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ABSTRACT

We discuss the effect of perturbations on the ground rings of c = 1 string theory

at the various compactification radii defining the AN points of the moduli space.

We argue that perturbations by plus-type moduli define ground varieties which

are equivalent to the unperturbed ones under redefinitions of the coordinates and

hence cannot smoothen the singularity. Perturbations by the minus-type moduli,

on the other hand, lead to semi-universal deformations of the singular varieties

that can smoothen the singularity under certain conditions. To first order, the

cosmological perturbation by itself can remove the singularity only at the self-dual

(A1) point.
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Introduction

The study of polynomial rings associated to systems with a BRS cohomology

is a useful way to understand their physical properties[1,2]. For noncritical c = 1

string theory, the ring associated to cohomology states of ghost number zero[3] is

particularly interesting, as it gives an insight into the structure of the unbroken

gauge symmetries of this backgrounds[2,4]. It turns out that the polynomial ground

ring defines a singular variety, and the unbroken symmetries have a natural action

on this variety as volume-preserving diffeomorphisms.

The c = 1 string has a large collection of marginal deformations generated by

its various moduli. The best known of these moduli are the cosmological operator,

the radius-changing operator, and the operator which deforms the background into

a black hole[5,6]. The effects of the cosmological perturbation at the self-dual point

and in the uncompactified theory have been examined in Refs.[2,7–9]. The moduli

space of the c = 1 string generated by the radius-changing operator, and the nature

of the polynomial ground ring and its associated variety at various points of this

moduli space, have been analyzed in[10] and found to be related to some beautiful

mathematical structures, the Kleinian singular varieties. One can explicitly see

how the symmetries vary as a function of the compactification radius. An equally

explicit understanding of the symmetry-breaking pattern along general directions

in the moduli space is, however, lacking so far.

In this note we uncover some aspects of the nature of ground rings and their as-

sociated varieties when the c = 1 string is perturbed by various generic moduli. For

this purpose, we start with the theory defined at some integer multiple of the self-

dual radius, corresponding to the AN points. Possible perturbations fall into two

classes, generated by the plus- and minus-type moduli. We will argue that generic

minus-type perturbations smoothen the singularities of the ground varieties, but

plus-type perturbations cannot do so. Also, the cosmological perturbation alone

does not effect a smoothening of the singularity. We will also find an intriguing

relation between the minus-type perturbations and the theory of semi-universal
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deformations of Kleinian singularities.

Let us now briefly recall some facts about c = 1 string theory. The matter

sector is described by the CFT of a compact free boson X. The moduli space of

c = 1 CFT is well known[11]. At the self-dual radius, the theory has an enhanced

SU(2) ⊗ SU(2) symmetry, and the (chiral) operators are labelled by their SU(2)

quantum numbers s = 0, 1
2 , 1, · · · and −s ≤ n ≤ s: Vs,n. When this CFT is coupled

to gravity, the operators Vs,n are “dressed” by Liouville vertex operators which can

have two possible momenta pϕ
± = i

√
2(−1 ± s). The former is called the plus-type

dressing and the latter minus-type.

The BRS analysis[3] shows that apart from the operators Y ±
s,n = cVs,ne

√
2(1∓s)ϕ

of standard ghost number 1 (which exist for either dressing) there exist an infinite

number of operators O(+)
s,n and P(−)

s,n at ghost numbers 0 and 2 respectively. The

operators relevant for the closed string theory are constructed by combining the

chiral and anti-chiral operators. Since the Liouville field is non-compact, its left

and right momenta must be matched. This results in plus-type operators of ghost

numbers 0, 1 and 2 and minus-type of ghost numbers 2, 3 and 4.

There also exist additional operators (“new moduli”) which are in the relative

cohomology of b0− b̄0 but not of b0 and b̄0 separately[12,4]. These can be expressed

as BRS commutators of terms explicitly involving the Liouville field φ, hence it

has been argued that they are not genuinely BRS-exact. However, it has been

pointed out[13] that in string field theory such operators are normally taken to

be BRS-trivial, as they do not generate new deformations of the theory. In what

follows, we will therefore work with the cohomology in which these new moduli are

set to zero.

