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Abstract

FprA, a Mycobacterium tuberculosis NADPH-ferredoxin reductase, consists of two structural domains, a
FAD-binding and a NADP-binding domain, respectively. For the first time, we demonstrated that native
FprA, on thermal treatment underwent partial denaturation with unfolding of only the FAD-binding domain
and release of the protein-bound flavin. The NADP-binding domain of this protein is highly resistant to
denaturation under these conditions. However, the presence of either 150 mM NaCl or KC1 or 10 pM MgCl,
or CaCl, or slightly acidic pH of 6.0 resulted in a highly cooperative and complete thermal unfolding of the
protein. Physicochemical investigations showed that the monovalent cations or low concentrations of
divalent cations induced compaction of the protein conformation. However, divalent cations at higher
concentrations resulted in FAD release leading to stabilization of an enzymatically inactive apo-enzyme.
Detailed thermal denaturation studies on the native protein and the isolated NADP-binding domain showed
that cations and pH 6.0 destabilized only the heat-stable NADP-binding domain. The experimental studies
demonstrate that modulation of intramolecular ionic interactions induce significant conformational changes
in the NADP-binding domain of FprA, resulting in a substantial increase in the structural cooperativity of
the whole molecule. The results presented in this paper are of importance as they demonstrate alterations in
the native three-dimensional structure of FprA and cooperativity in protein molecule on slight alteration of
pH or modification of ionic interactions in protein.
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Tuberculosis is still a major cause of mortality in both de-
veloping and industrialized countries. It kills about three
million people every year, and its diffusion is constantly
increasing due to development of drug resistance, duration
of the therapeutic treatment, and increased susceptibility of
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immunocompromised individuals. The availability of the
genome sequence of its etiological agent, Mycobacterium
tuberculosis (Cole et al. 1998), allowed to identify new
potential targets for developing novel anti-tubercular drugs.

M. tuberculosis grows within phagocytic vacuole of mac-
rophages. The key to success of M. tuberculosis as a patho-
gen depends on its ability to maintain an infection inside the
phagocytic vacuole of the macrophage where it encounters
an acidic environment. To survive under these conditions,
the M. tuberculosis has to limit acidification of the phago-
some, which it does successfully to some extent by utilizing
transport systems which exchange protons for cations re-
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sulting in increased levels of these cations within the cell
(Sturgill-Koszcki et al. 1994; Piddington et al. 2000; Pieters
2001). Furthermore, under these conditions the vacuole is
moderately acidic with pH of around 6 (Xu et al. 1994). pH
and cations modulate the electrostatic interactions among
charged moieties of surface ionizable residues present in the
proteins resulting in alterations in the conformation and sta-
bility of proteins (Ahmad et al. 2001; Maldonado et al.
2002). Due to these facts it can be assumed that the proteins
of M. tuberculosis, especially acidic proteins, can experi-
ence alterations in the native conformation when the organ-
ism is present in the phagocytic vacuole.

FprA is a M. tuberculosis flavoenzyme encoded by gene
Rv3106 of the H37Rv strain of the pathogen (Cole et al.
1998). This is a 50 kDa oxidoreductase that transfers in vitro
two reducing equivalents from NADPH to ferredoxins of
the 3Fe and 7Fe types, via the protein-bound FAD cofactor
(Fischer et al. 2002). Although the exact physiological role
of this flavoprotein is still to be established, insights have
been derived from its primary structure. FprA shows sig-
nificant sequence homology with the mammalian adreno-
doxin reductase and with its yeast homolog Arhlp (Man-
zella et al. 1998). This information suggests a possible in-
volvement of FprA as an electron donor in processes such as
cytochrome P450 monooxygenase reactions and iron—sulfur
cluster biogenesis. Indeed, the M. tuberculosis genome con-
tains 20 genes encoding putative cytochrome P450 proteins
(Cole et al. 1998), which are probably required for fatty acid
and mycolipid oxygenation. The enzyme FprA has thus
been suggested to be a potential drug target of M. tubercu-
losis. The atomic resolution structure of FprA in the oxi-
dized and NADPH-reduced forms have been published
(Bossi et al. 2002). Although the enzyme is monomeric in
solution (Fischer et al. 2002), it crystallized in dimeric form
(Bossi et al. 2002). However, the dimer was suggested to be
the result of crystal packing. Structurally, the overall archi-
tecture of the FprA protein is similar to that observed for
proteins belonging to the family of glutathione reductase
(Dym and Eisenberg 2001), of which FprA is a member.
The FprA monomer consists of two domains, both exhibit-
ing a Rossmann fold topology (Schulz 1992). The FAD-
binding domain of the enzyme consists of the N- and C-
terminal regions of the protein, whereas the central part of
the polypeptide chain constitutes the NADP-binding do-
main. A small two-stranded (3-sheet links the two domains.
Recently, a further, more detailed functional characteriza-
tion of FprA had been reported (McLean et al. 2003), which
provided a picture of the thermodynamic and transient-
kinetic properties of the enzyme.

