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ABSTRACT
We examine some six-dimensional orientifold models with N = 1 supersymmetry,
which can be realised as intersecting 7-branes and 7-planes. These models are studied
in the light of recent work showing that orientifold planes carry anomalous gravitational
couplings on their world-volume. We show that gravitational anomalies can be locally
cancelled by these new couplings at every point in the internal space, under the assumption
that the anomaly residing on orientifold planes is distributed in a particular way among

brane-plane and plane-plane intersections.
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1. Introduction

Two types of extended objects have played an important role in string theory in recent
years: Dirichlet branes and orientifold planes. Classically, there are well-known differences
between them: in contrast to D-branes, orientifold planes are non-dynamical and do not
carry Yang-Mills multiplets on their world volume. However, both kinds of objects are
charged under appropriate p-form potentials. Moreover, in certain models, when quantum
corrections are taken into account, Zs orientifold planes can split into nonperturbative
generalizations of D-branes[[,f], so dynamically there is something in common between
these two types of objects.

It has been shown recently that Z5 orientifold planes behave very much like Dirichlet
branes as far as WZ gravitational couplings are concerned[ff]. Indeed, both branes and
planes carry certain precise gravitational Wess-Zumino terms on their world-volumes. For
the case of branes, these terms are derived by taking a pair of intersecting branes and
requiring cancellation of gravitational anomalies on the intersection region via inflow from
the branes[f]]. The analogous terms on orientifold planes were derived in a different way[{],
so turning the logic around, one should be able to check that the predicted WZ terms on
planes actually cancel the anomalies on their intersection regions with D-branes and with
other planes.

As we will see, it will not be possible to actually demonstrate that this local anomaly
cancellation does take place. Instead, we will find a prediction for how the WZ terms on
intersecting branes and planes should be distributed among the brane-plane and plane-
plane intersections in order to bring about local anomaly cancellation. An independent
verification of our prediction would be useful in demonstrating that anomalies really are

cancelled locally by the gravitational couplings found in Ref.[f].

2. Anomalies on Intersections of Branes and Planes

Let us assume that the gravitational WZ couplings on branes and planes are of the

form

/ C AY(R) (2.1)
B

where C' is the RR background, Y (R) is some curvature polynomial and B is the world-

volume dimension. Generalizing Ref.[f]], we take a configuration of two 7-branes/planes
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intersecting over a six dimensional space Bi2. Thus we are considering brane-brane, brane-

plane and plane-plane intersections. The WZ coupling now looks like

2
—Z/(Gl/\Y7+G5/\Y3+Y0/\*Oo) (22)
i=171

Here ¢ = 1, 2 labels the world-volume of the two intersecting objects, each of which can be
a T-brane or a 7-plane. C,, and Y,, are the background RR n-form and curvature n-form
respectively.

In the presence of branes or planes, G,, and dC,,_; differ. The former is gauge invariant
whereas the latter is not. Hence a partial integration has been carried out to get Eq.(2:2)
from Eq.(Rd)), using Yg = dY7, Yy = dYs.

The relevant Bianchi identities and equations of motion are:
dG1 = 6%(1)Yo(1) + §%(2)Yo(2)
dGs = 6%(1)Y4(1) + 6%(2)Ya(2) (2.3)
d* Gy = 6%(1)Ys(1) + 6°(2)Ys(2)

From the last equation we see that *C has an anomalous variation
5(xCo) = —6%(1)Y5(1) — 6%(2)Y5(2) (2.4)

where ¢ is a general coordinate transformation, and Y7 = dYgs. Therefore, under a general
coordinate transformation, the WZ terms undergo an anomalous variation which can be

shown to follow by the descent procedure from
—2 [ M%)+ %E)%(0) + K1Y (2.5)

Thus the anomalies on the intersection regions will be proportional to the product of the
corresponding curvature forms for brane-brane (BB), brane-plane (BP) and plane-plane

(PP) intersections.