The ghost number 0 operators Os,nOs,n′ form a ring, called the ground ring,

with the OPE (modulo BRS exact terms) defining the ring multiplication. The

ring at the SU(2) point is generated by the four operators (two electric and two
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magnetic)

a1 = O 1

2
, 1
2

O 1

2
, 1
2

a2 = O 1

2
,− 1

2

O 1

2
,− 1

2

a3 = O 1

2
, 1
2

O 1

2
,− 1

2

a4 = O 1

2
,− 1

2

O 1

2
, 1
2

(1)

satisfying the relation

a1a2 − a3a4 = 0. (2)

which define a singular conical variety, the “ground cone”.

The ghost number 1 operators Js+1,n,n′ ≡ Y +
s+1,nOs,n′ and J̄s+1,n,n′ ≡ Os,nY +

s+1,n′

act on the ground ring as generators of volume-preserving diffeomorphisms of the

ground cone. Finally, the ghost number 2 operators Y +
s,nY +

s,n′ and Y −
s,nY −

s,n′ corre-

spond to the moduli since they give rise, via the descent equation, to ghost number

0 two-forms W±
s,n,n′dz∧dz̄ ≡ Vs,nVs,n′e

√
2(1∓s)ϕdz∧dz̄, that correspond to marginal

deformations of the action.

All of the above applies to the theory at the self-dual radius. Consider now

the special set of AN points correponding to compactification radius N/
√

2, which

arise on modding out the self-dual theory by the discrete subgroups Γ = Z2N

of SU(2)[11]. The operators at these points satisfy a constraint arising from the

matching of the left and right matter momenta

n − n′ = 0 mod N. (3)

It was shown[10] that the generators of the ground ring at each of these points are

the Z2N -invariant polynomials in the generators (1) at the SU(2) point, namely,

a1 = O 1

2
, 1
2

O 1

2
, 1
2

a2 = O 1

2
,− 1

2

O 1

2
,− 1

2

X = ON

2
,N

2

ON

2
,−N

2

Y = ON

2
,−N

2

ON

2
,N

2

(4)

satisfying the relation

(a1a2)
N − XY = 0. (5)

which defines the AN ground variety. While the ground cone (2) has an isolated
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singularity at the origin, the singular locus of the AN variety (5) (except for N=1)

is given by the pair of straight lines defined by a1a2 = 0.

While eq.(3) forbids some of the moduli in the orbifold theory, one gets addi-

tional moduli in the twisted sector cc̄T ±
q = cc̄ei

√
2qX+

√
2(1∓q)ϕ, q ∈ Z++ 1

N
, 2

N
, · · · , N−1

N
.

We call these the intermediate tachyons. In the limit of infinite radius (N → ∞),

the intermediate tachyons form a continuum of operators labelled by a real number

q. There are, however, no states with non-standard ghost number in the twisted

sector.

It was argued[7] that the ghost number 1 operators and the plus-type moduli,

including the intermediate tachyons, form a module for the ground ring (modulo

BRS exact terms) under the OPE. More precisely, the plus-type discrete moduli

form a faithful module and the plus-type intermediate tachyons form unfaithful

modules for each fractional part of q.

Deformation Of The Ground Varieties

In this section we will study the effect of perturbations by various marginal

operators on the ground rings and associated varieties of c = 1 string theory. Our

arguments are based on momentum counting, and we will restrict ourselves to the

A-type points in the moduli space of the c = 1 CFT.

We will use the Hilbert space of the unperturbed theory to describe the effects

of the perturbations, under the assumption that the theory changes smoothly.

This needs some justification as we know that at least for the radius perturbation

the cohomology varies in a singular fashion[10]. For the perturbations that we

are interested in, our assumption can be made plausible by appealing to their

connection to the deformation of the corresponding Kleinian singularities.

Let us begin with the simplest case: the cosmological perturbation at the SU(2)

point, induced by adding the operator µ
∫

W0,0,0 to the action. (This is the unique

operator for which the plus and minus dressings are equivalent.) In Ref.[2], it was

argued that under this perturbation, the SU(2) ground cone (2) is deformed to the
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smooth variety defined by

a1a2 − a3a4 = µ. (6)

This observation was motivated by an analysis of the SU(2) ⊗ SU(2) content of

the moduli. Let us give an alternative motivation for the same result, using just

the matching of Liouville and matter momentum on both sides of the ground ring

relation. The Liouville and matter momenta of the cosmological operator are given

by (pϕ, pX
L , pX

R ) =
√

2(−i, 0, 0). If we associate the negative of this momentum

to the parameter µ then the perturbation formally conserves momentum. Now,

the momenta carried by a1a2 (and a3a4) are (pϕ, pX
L , pX

R ) =
√

2(i, 0, 0), precisely

the same as those we have identified with the parameter µ, hence the perturbed

equation (6) is the unique one consistent with momentum conservation. Of course,

it is assumed that the coefficient of the allowed perturbation to the ring relation

does not accidentally vanish, since there is no known reason for it to do so. (The

above argument of matching of Liouville momenta is just a scaling argument in

the spirit of Refs.[14,15].)

