiation is
continuous. Suppose we have such a pencil of radiation confined to a small
solid angle dew and let I, be the intensity per unit frequency range. Let this
radiation be incident on an assembly of dn electrons of momentum m,, m,,
m,. Let the intensity of radiation scattered in the solid angle dw’ and frequency
range v’ and v’ + dv' be given by

R (V) dv do'. 4)
Then it has been shown by Dirac (loc. cit., equation (8) ) that
v'F(a, b)

, h?
R(V)=“-%—2—c'§.d'n.~1ydﬁ) v,

)
Here v'is to be regarded as a function of ¢, ¢,/, 9.” and m,, m,, m,, being that
frequency of the incident quantum which will be scattered by an (m,, m,, m,)
electron into the frequency range v' to v + dv'.

In the above equation F (a, b) is a function which depends on the scattering
law adopted and @ and b the two invariants connected with the scattering
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process which as well as the initial momentum ,, m,, m, of the electron and
9> 9y» 9. of the quantum specify the collision.
Now for dn in equation (5), we have to put the Fermi-expression

an

_Vv G dm, dm, dm, (®)
T B exp (Sm22mkT)/A + 1°

and integrate with respect to m,, m,, m,. In the above equation A is the
constant appearing in the Fermi-Dirac statistics. It has different values
according as we consider a degenerate or a non-degenerate gas. When the
system is non-degenerate A is a small positive quantity and then has the
value ’

A = nk® . (2rmkT)~*?/G. )
A degenerate systeni corresponds to A being a large quantity and in that case
g A — (2 B e
o8A=(g) g ®
Then by equation (6)
BV ® Ldov'F dm,, dm, dm,
R(V)= — . =. : v . 5 Gy G, 9
™) m3c®  h3 Gjﬂ_m vm,  exp (Zm,22mkT)[A + 1 )
B v ®
= C= v , V') dv. 1
2B T GLI de ¢ (v, V) dv | (10)
Where
"N — ® i]_? dmy dmz / _V-— 11
oY) H_«, vm, " exp (Zm,2/2mkT)/A + 1/ Om, (11)

Where m, and 0v/dm, are to be evaluated in terms of m,, m, and v by means of
equation (3)

om, me __h
(6) Oy Y@ —cos®) ¢’ (12)
and , :
Ksin 672 , K2 in2 ©
o IR S
where

B=1—2vcos 0'/v 4 (v/V')?, y=v/V —cos @,
K= —mec(v/v — 1)+ kv (1 —cos 0)/c. (14)

Then
® 1 A ‘
Py, V) = F [v (1 — cos 0') mczv:l dmy, dm,
, B K sin ¢’ 2 K2 . sin2 6
,wleXP{ﬁ[””ﬁ“T] Nl ]-l-mf} B
2mkT
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Suppose now that the radiation is monochromatic, then the number of quanta
scattered between the frequency range v and v' + dv' into the solid angle
do' is given by

KBV
T omic R
So that the (spectral) distribution of intensity about the primary frequency v
is given by ¢ (v, v'), which we shall now evaluate.

N 1 kv ® dm, dmz
PO Y) = 14F, [v (1 — cos 6) ch\J SS 1 B w2+ m2

R (V) .G.Ldvdw (v, V). (16)

-y )41
o B exp <yz 2mkT / +1
17)
where
, K sin ¢’
m v = y -T—
. (18)
L1 (B ()
B~ A P 2maT "\ g /)]
If we introduce the new variables ;
y=m'2 B/ 2mkT, z=m2[2mkT.
Then
n__ 1 W ly.mkT j’ Pyt e idyde
¥ v) = 2K, [v(l —cos §)  metvl pt .!'0 B+ 1
. 1 A ] oy mkT
= 2K, [v (1 —cos 6) mc?vJ gt Uos (19)
where U, is the special case of the general Sommerfeld integral
1 * w du
U, = . J , 20
FT(e+1)"Jo ¢/B+1 20)
which gives for p = 0*
- Uy=mnlog (B + 1). (21)

Hence we get our intensity distribution function

n__ 1 _ W y.mkTm
o, ¥) _2Fo[v ety ) T gD, ()

Case I.—If B is large and positive we get

N 1 Y 1y . mkTr
¢(V’V)—2F°[v(1—-cos6’)'m02v]' Bt

X [l‘)g A-s 12{;” (1 - Sin; eﬂ (23)

the value of log A being given by (8).
* Sommerfeld, ¢ Z. Physik,” vol. 47, p. 1 (1928), equation (314).
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An approximation of the above equation to an order of accuracy where the
Compton-shift is neglected is
_A/2FemkT o —-v)z] , 94
YO V)= v(l—cose)* [l (24)
where a = 4kT (1 — cos 0")/mc2.
Case II1.—1If B is small due to the smallness of A we get, to the same order of
accuracy as (24), the equation

‘p (V, V’) )_3/2 '\/2Fg7tka _(,,r_,,)s/a,,,z’

v(1 —cos 6)F

(25)

the one given by Dirac (loc. cit., equation (13) ).

