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1. Introduction

It has recently been observed [1] that a certain chiral U(1) transformation on fermions

in 10d type IIB supergravity is anomalous. This anomaly is not irreducible, but

rather can be cancelled by the addition of a local counterterm. The counterterm

fails to be invariant under SL(2, Z) duality transformations of the theory, hence

this result is interpreted as an SL(2, Z) anomaly. It turns out that the counterterm

leading to this anomaly vanishes when evaluated on most “standard” compactifi-

cations of type IIB, since it depends on derivatives of the dilaton and axion fields

over the compactification manifold. Hence it turns out to give constraints only on

compactifications of “F-theory” [2] type.

The anomaly is proportional to a certain 8-form built out of Riemann curvature

2-forms. This turns out to be precisely the form whose integral over an 8-manifold

gives the Euler characteristic of the manifold. The same 8-form appears in the low-

energy Lagrangians of type IIA string theory [3] as well as M-theory [4], but has

apparently not appeared so far in the Lagrangian of type IIB string theory. In par-

ticular, its appearance in the present context seems to be a remarkable coincidence.

One purpose of this note is to provide an alternate derivation of the SL(2, Z)

anomaly using T-duality and freedom from gravitational anomalies. Among other

things, this provides an explanation for the apparent coincidence noted above.
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T-duality between type IIA and IIB string theories compactified on at least one

spatial circle, requires the presence of certain couplings on compactified type IIB,

which, however, are absent in the uncompactified theory. These couplings lead to

tadpoles in naive low-dimensional compactifications of the type IIA theory [5]. It

was explained in ref. [6] that this strange phenomenon in type IIB arises from the

chirality of the theory, which is preserved by its 8-fold compactifications down to 2

spacetime dimensions. This chirality induces a “vacuum momentum” (first noted in

a similar context in ref. [7]) which is related by T-duality to the type IIA tadpole, or

“vacuum winding charge”. In ref. [6], the spectrum of compactified IIB theory was

explicitly computed and shown to reproduce the expected vacuum momentum.

All this is related to the SL(2, Z) anomaly as follows. Suppose we compactify the

type IIB string on an 8-fold down to 2 dimensions. Because the resulting theory is

chiral, the anomalous U(1) of ref. [1] potentially survives compactification. As will be

shown below, a linear relation holds between this U(1) anomaly, the two-dimensional

gravitational anomaly, and the vacuum momentum in 2d. Although potentially the

2d chiral theory has gravitational anomalies, these were shown to cancel in ref. [6].

It follows that the U(1) anomaly is equated to the vacuum momentum of the theory.

This vacuum momentum is determined by T-duality with type IIA (and inde-

pendently by the computation in ref. [6]) to be proportional to χ/24 where χ is the

Euler characteristic of the 8-fold. The result is that the SL(2, Z) anomaly is com-

pletely predicted by this argument, which provides the link to type IIA and explains

the ubiquitous role of the Euler 8-form.

In this picture, the constraint χ/24 ∈ Z is a consequence of modular invariance
of the 2d theory. Moreover, it will be argued that this constraint is weakened if we

allow for background fluxes, much as in type IIA- and M-theory. This in turn gives

rise to a prediction that the anomaly computed in ref. [1] will be modified if the

4-form potential D+ is nonzero.

The relationship between anomalies and vacuum momentum that is studied here

in type IIB theory also makes a fascinating appearance in M-theory. This happens

via the fact, which will be argued below, that M-theory 5-branes and orientifold

5-planes have analogous anomalies on their world volumes and give rise to vacuum

momentum when wrapped on suitable 4-folds.

Throughout this paper, the principal focus will be on the anomaly in the chiral

U(1) symmetry described in ref. [1]. From a string theory point of view, it may be

debated whether this anomaly really needs to be cancelled by a local counterterm as

is done in ref. [1], since the global SL(2, R) and local U(1) symmetry relevant in that

discussion seem to be more a feature of type IIB supergravity than of string theory.

If we choose to cancel it then there is an SL(2, Z) anomaly, but if we do not, the

U(1) anomaly remains. In either case, it is the surviving anomaly that is related by

duality, as described below, to a number of interesting phenomena.
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2. Type IIB on 8-folds

The relevant results in ref. [6] for type IIB compactifications on 8-folds will first be

reviewed briefly.