Remaining at the SU(2) point, we can now consider more general perturba-

tions. Suppose first that we perturb by a general modulus of plus-type:

S → S +
∑

s,n,n′

u+
s,n,n′

∫
W+

s,n,n′ . (7)

The momenta associated with the parameter u+
s,n,n′ are

√
2(i(1 − s),−n,−n′).

Thus, each occurrence of this parameter in the ring relation must be compensated

by appropriate powers of the ai. Restricting for simplicity to the case n = n′, we

find that the equation of the perturbed ground cone consistent with momentum

conservation is

a1a2 − a3a4 =
∑

s,n

αs,nu+
s,n,nas+n

1 as−n
2 . (8)

The αs,n are some constants, which are undetermined by the momentum-matching

considerations. Assuming again that they are nonzero, they can be absorbed into
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the definition of the parameters u+. (The restriction of this equation to n = 0

was also conjectured in[2]. There it was argued that among the perturbations by

plus-moduli, those with n = n′ = 0 are the only ones consistent with integrability,

since they commute among themselves — the chiral part W+
s,n of these operators

lie in the Cartan subalgebra of w∞.)

Next we consider perturbing the SU(2) theory by minus-moduli:

S → S +
∑

s,n,n′

u−
s,n,n′

∫
W−

s,n,n′ . (9)

The momenta associated to the parameters u−
s,n,n′ are

√
2(i(1 + s),−n,−n′), as a

result of which the analog of eq.(8) above would be obtained by the replacement

s → −s. This would mean, however, that the ring generators a1 and a2 would

be raised to negative powers. Let us at this point make the plausible assumption

that the perturbed ground ring is also polynomial. In this case the only allowed

term is s = n = 0, which is precisely the cosmological perturbation. We conclude,

therefore, that except for the cosmological operator, the minus-type moduli cannot

perturb the ground cone at the SU(2) point.

Things are quite different at the other AN points. Repeating the same analysis,

we easily find that the plus-type moduli can generate perturbations of the form

(a1a2)
N − XY =

∑

s,n

u+
s,n,naN+s+n−1

1 aN+s−n−1
2 , (10)

while a finite number of minus-type moduli can also generate perturbations, of the

form

(a1a2)
N − XY =

∑

0≤s−n,s+n≤N−1

u−
s,n,naN−s+n−1

1 aN−s−n−1
2 . (11)

Thus the set of minus moduli which can perturb the AN ground variety fall into

the “diamond” pattern displayed in Fig.1. There are precisely N2 minus-type

perturbations at the AN point.
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n
n′ ◦ · · · ◦ · · · ◦
↑ ր ց ր ց ր

• ◦ ◦ · · ·
ր ց ր ց ր ց

• • ◦ ◦
ր ց ր ց ր ց ր

• • • ◦ · · · −→ s

ց ր ց ր ց ր ց
• • ◦ ◦

ց ր ց ր ց ր
• ◦ ◦ · · ·

ց ր ց ր ց
◦ · · · ◦ · · · ◦

Fig.1: The “diamond” at the A3 point

(The perturbations corresponding to the semi-universal deformation are denoted by • and the rest by ◦)

We notice here that in the case of minus-type perturbations, the restriction to

the electric moduli with n = n′, involves no loss of generality. This is because of the

fact that at the AN point, we have the condition (3). Momentum counting leaves

us with operators in the “diamond”, that is operators that satisfy the conditions

0 ≤ (s−n), (s+n) ≤ N − 1. It is easy to see that there are no magnetic operators

in the “diamond” satisfying Eq.(3).

Finally, one may consider perturbing the theory by the intermediate tachyons

T±
q . In this case, momentum counting shows that the perturbation to the ground

variety can only be by fractional powers of the ai. We conclude that in first order,

the intermediate tachyon perturbations do not affect the ground variety.