3. Anomaly Cancellation

The WZ terms on a 7-brane have been determined earlier in[fJfj,f]. The result is as

follows:

~ 1 1 ~
— *h_ @B+ 2 _
W2)n= [ 6= 5O Amt gt A O - 8o (31)
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where 5 and C®* are the RR 0-form and 4-form potentials of the type IIB string, and
p; are the Pontryagin classes given in terms of the curvature form R. The terms on the

orientifold plane have been worked out in [J]. In this case the result is

-~ 1 1 ~
- A — — W+ - 2 _
(WZ)p /28 [ 4* ¢ 240 Ap1 + 11520(ﬁ/\(27p1 44p,) (3.2)

The first term in the above equations determine the charges of the branes and planes.
As for the second term in (W Z)p, a different argument for its coefficient can be given
as follows(this is in the spirit of Ref.[[]]). Let us take type IIB on a T?/Zy orientifold.
Consistency conditions require the existence of 4 orientifold planes and 16 D-branes. This
theory is equivalent to F-theory on K3[B].

Now, F-theory is conjectured to have a 12-dimensional term of the form [ CW+ A
Is[AAT], where Ig is an 8-form polynomial in the curvature. Compactifying this on K3
gives a term proportional to f C™W+ A py in 8 dimensions. On the IIB side, let the branes
and planes carry the terms o [ C®* A py and 8 [ W+ A p; respectively. Since we know

that a = comparing the IIB result to that from F-theory gives # = —Z:. In other

_4_18’ 24
dimensions, C®* is replaced by different RR fields, and one can show that the WZ
couplings (in various dimensions d = 10 —n) of branes and planes come with factors o and
3, where o and 3 are related by 32ac+2"T13 = —1. The specific case of d = 7 was treated
explicitly in Ref.[[q].

The third terms in the above equations for the brane and plane are required to satisfy
the conjectured duality of IIB on T?/Z, to the heterotic string on T?[§,[[]. This duality
implies the existence of a term ¢ A Xg on the heterotic side, where Xg is another 8-form
polynomial in the curvature. (Xg actually depends on the gauge field strengths as well,
but since planes have no gauge couplings, the gauge fields are set equal to zero for this
discussion.) Since IIB has no such term (its existence would violate SL(2,Z) invariance),
it must come from branes and planes, as has been shown in Ref.[J].

Before we go on to calculate the inflow contributions Igg, Ipp and Ipp, we should ask
what anomalies they are expected to cancel. What is already known[f] is that the inflow
Ipp onto brane-brane intersections cancels the anomalies of the hypermultiplets which
come from Dirichlet-Neumann (DN) open strings connecting two intersecting branes. In
order to investigate anomalies on BP and PP intersections we need to embed these in a

definite orientifold model, unlike BB intersections, which can be analyzed independent of
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a specific model. We examine the Gimon-Polchinski (GP) orientifold[@]ﬂ and the Blum-
Zaffaroni-Dabholkar-Park (BZDP) orientifold model[l3,14] to illustrate the cancellation

process explicitly.

GP orientifold

Since we want a model with intersecting 7-branes and 7-planes, we consider a T-dual
version[[§] of the GP orientifold. This is defined as a Zy x Z} orientifold of 1IB on T4,
where Zy = {1,9}, g = Ze7(—1)2Q and Z} = {1,h}, h = Tgo(—1)Q. T* is a four
dimensional torus labelled by (25, ...,2%), Q is orientation reversal, and Z;; is reversal of
the space dimensions z?, 27.

We now have two sets of orientifold planes, one set at the fixed points of Zg7 and the
other set at the fixed points of Zgg. There are four orientifold planes in a set, with each
plane carrying a charge of —4 units of the RR scalar 5 Cancellation of charges requires
placing 16 D 7-branes transverse to one plane and another set of 16 D 7-branes transverse
to an orthogonal plane. The charge is neutralized locally when each orientifold plane has
four D-branes on top of it. Additionally, gh = Zgrge(—1)% will give rise to orbifold twisted
sector states.

We will show that in this model, anomaly inflow onto PP and BP intersections is
necessary to locally cancel the anomalies which come from the untwisted sector, the orbifold
twisted sector and the brane world-volumes. It will turn out that a specific distribution of
the anomaly on these two types of intersections brings about local anomaly cancellation;
this can perhaps be tested independently in the future.

