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Statistical theories of nematic liquid crystals
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Abstract. Nematic liquid crystals are composed of molecules with moderate shape
anisotropy, and are characterized by purely orientational but no translational long
range order. It is necessary to take into account both the anisotropic attractions
between the molecules and the excluded volume effects to give a proper statistical
theory of this phase. Indeed a reasonably satisfactory semiquantitative description
has emerged only in the past two years. The paper reviews recent developments in the

field.
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1. Introduction

An essential requirement for the formation of thermotropic liquid crystals is shape
anisotropy of the molecules, with the ratio of the largest dimension to the shortest
dimension generally in the range of 3-10 (for an introduction sec Chandrasekhar
1977). The vast majority of mesogens are rod-like but it was shown for the first time
by Chandrasekhar et a/ (1977) that relatively simple pure disc-shaped compounds
also exhibit liquid crystalline phases.

Nematics are the simplest type of liquid crystals, and are characterized by only a
long range orientational order, but no lons range translational order of the molecules
(figure 1). As a consequence, this phase (and in particular the nematic-isotropic

b

Figure 1. Schematic diagram of the arrangement of rod-like molecules in the
-

orientationally ordered nematic liquid crystals. n is the direction of average orient-

ation of the molecules.
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Figure 2. Molecular structures of a few compounds exhibiting the nematic phase.
The figures in brackets in some cases indicate the molar heats of transition. Quin-
quephenyl has no net dipole moment while SCB has a strong dipole moment. The
figure on the left side corresponds to a disc-like nematogen (Destrade e al 1980).

phase transition) has attracted a large number of theoretical studies (see Chandra-
sekhar and Madhusudana 1978). We will briefly review the more important of these
studies, highlighting the most recent developments.

Both rod-shaped and disc-shaped molecules exhibit the nematic phase (sec figure 2
for some examples). We define a unit vector 7t called the dircctor to denote the
direction of average orientation of the molecules. ~Experimcnts indicate that the

propertics of the medium do not depend on the sign of n. In such a case, if the
molecules are assumed to be cylindrically symmetric, the order parameter can be
simply defined as
3 cos? 0-1
ey

e —7 >

where 0 is the angle that the cylinder axis makes with n. s can be determined by a
variety of techniques like NMR, optical birefringence, ctc. It is found that s
decreases with increase of temperature, dropping abruptly from a finite value s, to
zero in a weak first order nematic-isotropic transition at a temperature Ty, (figure 3).
Properties like the coefficient of thermal expansion «, specific heat (C, and C,), etc
exhibit strong pre- and post-transition effects close to Ty

2. Theories based on anisotropic attractive potentials

Historically, the first molecular theory of liquid crystals was proposed by Born (1916).
He assumed that interactions between strong dipole moments associated with the
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- Figure 3. Variation of the orientational order parameters in the nematic phase of
several homologues of SCB (see figure 2) as functions of relative temperature (Karat
and Madhusudana 1976).

molecules lead to the orientational order and that the nematic liquid crystal is a
ferroelectric. This is an incorrect picture, in view of what has been said earlier,
namely that the director is apolar.

Maier and Saupe (1959) developed a mean field theory of nematics by assuming
that anisotropic dispersion interactions between the molecules are responsible for
the stability of the phase. The orientational energy of a molecule i is given by

A
u, = - vz s P, (cos 8), (2)

i

where 4 is a constant depending on the molecular species, ¥ the molar volume and
P, (cos 8,) the second Legendre polynomial. The molar free energy is then given by

A
F = — _ s(s+1
NkBT[ZkB 777 (s+1)

1 34
- In [ exp <W s cos? 4, )d (cos 8)) ] ) 3)
0 B

}vhere N is the Avogadro number and k 3 the Boltzmann constant.  The free energy
1s minimized by the consistency condition

3cos2 8, - 1

= AT @
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where the averaging is done using a Boltzmann factor corresponding to the potential
energy (2). The calculations lead to a first order NI transition at s, ~ 0-42, a univer-
sal value., Experimentally, however, one finds that s, varies between 0.3 to 0-5 for
different compounds. Higher order terms can be introduced in the potential (2)
to account for these differences (Chandrasekhar and Madhusudana 1971). But
the mean field theories overestimate the strength of the transition. Further,(Ty,—T%),
where T* is a hypothetical second order NI transition temperature (de Gennes 1971)
is predicted to be ~ 30 —40° whereas the experimental value obtained for instance
by Cotton-Mouton constants of the isotropic phase is ~ 1 —2°.