Use of the w∞ symmetries

We now show how the symmetries Js,n,n′ = W+
s,nOs,n′ act on the moduli
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W−
s,nW−

s,n′ and relate the different moduli of the theory. In particular, all the

operators in the “diamond” with non-zero matter momenta are related to those

with zero matter momenta. Furthermore, starting from the negative moduli in

the “diamond” with zero matter momenta, one generates all the moduli in the

“diamond” and no others. This symmetry can be used to calculate the effect of

perturbation by moduli with non-zero matter momenta, from the knowledge of

those with zero matter momenta.

Recall that the OPE between the chiral operators Y + = cW+ and Y − = cW−

gives rise to the following commutator[2]

[W+
s1,n1

, W−
s2,n2

] =





(s1n2 + (s2 + 1)n1) W−
s2−s1+1,n1+n2

, if s2 > s1 − 1 and

|n1 + n2| ≤ s2 − s1 + 1;

0 otherwise.
(12)

Since at the AN point, the modulus W−
N−1,0,0 at the apex of the “diamond” has

the maximum spin s2 = N − 1, we can restrict our considerations to symmetries

with spin s1 ≤ N − 1
2 . Let us for definiteness, illustrate this with the example

of the A2 point. Here the zero momentum operators in the “diamond” are the

cosmological operator W−
0,0,0 and the operator W−

1,0,0 that correspond to the black-

hole perturbation[5,6]. Since the maximum value of s2 is 1, the relevant symmetries

for this theory are J 3

2
,± 1

2
,± 1

2

and J 3

2
,± 3

2
,∓ 1

2

. The second set of operators annihilate

W−
1,0,0, while the first set produce the states W−

1

2
,± 1

2
,± 1

2

to fill up the “diamond”.

Relation to semi-universal deformations

The perturbations generated by the minus-moduli are closely related to the

concept of semi-universal deformations of singular varieties. A deformation of a

variety K0 is essentially a bundle over a certain base space U with a marked point

u0, such that the fibre over u0 is (isomorphic to) the original variety K0. The total

space of this bundle is like a space of varieties, containing the given variety K0 and

others that are continuously connected to it. Precise definitions of this concept

may be found, for example, in Refs.[16,17].
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A deformation is called semi-universal if any other deformation can be related

to it by maps between the bundles and the base spaces. In some sense, the semi-

universal deformations are the ones which are truly independent, while the others

are equivalent to it by a suitable change of variables. The application of this concept

to the Kleinian singular varieties has been worked out by Tjurina[17]. We briefly

review her results for the A-series, and then find a relation with the perturbations

of the ground varieties of c = 1 string theory discussed above.

The AN Kleinian singularities are complex hypersurfaces in C3 defined by

f(X, Y, Z) ≡ Z2N − XY = 0. (13)

It has been shown[17] that the semi-universal deformations of this equation are

given by the quotient C(X, Y, Z)/I(f, fX , fY , fZ) where C(X, Y, Z) is the ring of

polynomials in X, Y, Z and I is the ideal generated by the function f above, and

its three partial derivatives. This result is easy to understand to first order in the

deformation. If we consider any redefinition X̃ = X + δX(X, Y, Z), (and similarly

for Y, Z), then we have, to first order,

f(X̃, Ỹ , Z̃) = f(X, Y, Z) + fXδX + fY δY + fZδZ (14)

It is clear from this that such a redefinition can absorb any perturbation containing

at least one power of f, fX , fY or fZ . Hence the independent deformations are

given by quotienting with the ideal generated by these polynomials. This quotient

is easily computed and one finds that the semi-universal deformation of eq.(13) is

the (2N − 1)-parameter family of varieties

Z2N − XY = t1Z
2N−2 + · · · + t2N−2Z + t2N−1. (15)

Returning now to the (non-chiral) ground varieties in eq.(5)(which are the ones

related to closed-string theory), we may ask what are the semi-universal deforma-

tions of these. Strictly speaking, the above result on deformations of Kleinian
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varieties with isolated singular points does not apply to the non-chiral ground va-

rieties at the AN points, which have lines of singular points. However, these spaces

arise as U(1) quotients of products of the Kleinian varieties and their defining

equations are very similar (compare eqs.(5) and (13)), so we proceed with the as-

sumption that here too, semi-universal deformations are obtained by quotienting

with the ideal generated by the defining function and its first derivatives. This

is anyway true to first order in the deformation parameters, as one can simply

carry over the argument above eq.(15). The quotient is again straightforward to

compute, but leads this time to an infinite-dimensional space of deformations (in

accordance with the result[18] that the space is finite-dimensional if and only if the

variety has an isolated singularity). The result is

(a1a2)
N − XY =

∑

k,l not both >(N−1)

tkla
k
1a

l
2. (16)