Anomaly cancellation in this model can be viewed in two ways: globally and locally.
Globally, due to overall charge cancellation, there will be no anomaly inflow and the bulk
anomalies will cancel among themselves. Thus the branes and planes contribute anomaly

inflow to the intersection region in such a way that

ngplpp +npplpp + npplpp =0 (3.3)

where ngg,npp,npp are the number of brane-brane, brane-plane and plane-plane inter-
sections.
The other aspect, local cancellation, is the emphasis of this paper. WZ terms on

branes are believed to ensure local anomaly cancellation[fd]. In the spirit of the idea that

1 This model and related ones were studied earlier as open string orbifolds, in Ref.[[J].
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planes (though not dynamical classically) behave very much like branes, we expect the
analogous result to go through for BP and PP intersections.

A similar situation occurs in the orientifold of M-theory on 7°/Z> [[G,[7. On one
hand, due to cancellation of charge, there is actually no inflow — under a general coordinate
transformation the Lagrangian remains invariant. On the other hand, as observed in
Ref.[[7], the anomalies in the theory are cancelled locally by inflow from the bulk due to the
C A Ig term in the action. The presence of five-branes activates the inflow and contributes
16 tensor multiplets to the spectrum. This inflow is reversed by planes carrying minus half
a unit of charge.

One important point about anomaly cancellation in the GP model is that it is sufficient
to cancel the irreducible part of the anomaly, as the reducible part can be cancelled by an
extension of the Green-Schwarz mechanism|[[§]. Moreover, for our purposes we can ignore
the observations in Ref.[I§] about non-perturbative effects breaking some U(1) factors,
since those issues are irrelevant for cancellation of the irreducible part of the anomaly.
Hence we will list the perturbative spectrum in what follows.

The spectrum of the T-dual version of the GP model arises as follows. The un-
twisted sector consists of one gravity multiplet, one tensor multiplet and four hypermul-
tiplets of D = 6, N = 1 supersymmetry. The twisted sector (coming from both open
strings and orbifold twisted-sector states) consists of vector multiplets and hypermultiplets.
The total spectrum in various regions of the moduli space is one supergravity multiplet
(gv> Bjl,» ¥p.), one tensor multiplet (B,,,,, x™, ¢), vector multiplets (A, ") in the adjoint
representation of the enhanced gauge group G at various points in the moduli space, plus
hypermultiplets (4¢, ) in various representations. We list the hypermultiplets along

with their origin:

Group G x G’ U(16) x U(16)’ U(4) x U(4)4 U2)8 x U(2)8

16 fixed points of gh 16 x (1,1) 16 x (1,1) 16 x (1,1)
antisym. rep. of G 2 x (120,1) 8 x (6,1) 16 x (1,1)
antisym. rep. of G’ 2 x (1,120) 8 x (1,6) 16 x (1,1)
DN open strings 1x(16,16) 16 x (4,4) 64 x (2,2)
untwisted sector 4x(1,1) 4x(1,1) 4x(1,1)

The DN open string modes are treated separately, as the anomaly from them is can-

celled by inflow from the branes to the intersection region[f]. Summing over the remaining
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multiplets at any point in the moduli space, we find that the irreducible part of the anomaly
(the coefficient of trR*) is equal to 2.

Now we can calculate the inflow contribution from the branes and planes to the in-
tersection region. Combining Eqgs.(E-3),(B)) and (B-3), the result for the irreducible part

of the anomaly inflow is:

1 7 44
g = —— Ipp= —— Ipp———2 3.4
PP = 57600 TP T 115200 T T 5760 (3.4)
Also, it is easy to see that in Eq.(B.J), the relevant values are
TLBB:256, TLBP:128, npp:16 (35)
satisfying the consistency condition required by charge cancellation.
Using the above results one sees that
2
128 Ipp +16 Ipp = — = (3.6)

which cancels the anomaly from the spectrum (excluding the DN open string modes) at
all points in the moduli space. Note that the last term in Eq.(B.J) actually does not
contribute to this result, hence global anomaly cancellation does not rely on the existence
of that term.