Obviously, near-neighbour correlations or short-range order cffects have to be
taken into account to improve the theory. A Bethe-type cluster is used in such
calculations (Madhusudana and Chandrasekhar 1973a). Each molecule is assumed
to have z nearest neighbours(z>3),no two nearest neighbours being considered to be
nearest neighbours of each other. Let E(f,;) be the pair potential betwecn the
central molecule ‘0’ and one of its neighbours j, 8; being the angle between them.
Each outer shell molecule is subject to an average potential ¥(6;) due to the rest of
the medium. The relative weight for a given configuration of a cluster of (z+1)
molecules is then

17 (8 2 @) )
where  f(fy;) = exp [~ E (8o))/ky T1,

and g@) =exp [~V (0)ksT]- (6)

The relative probability that the central molecule has the spherical angles (8, Pe) is
given by

foer 11 (b0 £ () d ¢, 0]
while that for an outer molecule, say 1, to assume an orientation (8, ¢,) is

I f g (01) d (cos Og) dy | .. | ._’Zf(eo;‘) g (0;) d (cos 9/') dd’j' ®)

Chang (1937) postulated that for consistency of description, the two probabilities are
identical when the central and outer molecules assume the same orientation. There
are other equivalent ways of expressing this consistency condition (Krieger and
James 1954). The free energy of the system is given by

Fo .
o T - (z=1)In [[g*(0,)d (cos 6) ]

=Zin (I " (0) £ (6) 1 (8, d (cos B)) d (cos 6) d (B~ )] ©)
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Assuming that

E(@;) = - B*P, (cos 0;;) and
v (8) = - BP,(cos 6, (10)

it is not possible to accurately satisfy Chang’s consistency condition at all angles.
Using a weaker approximation (Ypma and Vertogen 1976) that only the average
(cos B) is the same for the central and outer molecules is equivalent to
the BPW approximation of magnetism (see, for instance, Smart 1966) and does not
truly minimise the free energy. Taking into account higher order terms in v()),
Chang’s relation can be satisfied quite accurately (Madhusudana ef al 1977). The
lower the value of z, the better the results agree with expetiments, and for z=3,
Ty~ T* = 10°.

Many compounds with very strongly polar groups attached along their long axes
also exhibit the nematic phase (see figure 2). What is the role of such dipoles in
stabilizing the nematic phase? We postulated some years ago (Madhusudana and
Chandrasekhar 1973b) that neighbouring molecules in such cases should have an
But since the nematic liquid crystal is a fluid, there is no
We can rewrite the above theory with

value of P,

antiparallel correlation.
antiferroclectric long range order.

E (§;) = A*P, (cos 0,;) ~ B*P, (cos 0;), (11)

and retain
V() = — BP, (cos 8;) = CP,(cos ) - -

The calculations explain the experimental observation of an increase in the avcrage
dielectric constant on going from the nematic to the isotropic phase of strongly polar
compounds (Schadt 1972; Ratna et al 1973; Ratna and Shashidhar 1977) as arising
from a decrease in the antiparallel short-range order between the molecules.
Supporting evidence for such a correlation has been obtained recently from Xx-ray
and neutron scattering studies (Leadbetter et al 1979). A consequence of this type
of near neighbour antiparallel ordering is the formation of a bilayer structurein such
systems, and it turns out that such a bilayer structure plays a key role in the interesting
phenomenon of the re-entrant nematic phase which is stable at temperatures below
those of the smectic A phase (Cladis 1975, 1980).

3. Hard particle models

The shape anisotropy of the nematogenic compounds has not been taken into account
in the theories described above. It is known from the theory of liquids made up of
spherical molecules that the structure of the fluid is essentially determined by the
excluded volume effects (see for instance Barker and Henderson 1976). Several
models of the nematic phase have been developed by assuming that it consists of
hard rods without any attractive potential between them (see Straley 1973). The
properties of such an ‘athermal’ system depends entirely on its density.

AS 7
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Onsagar (1949) developed the first theory of phase transition in a system of hard
rods. He demonstrated that as the density is increased, such a system undergoes a
first order transition from an isotropic phase to an orientationally ordered phase.