We have carried out comparative thermal unfolding stud-
ies on FprA in the presence and absence of cations and at
slightly acidic pH. Detailed physicochemical studies on the
effect of cations, both monovalent and divalent, on the
structural and functional properties of FprA were carried out

using various optical spectroscopic techniques, like fluores-
cence and CD. The changes in the molecular dimension of
the protein on incubation with cations were studied by size-
exclusion chromatography. Identification of the structural
domain of FprA whose thermal stability is modulated by
cations was also pursued by limited proteolysis.

Results

The crystal structure of FprA shows that the enzyme is
made of two structural domains connected by a short two-
stranded 3-sheet linker (Bossi et al. 2002). The FAD-bind-
ing domain consists of residues 2—106 from the N-terminal
region and residues 327—456 from the C-terminal region.
The NADP-binding domain consists of residues 110-323
from the central part of the polypeptide. The two structural
domains of FprA are linked by the residues 107-109 and
324-326, which form the two-stranded anti-parallel (3-sheet.

Lack of cooperativity in native FprA molecule

To analyze whether the two structural domains of FprA
interact strongly with each other or they are independent
folding/unfolding units, we carried out thermal denaturation
experiments by monitoring the loss of secondary structure
of the enzyme at increasing temperatures. In the far-UV
region, the CD spectrum of native FprA shows the presence
of a substantial amount of a-helical conformation (McLean
et al. 2003). Hence, loss of CD signal at 222 nm was taken
as a measure of the unfolding of FprA. Figure 1 shows the

100

80 -

60 -

(@222) in %

20

20 30 40 50 60 70 80 90 100

Temperature('C)

Figure 1. Effect of cations on the thermal denaturation of FprA. Thermal
denaturation profiles of FprA in the absence and in the presence of differ-
ent cations, as measured by loss of CD ellipticity at 222 nm. The curves 1
to 6 represent samples of FprA at low ionic strength and in the presence of
NaCl, KCl, MgCl,, CaCl,, and pH 6.0, respectively. When present, mono-
valent cations were at the concentration of 150 mM and the divalent cations
at 10 pM. The CD signal loss is represented as percentage of the value
observed for the protein sample at 20°C.

www.proteinscience.org 981



Bhatt et al.

changes in CD ellipticity at 222 nm of FprA as a function of
temperature. A broad sigmoidal transition between 30°C to
65°C having an apparent 7,, (midpoint of thermal denatur-
ation) of about 49°C was observed. As the temperature was
increased above 80°C, a further slight decrease in the CD
signal at 222 nm was seen. An interesting observation was
that a loss of only about 27% CD ellipticity at 222 nm was
associated with the thermal denaturation of FprA, demon-
strating that the major part of the protein molecule is resis-
tant to thermal unfolding. This indicates that FprA is com-
posed of two unfolding units that behave independently and
have different thermal stabilities under low ionic strength
conditions: one is sensitive to thermal denaturation for
which a transition is observed at 49°C, while the other is
stable at temperatures up to 80°C. Hence, native FprA is a
noncooperative molecule in which two distinct structural
units fold/unfold independently from each other.

Cations and pH 6.0 induced cooperativity in FprA

The effect of cations on the thermal denaturation of the
FprA molecule was studied by incubating the protein with
salts like NaCl, KCl, MgCl,, and CaCl,. As all these salts
contain the same anion (i.e., CI7), the different effects ob-
served in the comparative study using these salts will be
mainly due to the different cations. Figure 1 summarizes the
thermal denaturation profiles of NaCl-, KCl-, MgCl,-,
CaCl,-, and pH 6.0-incubated FprA, as monitored by loss of
CD ellipticity at 222 nm. All these samples showed a single
sharp sigmoidal transition with almost complete loss of sec-
ondary structure associated with the transition. However,
differences were observed in the 7,, associated with the
transitions under these conditions. These observations dem-
onstrated that, unlike native FprA, which on thermal dena-
turation is only partially unfolded, the cation- or pH 6.0-
incubated FprA undergoes a simultaneous unfolding of both
the domain on thermal treatment, probably as a result of
cooperativity induced in the enzyme under these conditions.

Effect of NaCl on the structural and
functional properties of FprA

Time-dependent changes in the structural parameters and
enzymatic activity of FprA at increasing salt concentrations
were monitored to standardize the incubation time required
for achieving equilibrium under each condition. At 0.15,
0.5, and 1 M NaCl, changes in tryptophan and FAD fluo-
rescence were complete within 30 min, with no further
variation observed in the next 12 h (data not shown). These
observations indicate that an incubation of about 1 h is
sufficient for achieving equilibrium under any salt condition
tested.