Now to make contact with the results of the previous section, one should ask

whether this infinite-dimensional space of semi-universal deformations is realized

by physical perturbations of the AN CFT background. Examining eqs.(10) and

(11), we find that only a finite subset of the perturbations in eq.(16) above can be

realised in string theory. In fact, none of the semi-universal deformations can be

generated by plus-type moduli, while the minus-type generate the finite subset of

terms in eq.(16) given by k, l ≤ (N − 1).

Thus we have found that all perturbations generated by minus-type moduli cor-

respond to semi-universal deformations of the ground variety.

Let us ask under what conditions these perturbations can smoothen the sin-

gularity of the ground varieties. First restrict to the case of perturbations by

minus-moduli of zero matter momentum, hence keep only the terms with k =

l, k, l ≤ N − 1, in eq.(16) above. Rewrite this equation as f(a1, a2, X, Y ) ≡
g(a1a2) − XY = 0, where g is a polynomial function of degree N . The tangent

space to the perturbed variety is defined by the normal vector (fa1
, fa2

, fX , fY ) =
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(a2g
′(a1a2), a1g

′(a1a2),−Y,−X). The variety will be singular at points where this

vector vanishes, and which satisfy f = 0. Such points fall into two classes:

I : X = Y = 0, g(a1a2) = 0, g′(a1a2) = 0

II : X = Y = 0, g(a1a2) = 0, a1 = a2 = 0.
(17)

Condition I is satisfied whenever the polynomial g has a multiple root. For each

such root ri, we have singularities on the hyperbola a1a2 = ri, X = Y = 0. Thus

in this situation, the singularities of the unperturbed variety, which lie on the

pair of straight lines a1a2 = 0[10], remain present but lie on the union of several

hyperbolae, one for each multiple root. Condition II is satisfied if the polynomial g

has no constant term, which means that the perturbed variety passes through the

origin. In this case, the origin is the only singular point. If neither of the conditions

is satisfied (which is true for generic perturbations) then the perturbed variety is

nonsingular. Note that if we perturb by the cosmological operator alone, then to

first order, 0 is an (N − 1)-fold multiple root, so that (for N ≥ 2) condition I is

satisfied and the singular locus remains the pair of straight lines a1a2 = 0. Thus,

the fact that to first order, the cosmological perturbation removes the singularity

at the SU(2) point[2] seems to be a nongeneric case.

Calculation for perturbed ground ring action

In this section we will calculate explicitly the perturbations of the ground

variety by the minus-moduli in some special cases. The computations substantiate

the momentum counting argument presented above.

The set of discrete plus-moduli form a faithful module of the ground ring[7]

and we can study the effect of perturbations by studying the ring action on

this module. Let us start with the unperturbed theory at the SU(2) point.

The ai acting on a state Y +
s,nY +

s,n′ produce states of appropriate momenta. Due

to the orthonormality of states with different momenta, the resulting state is

uniquely determined by taking its inner product with states in the dual mod-

ule Y −Y −. For example, a1Y
+
s,nY +

s,n′ is a state that has non-zero inner prod-
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uct only with Y −
s+ 1

2
,−n− 1

2

Y −
s+ 1

2
,−n′− 1

2

. We now use the SU(2) relation Y ±
s,n =

√
(s+n)!

(2s)!(s−n)!

(∮
J−
)s−n

Y ±
s,s, and deform the contour of J− to make it act on ai

and Y −. This reduces our problem to knowing the ground ring action on the

tachyon. One easily finds that

a1 Y +
s,sY

+
s,s = (2s)2Y +

s+ 1

2
,s+ 1

2

Y +
s+ 1

2
,s+ 1

2

a2 Y +
s,sY

+
s,s = |A(s)|2Y +

s+ 1

2
,s− 1

2

Y +
s+ 1

2
,s− 1

2

a3 Y +
s,sY

+
s,s = 2sA(s)Y +

s+ 1

2
,s+ 1

2

Y +
s+ 1

2
,s− 1

2

a4 Y +
s,sY

+
s,s = 2sA(s)Y +

s+ 1

2
,s− 1

2

Y +
s+ 1

2
,s+ 1

2

,

(18)

where A(s) is a constant that we will now determine by self-consistency. Carrying

out the contour deformation in the inner product, we have

a2 Y +
s,nY +

s,n′ =
√

(s − n + 1)(s − n′ + 1)|A(s)|2Y +
s+ 1

2
,n− 1

2

Y +
s+ 1

2
,n′− 1

2

. (19)

By the Z2 symmetry under X → −X of the problem, the above for n = n′ = −s

should be the same as the a1 action on Y +
s,sY

+
s,s. This determines A(s) = 2s√

2s+1
.