Consider a system of N rods in a volume ¥ and temperature 7. Let the position

—_ —_—
of the jthrod be R;and its orientation ;. Assuming that £ can take only V discrete
values, we can write the configurational partition function as

1 1 —
QN=-&?V—Nc2)JdRexp(—BUN), (12)

where Uy, is the potential energy of the system, which can be assumed to be equal to

3, u,-,; and, for hard particles,
I<i<j<N

@ if i and j overlap,

“o' ' 0 otherwise. (13)
Performing the integration over the positions only,
—_—
[ aR exp(-BUy = VW exp [-B $y (D], (14)

where ¢, is the excess free energy (relative to an ideal gas) of a system of molecules
having fixed orientations. If there are N(1) molecules along £2,, N(2) along £2,, etc.,
we can write

0. - LN N N _ N!
N NN N(§=0 N(zv)=o 11—71 N(E)!
X exp[-Bdy(N1)...NW) 1, (15)
with
2 N@) =N (16)

Defining the mole fractions x; = N (£2,)/N, and using the maximum term approxi-
mation, the configurational free energy is given by

=

]%AN=%¢~[P';1--; =§~ Y +hv+mp-1, (17

where P=N/V is the number density, and the tildes denote that the distribution
corresponds to the maximum term of (15). We can now go over to a continuous
distribution of angles replacing x; by f(Q,) Ay can then be minimised with
reference to f(R2) if we can evaluate ¢,.
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Onsager made a virial expansion of ¢ and retained only the second virial coeffi-
cient. In this case

by =

N

2 %xi x; V() (18)

where V(£2;,) is the mutual exclusion volume of two rods oriented atan angle of £;;.
For spherocylinders of radius a, cylindrical length / and volume vy,

V (2, = 8vy + 4al? | sin (2, 1. (19

Onsager’sanalysis is valid only for low densities and thus for very long rods, with
length to breadth ratio x=(/ +2a)/2a ~ 100. Zwanzig (1963) could calculate higher
virial coefficients by restricting the molecules to take only three mutually perpendi-
cular orientations. Flory (1956; Flory and Ronca 1979a) used a lattice model and
was able to make calculations at relatively high densities. However, these descrip-
tions are useful only in describing N-I transitions in long polymeric molecules, and
the predicted order parameter at the transition is ~ 0.85. Further, Saupe (1979) has
- recently pointed out that the cluster integrals cannot be assumed to be volume inde-
pendent, and inclusion of volume dependence leads to the result that orientational
order may not exist when only a limited number of these integrals are different from
zero.

In any case, we are interested in relatively short rods (of x~3 to 5) and high densi-
ties, and for such systems the scaled particle theory (SPT) provides a convenient
method for calculating ¢,. SPT was originally developed for a system of hard
spheres (Reiss ef al 1959) and leads to very satisfactory results in that case. It has
been extended to a system of hard rods by many workers (Cotter and Martire 1970;
Lasher 1970; Timling 1974; Cotter 1977a). The treatment due to Cotter (1977a) is
the most complete and will be summarized below.

We evaluate W; (¢, \, P), the reversible work of adding a scaled spherocylinder of
radius aa, cylindrical length \/ oriented along £2;, at any point in the medium. The
Gibbs free energy is given by

BG.

N 3 x[Inx P+ AW (1,1, P)] (?0)
When both &, \— 0,

a; = exp (=BW) = 1-p 3 x; V; (@ N, (21)

where q; is the activity of the ith component, ¥;; (®,\) the volume excluded to an
unscaled molecule j by the scaled particle ;. When a and )\ are very large, W;(a,\)
approaches the PV work to create a macroscopic cavity in the fluid:

lim W, = (7 (@a)2 \ ! + i;— (xa)’] P (22)

a—+ ©
A—> ©
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It is now assumed that W, (1,1) can be calculated by interpolating between these
limits, and standard thermodynamics along with (19) is now used to complete the
theory. The phase transition is located by equating the Gibbs free energy and the
pressure of the ordered and disordered phases. Calculations show that lower the
value of x, the density at the transition is higher, while the order parameter and volume
change are lower, in qualitative agreement with observed results. For example,
x=2.5 gives a reasonable agreement w1th results on PAA (Cotter 1979; Savithramma
and Madhusudana 1980a).