Equation (25) gives an exponential distribution of intensity about the
primary frequency for the scattered radiation. But equations (23) and (24)
indicate that the distribution of intensity of the radiation scattered by a
degenerate electron gas does not follow an exponential law but gives a parabolic
distribution. This perhaps explains the rather broad structure of the Compton
modified radiation.* '

4. The Compton effect.

It is natural that the distribution of intensity predicted by equation (23)
places the maximum peak of intensity at a place where the Compton’s theory
for a free-stationary electron predicts a line. Remembering that in any case
v/v' =1 the maximum frequency will be at a modified frequency where
K = 0 where'

K= —me(v)v—1) 4+ kv(1 — cos 0")/c = 0,
4.e., where '
AN —A=h (1 — cos 6)/me, (26)

i.e., on an intensity-frequency graph the maximum occurs at a place corre-
sponding to the Compton shift.

5. The Effect of Temperature.

If we consider the Compton scattering by an electron-gas, the distribution
function of which depends on temperature, it would naturally be expected

* Mr. J. W. Du Mond in a private communication to the author from the California
Institute of Technology, Pasadena, has kindly pointed out that the above is the character-
istic of the Compton-radiation from conductors. His paper in the May issue of the ‘ Physical
Review ’ (vol. 33, p. 643) gives experimental details and theoretical calculations as well.
He has independently derived. the parabolic structure.
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that the. spectral intensity distribution function in the Compton scattering
would also depend on temperature and Dirac’s classical expression (25) does
indicate this by the explicit appearance of the temperature factorin ¢ (v, v').
But if we substitute the value of log A given by (8) in (23) we get

n__ 1 kY Y.T
YOV = 2F°|:v(1 —cos ) mczv] p

« [% CS.? n>2/3k2 _ g ' <1 B sin; 9')]’ (27)

where all the temperature factors have cancelled out. Thus Compton-scatter-
ing by an electron-gas will not be influenced by temperature. Further the
Compton scattering by the bound electrons will also not be influenced by the
ranges of temperature available in the laboratory. Thus it appears that the
total Compton scattering will not be affected by temperature.*

6. The Effect of a Magnetic-field.

We will consider the scattering by the conduction electrons only. When the
scatterer is placed in a magnetic-field the distribution function for the electrons
changes, and in that case the number of electrons in the momentum range
My, My, m, and m, -+ dm,, m, + dm, m, -+ dm, is given by the Pauli’s
expressiont '

dn — A . dm, . dm, . dm, ’ (28)
h? exp <Eﬁ _Enz—“’z ) A + 1
BT " omghT,

where ¢,, = mg poH ; where p,= — eh/4mmyc = a Bohr magneton, g = the
Lande factor, H = the field strength.
For the summation over all the values of the quantum number m

from — jto 4 j we have the relations

+i

2 g, =0

m=-—3j
N (29)
2 g, = 3Gp2H?

m=—j

To derive the spectral-intensity distribution function we have to substitute

* Since the writing of the above a report by Jauncey and Bowers has appeared (* Bull.
Amer. Phys. Soc.,” vol. 4, p. 26 (1929) ) giving experimental observations which support
the above conclusions. '

T ¢ Z. Physik,’ vol. 41, p. 81 (1927).
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(28) instead of (6) in equation (5) and carry out the integration as before.
The final result as one can easily see is

¥ (v, v’)=2F0[;___l.__ _ ﬂ]‘y.mk'l‘,n

(1 —cos 0')  mc?v pi
¥ o—e, K2 __ sin® §’
x [log A T SE T ( B ] o

which on account of (29) becomes identical with (23). Thus it appears on
Pauli’s theory of the paramagnetism of an electron-gas that the scattering of
such an assembly should not be influenced by the presence of a magnetic field.
In this connection mention should be made of an experimental observation of
Bothe* where he tried the influence of a magnetic field. The scatterer he used
was paraffin, and he tried up the field strengths of the order of 20,000 I. But
he could detect no influence.
Summary.

In this paper the Compton scattering by an electron-gas on the Fermi-Dirac
statistics is considered. The theory predicts a distribution of spectral intensity
not exponentially falling off about the maximum but parabolically. It places.
the peak of maximum intensity at a place where the Compton relation
N — A="h(1 — cos 0')/mc is satisfied. Further, the theory indicates that
there should be no influence of temperature or magnetic field in Compton
scattering.

In conclusion the author wishes to express his thanks to Dr. R. H. Fowler,
F.R.S., and Mr. N. F. Mott for kindly going through the manuscript and
suggesting improvements.

“* £ Z, Physik,’ vol. 41, p. 872 (1927).
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