(We have chosen the positive square root so as to make the ring action on the

module commutative.) This finally gives us the ground ring action on discrete

states:

a1(2) Y +
s,nY +

s,n′ =
(2s)2

2s + 1

√
(s ± n + 1)(s ± n′ + 1)Y +

s+ 1

2
,n± 1

2

Y +
s+ 1

2
,n′± 1

2

,

a3(4) Y +
s,nY +

s,n′ =
(2s)2

2s + 1

√
(s ± n + 1)(s ∓ n′ + 1)Y +

s+ 1

2
,n± 1

2

Y +
s+ 1

2
,n′∓ 1

2

,

(20)

From eqs.(20), it is easy to check the commutativity of the ring and the relation

(2). Note also that the above equations agree with the explicit calculations of

Ref.[19] after setting the new moduli to zero there.

Now consider the perturbation by the cosmological operator. The inner prod-

uct that we are considering receives corrections due to the presence of the (inte-

grated) cosmological operator. The corrections to the a1, a3 and a4 actions on

the discrete tachyon Y +
s,sY

+
s,s vanish by simple momentum counting — they would
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have produced states whose n-value is greater than the s-value, and such a state

is not in the cohomology. Only the a2 action is non-zero:

a2 Y +
s,sY

+
s,s

∣∣∣
correction

= −µa2Y
+
s,sY

+
s,s

∫
W0,0,0 = µB(s)Y +

s− 1

2
,s− 1

2

Y +
s− 1

2
,s− 1

2

, (21)

where B(s) is a constant to be determined. we repeat the steps as in the unper-

turbed case, and fix B(s) by demanding that the perturbed ring is commutative.

This determines B(s) uniquely to be B(s) = 2s/(2s + 1)(2s − 1)2. Hence the

corrections to the ground ring action are:

a1(2) Y +
s,nY +

s,n′

∣∣∣
correction

= µ

√
(s ∓ n)(s ∓ n′)

(2s + 1)(2s − 1)2
Y +

s− 1

2
,n± 1

2

Y +
s− 1

2
,n′± 1

2

,

a3(4) Y +
s,nY +

s,n′

∣∣∣
correction

= µ

√
(s ∓ n)(s ± n′)

(2s + 1)(2s − 1)2
Y +

s− 1

2
,n± 1

2

Y +
s− 1

2
,n′∓ 1

2

,

(22)

Combining eqs.(20) and (22), we get (a1a2 −a3a4)Y
+
s,nY +

s,n′ = µY +
s,nY +

s,n′ , verifying

the cosmologically perturbed ring relation (6) at the SU(2) point.

It does not appear to be straightforward to extend these calculations to the

other AN points, although that would provide a useful check on our conclusions.

We can, however, study the action of the ground ring elements on the intermediate

tachyons — (N − 1 species of these are present in the AN theory for N ≥ 2) —

and corrections to them. Since these form an unfaithful module (for each species of

tachyon)[7], there could be additional relations in the module that are not ring rela-

tions. Indeed, the fermi surface equation a1a2 = 0 is true only for the intermediate

tachyons and not a relation in the (unperturbed) ground ring.