On compactifying type IIB on a circle, it becomes equivalent to IIA on a circle

under T-duality. Thus it must possess the dimensional reductions of both the classical

term
∫
B ∧ dC ∧ dC and the one-loop term ∫

B ∧ I8 in type IIA theory (here B is
the NS-NS 2-form and C is the RR 3-form of type IIA, while I8(R) is a polynomial

in the curvature, defined below). After reducing on a circle, the B-field of type IIA

becomes a 1-form A which measures the winding charge with respect to that circle.

Under T-duality this, in turn, becomes the Kaluza-Klein 1-form arising by reduction

of the 10D metric of IIB on the circle. Thus we must look for terms in type IIB

which reduce to
∫
A ∧ dC ∧ dC and A ∧ I8 in 9 dimensions.

The origin of the tree-level term is explained in ref. [6], and will not be relevant

here. The one-loop term is far more subtle. It is known that in 10 dimensions there

is no one-loop correction in type IIB analogous to the term
∫
B ∧ I8 in type IIA.

Moreover, one can easily convince oneself directly that there is no purely gravitational

term that one can write down in 10d which reduces to
∫
A ∧ I8 in 9d, with A being

the KK gauge field. In fact, it turns out that no modification is required in 10d to

the type IIB action, but as soon as one compactifies on a circle, however large, there

is a radius-dependent term of the desired form in 9d.

Suppose we compactify both type IIA and IIB on the same 8-fold and then

further on a circle to 0+1 dimensions. T-dualizing along the circle maps one theory

to the other. Now we have an apparent puzzle: type IIA has a 2-form tadpole in

2d [5], which will become a 1-form tadpole in 1d, and this is proportional to the Euler

characteristic χ of the eightfold. However, there is no inconsistency for type IIB on

the eightfold to two dimensions (for example, gravitational anomalies cancel, as was

demonstrated in ref. [6]), so the inconsistency required by T-duality must arise upon

compactifying one further dimension. Moreover, it must take the form of a tadpole

for the KK 1-form A = g12.

For 2d field theories on a cylinder, the generator of translations along the compact

direction is L0 − L0. Thus, a nonzero value of this operator in the vacuum implies
that, from a 2d point of view, there is a nonzero momentum in the vacuum state.

Under T-duality, this will turn into a nonzero winding charge of the vacuum, just

what we would expect in a theory which has a 2-form tadpole in 2d. The tadpole

must have the precise value χ/24 (for the special case ofK3×K3, a similar argument
was given by Ganor [7]).

Explicit computation in the compactified type IIB theory indeed shows [6] that

(L0 − L0)vac = χ

24
(2.1)

as predicted by T-duality.
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Note that if the circle becomes large and we are effectively in two noncompact

dimensions, this effect goes away. The reason is that the operator L0 as convention-

ally defined in conformal field theory has a zero-point contribution − 1
24
for a free

boson only if the radius of the circle (the range of the σ coordinate) is fixed to be 2π.

For a circle of radius 2πR, the zero-point contribution is actually − 1
24R
, so that it

goes away in the limit R→∞. This explains why there is no corresponding one-loop
term in the effective action of type IIB theory in 2 (or 6 or 10) dimensions, and yet

the prediction of T-duality with type IIA is satisfied.

3. The SL(2, Z) anomaly

In what follows, we will always consider spin manifolds with at least one non-

vanishing spinor.

Let us define the 8-form

I8(R) = − 1

(2π)4
1

8

(
trR4 − 1

4
(trR2)2

)
, (3.1)

which has the property that ∫
M8

I8(R) = χ , (3.2)

where χ is the Euler characteristic of the 8-manifold M8.

We can also define another 8-form, the signature 8-form:

J8(R) = − 1

(2π)4
1

180

(
7 trR4 − 5

2
(trR2)2

)
, (3.3)

which satisfies ∫
M8

J8(R) = τ , (3.4)

where τ is the signature of the 8-manifold M8.

It is evident that there are precisely two independent 8-forms that one can make

out of traces of products of the Riemann 2-form, these can be parametrized as trR4

and (trR2)2, or as p2 and (p1)
2 (pi are the Pontryagin classes), or as I8(R) and J8(R).