As we will see, for anomalies to be cancelled locally, the coefficient of the last term in
Eq.(B.2) gets correlated with the proportion in which bulk anomalies are distributed in the
orientifold model. Let us now examine how the anomalies from the various multiplets are
distributed to the various brane-brane, brane-plane and plane-plane intersection regions.
We make the following observations:

(a) For the BB case, as noted above, the inflow cancels the anomaly from modes of DN
open strings connecting the two branes. In other words the hypermultiplets in the (a,b)
representation of the group U(a) x U(b)" lie on this intersection region. Overall at any
point there are 256 hypers, contributing an anomaly of —4—25.

(b) There are 16 twisted sectors (from the gh part of the orientifold group) contributing
16 neutral hypermultiplets. These are constrained to lie one on each of the 16 plane-plane
(PP) intersection regions. One way to confirm this is to go to the quantum corrected picture
of this model. As has been shown in Ref.[[7], the PP intersection region joins smoothly to

form a (nonperturbative) brane. This is due to the presence of blowup modes of the orbifold

1 1

fixed points. These twisted sectors contribute a total anomaly of 16. —zr = —555-

6



(c¢) The vectors and the hypers (which come from the multiplets on the branes) are confined
along the BP intersection regions. The anomaly from these should be cancelled by inflow
from the intersecting brane and plane. It is easy to check that the difference between the

number of vectors and hypers is 32 at every point in the moduli space, hence the anomaly

1
5760 180"

(d) At no point in the moduli space can a single brane move freely. The minimum number

from these states is 32.

of branes that can move together in this theory is two, giving the gauge group U(2)® x
U(2)"®[[F]. In this case the anomaly from BB will be four times the single BB value, and
the anomaly from BP will be double the original value.
(e) The only states not accounted for so far are the “bulk” multiplets, from the untwisted
sectors, consisting of 1 gravity + 1 tensor + 4 hypers. They contribute a total anomaly
of i. Because there is no anomaly in the 10d bulk theory, we must assume that this
anomaly, which arises from the orientifolding operation, is distributed in some way over the
orientifold planesﬁ. This means that it can live on either the BP or the PP regions. Below
we will discover in what proportion it must be distributed for local anomaly cancellation
to take place.
From the above, the total anomalies at the BP and the PP intersection regions are
1

750 and — 360

the BP and PP regions are

respectively. From Eqs (@),(@) we know that the inflow contributions to

o and — respectlvely Therefore local anomaly cancellation

L
247

9

demands that the untwisted sector multlplets whose total anomaly is must have this

anomaly distributed in the proportion —ﬁ and to the BP and PP intersection regions.
Since there are 128 BP and 16 PP intersections, this in particular implies that each indi-

vidual BP intersection receives an anomaly of —Tl?ﬁ while each PP intersection receives

L
128"

Thus, in the process of arguing that the WZ terms of Ref.[B] are consistent with local
anomaly cancellation, we have also made a prediction: the untwisted sector in the (T-dual)
GP orientifold must have its anomaly localized on BP and PP intersections in the ratio
—2:3. An independent confirmation of this prediction would provide significant support

for the idea that anomalies are locally cancelled in these models.

BZDP orientifold

2 An analogous assumption was made in Ref.[[7], where the bulk anomaly was distributed

equally over 32 orientifold 5-planes.



Next we consider a different model in six dimensions with N = 1 supersymmetry,
which can also be realised in terms of intersecting 7-branes[[3,[4]. This model has the
same orientifold group Zs x Z) as the GP model considered earlier, but the orientation-
reversal symmetry {2 acts with an additional minus sign on the twisted sector states of the
orbifold. (This is like turning on discrete torsion in the orbifold construction[[9,20]). This
symmetry of the orbifold flips the sign of the twist fields at all fixed points.

The untwisted sector is the same as before, but now there are no charged hypermul-
tiplets. They are all projected out. However, the orbifold twisted sectors contribute 16
tensor multiplets of N = 1 supersymmetry. The vector multiplets are in the adjoint of
SO(8)*x SO(8)*. As this model has no hypers (from the branes) the moduli of moving the
branes are also missing. We now have 2 sets of four intersecting orientifold planes at the
fixed points of the orientifold group. A set of four D-branes lie on top of each orientifold
plane. Therefore we have the following situation. There are 16 intersection regions. Each
region consists of one PP, 16 BB and 8BP intersections. Now one has to calculate the total

anomaly from each such point. The answer is
16[BB+8IBP+IPP:O (37)

from Eq.(B.4). Hence in this model there is no net inflow from the branes and planes.
The bulk anomalies cancel among themselves, as the spectrum satisfies the six dimen-

sional anomaly cancellation equation:
H -V =273 -29T (3.8)

with H =4,V =224 and T = 17.