How good is SPT in predicting the properties of the hard spherocylinder system?
We can compare the equation of state predicted by SPT in the isotropic phase with
the results of computer simulation studies on such systems. Monte-Carlo and
molecular dynamics studies have been made on systems with x =2 and x =3 (Vieillard-
Baron 1974; Rebertus and Sando 1977; Nezbeda and Boublik 1978). As the density
approaches the value at the phase transition, the calculations become more and more
time consuming and impractical. A comparison with the available data shows
that while SPT gives reasonably good values at low densities, it overcstimates the
pressure as the density is increased, and further, the discrepancy also increases at
higher densities. Consequently, we can expect that in the nematic state, SPT results
are not likely to be accurate.

It would be interesting to extrapolate the essentially ‘exact’ results of the computer
studies to the region of the N-I transition. We found that a model proposed by
Andrews (1975) for calculating the equation of state of an assembly of hard spheres
can be extended to the case of spherocylinders and used for the extrapolation of the
results of computer studies.

Assuming that the introduction of a particle oriented along £2; to a system of
hard spherocylinders does not change the cquilibrium structure of the system, the
reciprocal of the ‘activity’ g, defined in (21) is merely the probability of being able to
insert the spherocylinder without overlapping with any other spherocylinder. We
can write this as a product of two terms. The first is the probability that an arbi-
trarily chosen point ry,, does not lie within the core of any of the N molecules.
This is given by

(1-veP) =1~ (%"ﬂ'a3 + -n'azl) P. (23)

Finding such a point ensures that there is no spherocylinder whose centre lies within a
volume v, around that point. The second part in calculating ai' consists of
finding the probability, conditional on the first, that the hole around the given point
can actually accommodate the introduced particle. This means that the centre of
any other spherocylinder, say of the kth type should not lie within the excluded
volume of the introduced particle, i.e., within the additional volume

Vika = 8Uy + 4al® | sin Q| - v, 249
Hence, the probability P, that all N, molecules lic outside Vi, is given by

add Nk :] (25)

Vaaa k
(l-—————"“) ﬁeXP[-——"v———
V- 3 New V-3Nw
k=1 k=1
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where (V - 3N, w) is the ‘free’ volume available to the molecules. @ can be expected
to be of the order of the average volume occupied by a molecule in a closc-packed
arrangement. Following Andrews, we can assume that « is actually dependent on
density and expressible as

w =3 o,P" : (26)
n
The reciprocal activity can now be written as

P S x Vi,
ai' = (1-7y Py exp [1 S pdd]' @
l ~w

The thermodynamic properties of the system can be evaluated using (20). We have
made calculations by restricting the expansion in (26) to #=6 (Savithramma and
Madhusudana 1980a), and determining @, by the density of the close-packed solid
and six virial coefficients of the system as determincd by computer simulation studies.
Compared to the SPT calculations, the Andrews model leads to a better agreement
with the experimental results on PAA (for example, x=3).

We have recently studied the SPT of a system of right circular cylinders (Savi-
thramma and Madhusudana 1980b). The advantage of this system is that it can be
used to describe both disc-like molecules (for which the height to diameter ratio is
< 0+5) and rod-like molecules (for which the ratio is > 0-5). The thermodynamic
properties are symmetrical for the disc-like and rod-like regions if they are plotted
as functions of the ratio (largest dimension/shortest dimension) of the cylinders.

Of course, a hard-particle system is not an entirely realistic represcntation of
nematic liquid crystals: a relatively long-range attractive potential is necessary to
hold the system together, and to account for the density of the system. Further,
defining Y as

Y =[3InT/d3InPly _ const. (28)

it is a measure of the relative importance of the volume compared to that of tem-
perature in determining the variation of s of the medium near Ty Experiments
on PAA (McColl and Shih 1972) yield Y =4. Since hard particle systems are athermal
all such models lead to”Y =00. On the other hand, mean field models which make use
of only an attractive potential yield a 'Y which is equal to the exponent of Vin (2).
Cotter (1977b) has proved that this exponent can be 1, and only 1 for the mean field
theory to be thermodynamically consistent; i.e., Y =1 in all such models. Hence,
both the hard-rod features of the molecules and an attractive potential between them
have to be used in a proper description of the nematic phase.