Now, on general grounds we can assume the U(1) anomaly in 10d type IIB

supergravity to be given by

∆ = −
∫
F

4π
∧ A8(R) Σ(x) . (3.5)

Here, Σ(x) is the parameter of the U(1) transformation, and A8(R) is an unknown

8-form which can, of course, be parametrized as a linear combination of I8(R) and

J8(R) that we have defined above. The 2-form F is defined in terms of the complex

dilaton-axion field τ as

F = i
dτ ∧ dτ
4(τ2)2

. (3.6)
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The form of eq. 3.5 follows from the fact that (i) there is no nonzero 10-form

made entirely from traces of products of R, (ii) the 2-form F satisfies F ∧ F = 0 by
virtue of its definition.

With this expression for the U(1) anomaly, there is a local counterterm

∫
φ
F

4π
∧ A8(R) , (3.7)

where φ is a scalar field which is pure gauge, corresponding to the U(1) part of the

SL(2, R) variables. Under the gauge transformation δφ = Σ(x), the variation of

eq. 3.7 cancels the anomaly in eq. 3.5.

In ref. [1], it is shown by explicit computation that

A8(R) =
1

6
I8(R) . (3.8)

In the following, it will be shown that this is a consequence of the vacuum

momentum predicted by T-duality with the type IIA string, and confirmed in ref. [6].

4. The U(1) anomaly and vacuum momentum

Consider compactifying the type IIB string on a (spin) 8-fold M8 to 2 spacetime

dimensions. The resulting 2-dimensional theory is chiral, in fact it has (0, 2) chiral

supersymmetry for 8-folds with spin(7) holonomy, (0, 4) for SU(4) holonomy, (0, 8)

for SU(2) × SU(2) holonomy (the case of K3 ×K3) and (0, 16) if the holonomy is
contained in SU(2), which is true for the orbifold T 8/Z2. The spectrum for all these

cases is worked out in ref. [6], but we will not need this for the following argument.

A generic 2d supergravity theory with (0, N) supersymmetry coupled to matter

has the following spectrum:

1 supergravity multiplet : (gµν , φ, Nψ
−
µ , Nψ

+) ,(
n+

N

)
chiral multiplets : (Nφ+, Nψ+) ,

nφ− anti− chiral scalars : φ− ,

nψ− anti− chiral fermions : ψ− . (4.1)

Note that the anti-chiral matter fields are supersymmetry singlets.

Now, purely in terms of the integers N, n+, n
φ
−, n

ψ
−, we can compute various

interesting quantities in this theory. For now, we are not using the fact that this 2d

supergravity theory comes from type IIB or any other compactification.

Suppose this 2d theory has a chiral U(1) symmetry under which the gravitinos

have charge α and the other fermions have charge β. The anomaly in this symmetry

can be written:

∆ = −4Aα,βU(1)
∫
F Σ(x) , (4.2)
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where F is the U(1) field strength. (In the present case the U(1) gauge field is

composite, and F is as given in eq. 3.6.) The coefficient of the anomaly is given

by [8]:

Aα,βU(1) = αN + β
1

24
(n+ − nψ−) . (4.3)

This theory could also have a gravitational anomaly, for which the coefficient

would be proportional to

Agrav =
1

2
N +

n+ − nφ−
24

+
n+ − nψ−
48

. (4.4)

Finally, the chiral theory could in principle have a non-vanishing zero-point en-

ergy. Supersymmetry actually sets this to zero for chiral fields, which lie in supermul-

tiplets, but does not determine it for the anti-chiral fields which are supersymmetry

singlets. We have:

Avac ≡ (L0 − L0)vac = nφ− − nψ−
24

. (4.5)

We can now specialize to the case where the chiral U(1) has charges 1
2
, 3
2
on the

gravitino and spin-1
2
fermions respectively. From the above three equations, we easily

read off the relation

A
1
2
, 3
2

U(1) = Agrav + Avac . (4.6)

It follows that if the 2d theory is free of gravitational anomalies, then the U(1)

anomaly (which leads to an SL(2, Z) anomaly by the arguments of ref. [1]) is nu-

merically equal to the vacuum momentum.