Local cancellation in this model is easy to see from the following observations:
(1) The 16 intersection regions have a tensor multiplet each. These tensor multiplets take
the place of hypers in the GP model, because here the hypers are projected out and tensors
are retained.
(2) The vector multiplets which are in the adjoint of SO(8)* x SO(8)"* should lie along the
BP intersection region. But the model has no such distinct regions. Nevertheless one can
assume the vectors to be distributed equally to the 16 intersection regions of the model,
as each one contains a single BP intersection.
(3) For local cancellation of anomalies, an equal fraction of the total anomaly from the

untwisted sector must go to each of the 16 symmetric intersection regions. Thus we need
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an anomaly of 1—16. 2—14 at each intersection region. This also follows from our analysis of

the GP model. Recall that there we predicted that the untwisted sector contributes an
anomaly of —le to each BP intersection and 1—§8 to each PP intersection. Since each
intersection region in the BZDP model has 8 BP and 1 PP intersections overlapping, the

1

anomaly from the untwisted sector will be 8. —Tl% + = on each such region, as

1 1
128 384
expected.

4. Conclusions

The models we have studied here not only exhibit global cancellation of gravitational
anomalies, but are also consistent with local anomaly cancellation on each of the defect
regions.

We have argued that local anomaly cancellation will take place if anomalies are dis-
tributed in the specific ratio —2 : 3 on brane-plane and plane-plane intersections. Since
we have not found an independent way of computing this distribution in the present mod-
els, our results do not actually prove that local anomaly cancellation does take place, but
rather should be viewed as a new prediction for the way anomalies reside on brane-plane
and plane-plane intersections.

Although we have only checked two models explicitly, we expect that all other 6-
dimensional orientifold modeldl will exhibit local anomaly cancellation in the same way.

Clearly it is important to find an independent way of predicting the distribution of
anomalies onto different types of defect intersections. This would confirm that the results
of Ref.[f] about anomalous couplings on orientifold planes are actually responsible for
local anomaly cancellation. Perhaps more important, it would give some new insight into
the orientifolding procedure itself, since we do not understand the detailed mechanism by
which potential anomalies are created by orientifolding and eventually cancelled by inflow
from the bulk.
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3 See for example Ref. B1,p2,p0,3,p4).



References

A. Sen, “F-theory and orientifolds”, hep-th/960515(, Nucl. Phys. B475 (1996), 562.
D.R. Morrison and N. Seiberg, “Extremal transitions and five-dimensional supersym-
metric field theories”, hep-th/9609070, Nucl. Phys. B483 (1997), 229.

K. Dasgupta, D. Jatkar and S. Mukhi, “Gravitational couplings and Zy orientifolds”,
bep-th/9707224.

M.B. Green, J.A. Harvey and G. Moore, “I-brane inflow and anomalous couplings on
D-branes”, hep-th/9605033, Class. Quant. Grav. 14(1997) 47.

M. Li, “Boundary states of D-branes and Dy strings”, hep-th/9510161], Nucl. Phys.
B460 (1996), 351.

M. Bershadsky, V. Sadov and C. Vafa, “D-branes and topological field theories”, hep]

Th/9611229, Nucl. Phys. B463 (1996), 420.

[12]
[13]
[14]

[15]

A. Sen, “Strong coupling dynamics of branes from M-theory”, hep-th/9708002.

C. Vafa, “Evidence for F-theory”, hep-th/9602023, Nucl. Phys. B469 (1996), 403.

S. Ferrara, R. Minasian and A. Sagnotti, “Low energy analysis of M and F theory on
Calabi- Yau threefolds”, hep-th/9604097, Nucl. Phys. B474 (1996), 323.

S. Sethi, C. Vafa and E. Witten, “Constraints on low-dimensional string compactifi-
cations”, hep-th/9606129, Nucl. Phys. B480 (1996), 213.