4. Hybrid models of nematic liquid crystals

Amongst the many attempts to incorporate both the repulsive and attractive parts of
interaction between the molecules, we mention calculations based on the Pople-
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Karasz model (Chandrasekhar et al 1970) which describes both positional ard
orientational order in terms of a lattice model with afew allowcd orientations of the
molecules, incorporation of an attractive potential in the Onsager theory (Kimura
1974), and lattice models (Flory and Ronca 1979b) and other models discusced by
Alben (1971). Also, higher order terms like Py(cos 6) in the mean field potential of
Maier-Saupe type theories can be considered to arise from repulsive interactions
(Chandrasekhar and Madhusudana 1971; Gelbart and Gelbart 1977).

More recently, an equation of state for the Maier-Saupe model has been derived
by assuming the Percus-Yevick approximation for spherical molccules, which arc
subject to the attractive potential given by cquation (2) (Ypma and Vertogen 1977).
Similar studies have also been made using the BBGKY approximation (Lee and Woo
1977). But these models lead to Y=~1. The anisotropic shape of the molecules has
to be taken into account to get higher values of Y.

Cotter (1977a) used the fact that the activity of the ith species of molecules which
are subject to a mean field attractive potential can be written as

a; = a; exp [ulkgT), (29)

where g, is the activity in the absence of attractive interactions. Assuming that
ui = _VO P - Vz P S Pz (COS 01), (30)

the SPT was used by her in developing a hybrid model. The resulting distribution
function is essentially similar to the Maier-Saupe distribution function, except that

v
the coefficient of the potential has the form [fi;: + A(P) ] , i.e., a tempera-
B

ture-dependent attractive part and an ‘athermal’ part which has been derived from
SPT. For x=23 she found that < ~4 if the packing fraction VP =2 0-445, while the
experimental value for PAA is = 0-62. We (Savithramma and Madhusudana 1980a)
have made detailed calculations for other values of x and found that for x=1-75, the
calculated values of many properties are comparable to those of PAA (see table 1).
We have also used the Andrews model to evaluate A (P) and found that x = 2-075
now gives good results (table 1), so that the value of x is now close to the experi-
mental number. Further, the second derivatives of the thermodynamic potential like
specific heat (C,/Nk3T), coefficient of thermal expansion («), compressibility 7))
are in better agreement with experimental data than those obtained from the SPT.
However, the heat of transition (A U/NkgT), volume change (A P/P), etc. are even
now somewhat higher than the experimental values. Partly, this may be the result of
the mean field approximation. The results may be expected to improve if short
range order effects are taken into account.

There have also been a few attempts to derive a generalised van der Waals (GVDW)
theory of nematic liquid crystals (Alben 1971 ; Gelbart and Baron 1977; Cotter 1977c).
In this approach, the repulsive part is derived using say the SPT as described carlier
but the average attractive energy is derived in the following fashion:

l ~

Uy = 2V,2 % N; N; f drgd ) Us(r, Qi Q). (31)
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Table 1. Results of hybrid models with the scaled particle theory and the Andrews
model at T); compared with experimental data on PAA.

Experimental values SPT* Andrews

on PAA model*
x ~3.5 1.75 2.075
Ty °K) 409 409 409
) 0.36 0.455 0.455
(Vo p) nem 0.62 0.62 0.62
Aplp 0.0035 0.0057 0.0062
Y 4 3.94 4.02
A U/NkgT 0.17 0.51 0.48
C,/Nkg 729 @7T.-1) 10.4 s
a x 104/°K 1265 (@t T.-1) 3.87 9.38
B x 10'2 cm®/dyne 823 (atT.-1) 20.5 49.63

* from Savithramma and Madhusudana (1980a)

where g (r) is the pair correlation function between two molecules with fixed
orientations £2; and £2; and is taken to be of the form

g2 (r) = exp [~ BU; (r. 2, Q)] (32)

where Uj; is the repulsive potential given by (13). Taking the attractive potential
U°to be a sum of isotropic (U%,) and angle-dependent (Ug,;,,) parts, Gelbart
and Gelbart (1977) have shown that the main contribution to the angular dependent
attractive energy arises from the coupling between the Uf, and the hard rod exclu-
sions. The results are comparable to those given by the SPT with a superposed
attractive potential described earlier.

In all these calculations, the molecules are assumed to have cylindrical symmetry.
But most real nematogens (see figure 2) have lower symmetry, and Alben (1973)
showed that such deviations can account for a lowering of the order parameter at 7y;.
Recent calculations by various authors (Straley 1974; Luckhurst et al 1975; Gelbart
and Barboy 1979) have indeed tended to confirm the importance of taking into
account the deviations from cylindrical symmetry.
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