As a check, we use formulae from ref. [6] for 8-fold compactifications of the type

IIB string, and find

A
1
2
, 3
2

U(1) =
χ
24
, Agrav = 0 , Avac =

χ
24
. (4.7)

To summarize, we have shown that vacuum momentum, itself a consequence of

T-duality with the type IIA string, is the origin of the U(1) anomaly in 2d. Now,

because there are only two independent gravitational 8-forms, the corresponding

U(1) anomaly in 10d is also uniquely determined to be the one in eqs.3.5, 3.8, as

found in ref. [1].

5. Constraints on compactifications

In ref. [1], the presence of a U(1) anomaly leads to a counterterm which in turn

induces an SL(2, Z) anomaly. The consistency requirements discussed in ref. [1]

imply that χ/24 ∈ Z. As we will now see, the same constraint arises very naturally
in the present framework by requiring modular invariance of the 2d theory.

6
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Viewed as a chiral 2-dimensional CFT, the theory obtained by compactifying

the type IIB string on an 8-fold has a partition function:

Z = tr qL0−
c
24 qL0−

c
24 . (5.1)

Under a modular transformation τ → τ + 1, the partition function is invariant

only if every state |Φ〉 in the Hilbert space of the theory satisfies

e2πi((L0−L0)−(c−c)/24)|Φ〉 = |Φ〉 . (5.2)

Thus the exponent is required to be an integer. In particular, the vacuum state

should satisfy this requirement, from which we get:(
(L0 − L0)vac − (c− c)/24

)
∈ Z . (5.3)

The left hand side is precisely the sum of the vacuum momentum and the gravi-

tational anomaly, Avac+Agrav. In 8-fold compactifications of type IIB, this quantity

turns out to be χ
24
, as we have seen, so quantization of this number follows very

naturally from modular invariance in 2d.

It should be noted that the constraint χ/24 ∈ Z only applies to an elementary
class of compactifications without fluxes. It is known, for example, that in M-theory

and type IIA string theory, supersymmetric compactifications on 8-folds can include

nonzero values of
∫
dC ∧ dC over the 8-fold [9]. Later it was shown [10] that dC is

actually allowed to have half-integral flux over a 4-cycle, and that consistent com-

pactifications can be defined on 8-manifolds for which χ is only a multiple of 6, but

not of 24, so long as there is a suitable nonzero value of
∫
dC∧dC in the background.

It has been analogously argued that various other field strengths can have frac-

tional flux in string theory [11], but a consistent compactification of type IIB on

8-folds with non-integer χ/24 does not appear to have been constructed. For F-

theory, fluxes are irrelevant to this particular question, because elliptically fibred

Calabi-Yau complex 4-folds anyway have integer χ/24 [5].

Starting from the fact that fractional 4-form field-strengths dC must be turned

on in M-theory and type IIA, for manifolds not satisfying χ/24 ∈ Z, it will now be
argued that the formulae for the U(1) and SL(2, Z) anomalies in ref. [1] necessarily

receive corrections when the 5-form field strength dD+ of type IIB is nonzero (here

D+ stands for the self-dual 4-form potential). However, these corrections cannot

apparently be written in Lorentz-covariant form, which is a manifestation of the

well-known impossibility of writing a covariant action when D+ is nonzero.

The argument goes as follows. Suppose we pick M8 to be a Calabi-Yau complex

4-fold with χ a multiple of 6 but not of 24. Now compactify type IIA theory on this

down to 2 dimensions, and include a half-integral flux dC over 4-cycles so that

χ

24
− 1

8π2

∫
dC ∧ dC ∈ Z . (5.4)

7
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If this quantity is moreover positive, it can be cancelled by including the right

number of type IIA strings in the vacuum and we have a tadpole-free compactification

(the relevant equation, correcting a sign in [9] and incorporating the vacuum branes

of ref. [5], can be found in ref. [6]). But for the moment we do not include these

branes, and just consider this compactification to 2d, with its associated tadpole

problem.