Again, start by considering the effect of the cosmological perturbation. Under

this perturbation, the action of the ground ring generators on the tachyon receives

corrections of the form −µaiTq

∫
W0,0,0. A simple momemtum counting shows once

again that the corrections to a1, a3 and a4 on the tachyon vanish — the would-be

state is not in the cohomology. The correction to a2 is the tachyon with momentum

q − 1.
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Following[8], this correction can be written as:

−µ lim
w→0

a2(w, w̄)Tq(0)

∫
d2z W0,0,0(z, z̄) = −µ lim

w→0

∫
d2z|w|2−2q|z|2q−4Tq−1(0)

= −µπ
∆(q − 1)

∆(0)∆(q)
Tq−1(0),

(23)

where ∆(x) = Γ(x)/Γ(1−x). To simplify the above formula we define the following

(singular) normalization of the tachyons and the couplings u− corresponding to the

perturbation by the minus-moduli

T̃q = ∆(q)Tq

ũ−
s,n =

π

∆(−2s)
u−

s,n.
(24)

With these normalizations, the perturbed action of a2 on the tachyon is a2 T̃q =

−µ̃T̃q−1. On the other hand, action of a1 on the normalized tachyon is a1T̃q =

−T̃q+1. Combining these, we find

a1a2T̃q = µ̃ T̃q (25)

the equation for the perturbed fermi surface[8,9].

We can now study the effect of perturbations corresponding to other minus

moduli. Consider the modulus W−
1,0,0, which corresponds to the black hole per-

turbation[5,6] and produces a constant term in the equation of the perturbed A2

variety(11). Momentum-counting shows in particular that the correction to the

action of a2 on the tachyon, −u−
1,0a2Tq

∫
W−

1,0,0, would result in a state that is not

in the cohomology — which implies that this correction vanishes. Despite this,

the correction to the action of a2
2 on this tachyon is expected to be nonzero by our

arguments. This is not really a contradiction, since we are considering the products

of various fields in the cohomology when their locations on the worldsheet collide,

and the decoupling of BRS-trivial fields can fail to hold at coincident points.
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Using the explicit expression for a2
2 = O1,−1O1,−1, a straightforward though

somewhat tedious calculation gives

− u−
1,0 lim

w→0
a2
2(w, w̄)Tq(0)

∫
d2z W−

1,0,0(z, z̄)

= −u−
1,0

∫
d2z|z|2q−4|1 − z|2

∣∣∣∣∣

(
q/
√

2

z
+

3/
√

2

(1 − z)

)∣∣∣∣∣

2

Tq−2(0)

= u−
1,0

π∆(−2)−1

8(q − 1)2(q − 2)2
Tq−2(0),

which after normalization (24) gives the correction due to the black hole pertur-

bation

a2
2T̃q =

1

8
ũ−

1,0T̃q−2, (26)

which gives a2
1a

2
2Tq = 1

8 ũ−
1,0Tq.

Discussion and Conclusions

We have studied the deformation of the AN ground varieties of the c = 1

string theory under perturbations by the physical moduli of the theory using a

simple scaling relation. The unperturbed ground varieties were related to the the

Kleinian singular varieties[10]. Here we find that a finite set of physical pertur-

bations produce the the analogue of the semi-universal deformation of the corre-

sponding ground variety.

Let us briefly comment on the question of integrability of the perturbations

that we have been considering. For the plus-type perturbations, the requirement of

integrability implies that eq.(10) should be taken seriously only for n = 0, in which

case the right hand side is a power series in (a1a2) with powers ranging from N−1 to

infinity. The first term is associated to the cosmological perturbation. The second

one, proportional to (a1a2)
N , is associated to the operator W+

1,0,0 = ∂X∂̄X which

is the radius-changing perturbation. This term can clearly be absorbed into the

unperturbed equation by a simple rescaling of a1 and a2. Thus the ground variety

16



is unaffected, to first order, by a radius-changing perturbation. This may appear a

little disturbing at first, since the ground variety of the theory clearly depends on

the compactification radius. However, the radius-dependence of this variety, which

has been analysed in Ref.[10], is highly singular. Even the dimension of the variety

depends on whether the radius is rational or irrational. This phenomenon clearly

cannot be perturbative in the radius, which explains why we do not see it here.

Naturally, this demonstrable limitation of perturbation theory casts some doubt

on the validity of any analysis which is perturbative in the u±.

As for the minus-type perturbations, the requirement of integrability presum-

ably does not impose any limitation on them, since their chiral ingredients W−
s,n

satisfy an abelian algebra. It has in fact been shown explicitly in Ref.[6] that the

minus-moduli of zero matter momentum generate all-orders solutions to the string

field theory equations of motion, which amounts to a proof of their integrability.

Thus eq.(11) is meaningful for all s, n in the “diamond” of Fig.1.

The special role played by moduli of minus-type, which include the physically

interesting black hole perturbation, seems worth understanding in more detail.

Recent attempts to find the black hole perturbation in the framework of matrix

models[20] may help to illuminate this question.
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