E. Gimon and J. Polchinski, “Consistency conditions for orientifolds and D-manifolds”,
hep-th/9601038, Phys. Rev. D54 (1996), 1667.

M. Bianchi and A. Sagnotti, “Twist symmetry and open string Wilson lines”, Nucl.
Phys. B361 (1991), 519.

J. Blum and A. Zaffaroni, “An orientifold from F theory”, hep-th/9607019, Phys. Lett.
B387 (1996), 71.

A. Dabholkar and J. Park, “A mote on orientifolds and F-theory”, hep-th/9607041],
Phys. Lett. B394 (1997), 302.

A. Sen, “A non-perturbative description of the Gimon-Polchinski orientifold”, hep]

Th/9GTTT3G, Nucl. Phys. B489 (1997), 139.

[16]
[17]

[18]

[19]

K. Dasgupta and S. Mukhi, “Orbifolds of M-theory”, hep-th/9512196, Nucl. Phys.
B465 (1996), 399.

E. Witten, “Five branes and M-theory on an orbifold”, hep-th/9512219, Nucl. Phys.
B463 (1996), 383.

M. Berkooz, R.G. Leigh, J. Polchinski, J.H. Schwarz, N. Seiberg, E. Witten “Anom-
alies, dualities and topology of D=6, N=1 superstring vacua”, hep-th/9605184, Nucl.
Phys. B475 (1996), 115.

C. Vafa and E. Witten, “On orbifolds with discrete torsion”, hep-th/940918Y, J. Geom.
Phys. 15 (1995), 189.

10


http://arXiv.org/abs/hep-th/9605150
http://arXiv.org/abs/hep-th/9609070
http://arXiv.org/abs/hep-th/9707224
http://arXiv.org/abs/hep-th/9605033
http://arXiv.org/abs/hep-th/9510161
http://arXiv.org/abs/hep-th/9611222
http://arXiv.org/abs/hep-th/9611222
http://arXiv.org/abs/hep-th/9708002
http://arXiv.org/abs/hep-th/9602022
http://arXiv.org/abs/hep-th/9604097
http://arXiv.org/abs/hep-th/9606122
http://arXiv.org/abs/hep-th/9601038
http://arXiv.org/abs/hep-th/9607019
http://arXiv.org/abs/hep-th/9607041
http://arXiv.org/abs/hep-th/9611186
http://arXiv.org/abs/hep-th/9611186
http://arXiv.org/abs/hep-th/9512196
http://arXiv.org/abs/hep-th/9512219
http://arXiv.org/abs/hep-th/9605184
http://arXiv.org/abs/hep-th/9409188

[20]

[21]

R. Gopakumar and S. Mukhi, “Orbifold and orientifold compactifications of F-theory
and M-theory to siz and four dimensions”, hep-th/9607057, Nucl. Phys. B479 (1996),
260.

A. Dabholkar and J. Park, “An orientifold of type-IIB theory on K3”, hep-th/9602030,
Nucl. Phys. B472 (1996), 207; “Strings on orientifolds”, hep-th/9604178, Nucl.Phys.
B477 (1996), 701.

E. Gimon and C.V. Johnson, “Multiple realisations of N=1 vacua in siz dimensions”,
hep-th/9606176, Nucl. Phys. B479 (1996), 285; “K3& orientifolds”, hep-th/9604129,
Nucl. Phys. B477 (1996) 715.

J.D. Blum, “F theory orientifolds, M theory orientifolds, and twisted strings”, fhep]

th/9608053, Nucl. Phys. B486 (1997), 34.

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti, Y.S. Stanev, “Comments on
Gepner models and type I vacua in string theory”, hep-th/9607229, Phys. Lett. B387
(1996), 743.

11


http://arXiv.org/abs/hep-th/9607057
http://arXiv.org/abs/hep-th/9602030
http://arXiv.org/abs/hep-th/9604178
http://arXiv.org/abs/hep-th/9606176
http://arXiv.org/abs/hep-th/9604129
http://arXiv.org/abs/hep-th/9608053
http://arXiv.org/abs/hep-th/9608053
http://arXiv.org/abs/hep-th/9607229