Compactifying further on a circle and T-dualizing implies that the T-dual type

IIB has a vacuum momentum

(L0 − L0)vac = χ

24
− 1

8π2

∫
dC ∧ dC ∈ Z . (5.5)

What is dC from the type IIB point of view? If we label the circle direction as

x9 and let the coordinates of the 8-fold be xi, i = 1, . . . , 8 then we have the T-duality

relation:

Cijk = D
+
ijk1 , (5.6)

from which it follows that∫
M8

dC ∧ dC ∼
∫
M8

εijkli
′j′k′l′(dD+)ijkl1 ∧ (dD+)i′j′k′l′1

∼ (dD+)ijkl0(dD+)ijkl 1 , (5.7)

where the last equality follows from self-duality of dD+ in 10 dimensions. This

is of course not manifestly covariant under SO(9, 1), but only under the subgroup

SO(8)× SO(1, 1).
Tracing back the relationship discussed in the previous sections, we find that the

formula for the U(1) anomaly in 10 dimensions must be modified as follows:

∆ = −
∫
F

4π
∧ I8(R)
6
Σ(x)→ −

∫
F

4π
∧ 4

(
I8(R)

24
− 1

8π2
(dD+)1 ∧ (dD+)1

)
Σ(x),

(5.8)

where the extra term is shorthand for the last term in eq. 5.7. Perhaps it is possible

to write this is in a better way, as in ref. [12], but that direction will not be pursued

here. The main point is to note that the SL(2, Z) anomaly does not necessarily imply

integer quantization of χ/24, but that background fluxes will provide an “escape

route” from this rule, as in type IIA and M-theory.

6. Relation to M-theory 5-branes and orientifold 5-planes

In this section we note that the above considerations have some implications for

5-branes and orientifold 5-planes of M-theory.

Suppose we compactify type IIB string theory to 6 dimensions on K3. The 10-

dimensional U(1) anomaly of ref. [1] descends to a 6-dimensional U(1) anomaly by

8



J
H
E
P
1
2
(
1
9
9
8
)
0
0
6

simply using p1(K3) = 48, from which one finds:

∆ = 2
∫
F

4π
∧ p1(R) Σ(x) . (6.1)

Clearly, a further compactifiction on K3 will reproduce the results above, for

the special case where the 8-fold is K3 ×K3. Instead of doing that, we first use a
nontrivial duality that relates the present model to the orientifold of M-theory on

T 5/Z2 [13, 14]. This compactification has 16 M-theory 5-branes and 32 orientifold

5-planes in the vacuum. These are the only chiral objects in the theory; the bulk is

11-dimensional M-theory and hence non-chiral.

Now we ask what is the interpretation of the above anomaly in terms of the

M-theory defects. Because the bulk is non-chiral, one must assume that the anomaly

comes from branes and/or planes. It turns out that this involves an interesting

phenomenon about M-branes and planes1.

It is well-known that D-branes in type II string theories carry WZ-type grav-

itational couplings on their world-volumes [16, 17], and more recently it has been

noted that orientifold planes in the same theories also carry localized gravitational

WZ couplings [11, 18]. However, the question of existence of gravitational couplings

on defects in M-theory has not so far been answered, though it was raised at the end

of a recent paper [19].

Actually it is quite easy to see that the M-theory 5-brane indeed cannot have

gravitational WZ couplings on its world-volume (such couplings would have to be

proportional to the 4-form p1(R) and another spacetime 2-form, but the latter does

not exist in uncompactified M-theory). However, once we compactify M-theory on a

circle and wrap the 5-brane on this circle, we obtain the D 4-brane of type IIA theory

and this certainly has a gravitational coupling
∫
A∧p1(R) on its world-volume, where

A is the Ramond-Ramond 1-form of type IIA theory or the Kaluza-Klein gauge field

of compactified M-theory. Thus we have a puzzle: how does the M 5-brane produce

this term when wrapped on a circle given that it does not have it to start with? The

same question can also be asked about the orientifold 5-plane, since after wrapping,

it is dual to the orientifold 4-plane of type IIA, which again has gravitational WZ

couplings [11].

The question is quite analogous to the one asked in ref. [6] about the origin

of
∫
A ∧ I8(R) in type IIB theory compactified on a circle to 9d, given that no

corresponding term is present in 10d. The answer also turns out to be analogous,

and fits beautifully with the SL(2, Z) anomaly in eq. 6.1 above.

The key point is that, like the type IIB theory in 10d, the M 5-brane and M

5-plane are chiral objects. Hence, when they wrap on a suitable 4-fold, the resulting

2d theories are still chiral, indeed if the 4-fold is K3 then one gets theories with chiral

1Related issues were discussed in ref. [15]. Some of the observations below emerged in subsequent

discussions with K.S. Narain.
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supersymmetry in 2d. These theories can possess a vacuum momentum, which after

compactification of one more dimension, turns into the expected tadpole predicted

by the relation to D-branes and string theory orientifold planes.

This in turn means that the 6-dimensional field theories on the 5-brane and

orientifold 5-plane have U(1) anomalies. In fact, in this case one expects a multiplet

of anomalies, since the duality group is SO(5, 21, Z), much larger than SL(2, Z) of

ten-dimensional type IIB. The details need not be spelled out here since they follow

in a straightforward way from analogous considerations elsewhere in this paper and

in ref. [11]. The result is that the U(1) under which gravitinos have charge 1
2
and the

remaining fermions have charge 3
2
is anomalous on an M-theory 5-brane, the anomaly

being

∆ =
1

12

∫
M6

F

4π
∧ p1(R) Σ(x) . (6.2)

In other words, M 5-branes each contribute a fraction 1
24
of the total anomaly in

eq. 6.1 above.

Similarly, this U(1) is anomalous on an M-theory orientifold 5-plane, the anomaly

in this case being

∆ =
1

48

∫
M6

F

4π
∧ p1(R) Σ(x) (6.3)

or a fraction 1
96
of the total. The above two formulae added up over 16 M 5-branes

and 32 M orientifold 5-planes precisely reproduce eq. 6.1. Moreover, the M-theory

relation with type IIA is satisfied, with these anomalies being related to vacuum

momentum and hence eventually to gravitational WZ couplings.

One might worry that in this case the relationship between U(1) anomalies and

vacuum momentum is not so obvious, since the M 5-brane and orientifold 5-planes ap-

parently have gravitational anomalies. However, as stressed in ref. [14], gravitational

anomaly inflow from the bulk actually renders both of these objects anomaly-free

separately.

The principal consequence of the above discussion is that the U(1) anomaly of

ref. [1] is manifested in M-theory, but not in the bulk (this would be impossible just

because the bulk is non-chiral). It appears on the chiral objects of the theory, namely

5-branes and orientifold 5-planes.

7. Conclusions

We have shown that the U(1) and SL(2, Z) anomalies recently discussed in ref. [1]

are consistently connected to a number of stringy dualities and even to M-theory.

This is particularly satisfying since the original derivation is based more directly on

properties of supergravity than of string theory.

We have re-derived this anomaly using the fact that type IIB string theory

has a hidden “vacuum momentum” which in turn is predicted by T-duality with
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type IIA theory. The relation of this vacuum momentum to the U(1) anomaly is

embodied in eq. 4.6 above, along with the absence of gravitational anomalies in

8-fold compactifications.

It would be even more satisfying to have a direct derivation of eq. 4.6 on general

grounds. Each term is a kind of anomaly in a different symmetry: AU(1) is of course

the U(1) anomaly, Agrav is the gravitational anomaly and Avac, the vacuum momen-

tum crucial to this story, is roughly like an anomaly in the U(1) rotation generated

by L0 − L0.
The constraint that χ/24 ∈ Z turns out to come from modular invariance in this

context. It can be modified by the inclusion of background flux, which leads to the

prediction that the U(1) anomaly of ref. [1] should be modified if the self-dual 4-form

is turned on.

Finally, it was observed that the M5-brane and M orientifold 5-plane have vac-

uum momentum hidden in them by virtue of their chirality, this fits in with nontriv-

ial M-theory dualities and also with their direct relation to 4-branes and 4-planes of

type IIA string theory. In turn, this phenomenon is related to U(1) anomalies on the

world-volumes of these objects, similar to those found in 10 dimensional type IIB

theory in ref. [1].

It may be hoped that these various facts suggest something about the larger

picture in which they fit together. For example, it is intriguing that none of the

M-theory defects (branes and planes) have gravitational couplings of the type car-

ried by D-branes (membranes, like D2-branes, have too low a dimension to support

gravitational Chern-Simons-type couplings). The discussions above also illustrate

once more the general theme that branes and planes are similar in some respects,

the principal difference being that the latter have no independent world-volume fields

of their own.
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