Figure 2 summarizes the effect of increasing concentra-
tion of NaCl on the tertiary and secondary structure of FprA
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as studied by monitoring the changes in the tryptophan and
FAD fluorescence, and CD ellipticity at 222 nm, respec-
tively. Figure 2A reports the effect of the salt on the tryp-
tophan fluorescence of the protein. A decrease of the wave-
length of the tryptophan emission maximum from 338 nm to
334 nm was observed by increasing the NaCl concentration
from 0 M to 0.5 M. This suggests that incubation of FprA
with NaCl leads to movement of tryptophan residues pres-
ent in the protein to a more hydrophobic environment, prob-
ably as a result of compaction of native conformation of the
protein molecule (Lakowicz 1983; McLean et al. 2003).
However, no significant changes in fluorescence polariza-
tion (Fig. 2B) and enzymatic activity (Fig. 2C) of FprA on
incubation with increasing NaCl concentrations was ob-
served. As far as the secondary structure of FprA is con-
cerned, only a small enhancement, about 6%, was observed
as the salt concentration was increased from 0 M to 0.5 M
NaCl (Fig. 2D). These observations collectively suggest that
the incubation of FprA with NaCl resulted in a compaction
of the conformation of the protein without large alteration in
its secondary structure, FAD microenvironment, or func-
tional activity. This conclusion was further supported by
size-exclusion chromatography in the presence and in the
absence of salts. In Figure 2E the chromatograms of FprA
obtained at different NaCl concentrations are reported. In
the absence of NaCl, FprA eluted as a single symmetric
peak with a retention volume of 15.0 mL, corresponding to
the expected molecular mass of about 50 kDa. However, in
the presence of either 0.15 or 0.5 M NacCl, the elution vol-
ume for FprA was increased to 15.2 and 15.5 mL, respec-
tively. This indicates a significant reduction of the hydro-
dynamic radius for the NaCl-stabilized conformation of
FprA, compared to the conformation adopted by the native
protein, thus confirming that incubation of FprA with NaCl
results in compaction of its conformation.

Effect of CaCl,

Figure 3A shows the effect of increasing concentrations of
CaCl, on the tryptophan fluorescence. An initial sharp de-
crease in the wavelength of the emission maximum from
338 nm to 334 nm was observed as CaCl, concentration was
increased from 0 M to 0.1 M. A further increase in the
CaCl, concentration up to 1 M reverted this effect, bringing
the wavelength of the emission maximum to 337 nm. This
suggests that the FprA molecule undergoes a compaction in
conformation in the presence of low (up to 0.1 M) CaCl,
concentrations. In this respect, the effect of Ca® at low
concentrations is similar to that of Na*. This is further sup-
ported by the studies with 1 M NaCl-stabilized FprA as
shown in Figure 3A. No significant change in tryptophan
fluorescence emission maxima of 1 M NaCl-stabilized FprA
was observed up to 0.4 M CaCl, concentration, suggesting
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Figure 2. Changes in the structural properties of FprA on incubation with increasing concentrations of NaCl at pH 7.0 and 25°C.
(A) Changes in the wavelength of the tryptophan fluorescence emission maximum of FprA with increasing concentrations of NaCl.
(B) Changes in the FAD fluorescence polarization of FprA with increasing concentrations of NaCl. (C) Changes in the enzymatic
activity of FprA with increasing concentrations of NaCl. The values are represented as percentage of the value observed for FprA in
the absence of NaCl. (D) Changes in the CD ellipticity at 222 nm of FprA with increasing concentrations of NaCl. The values are
represented as percentage of the value observed for FprA in the absence of NaCl. (E) Size-exclusion chromatographic profiles of FprA
at increasing concentrations of NaCl on a Superdex 200HR column at pH 7.0 and 25°C. The curves 1 to 3 represent the profiles of
FprA at low ionic strength and in the presence of 0.15 M and 0.5 M NaCl, respectively.

that the NaCl-stabilized compact conformation of enzyme
(as discussed above) is not affected by CaCl,. However, at
variance with the case of the monovalent cation, a further
increase in CaCl, concentration (from 0.1 M to 1 M and 0.4
M to 1 M for native and 1 M NaCl-stabilized FprA, respec-
tively) led to a relaxation of the CaCl,-stabilized compact
conformation of FprA.

The spectral characteristics of the prosthetic group FAD
in flavoproteins have been demonstrated to be sensitive to

the protein microenvironment (Ghisla et al. 1974; Visser et
al. 1995). FprA contains a tightly but noncovalently bound
FAD molecule, buried in the molecule interior. Fluores-
cence of the FprA-bound FAD is nearly completely
quenched, with a high polarization of the residual emission.
As shown in Figure 3B, incubation of FprA with increasing
concentration of CaCl, in the range of 0.1 M to 0.8 M,
resulted in a significantly large sigmoidal decrease in FAD
fluorescence polarization from 0.33 to 0.13. This observa-
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Figure 3. Changes in the structural properties of FprA on incubation with increasing concentrations of CaCl, at pH 7.0 and 25°C.
(A) Changes in the wavelength of the tryptophan fluorescence emission maximum of FprA with increasing concentrations of CaCl,.
The squares represent data with native protein and the circles that with 1 M NaCl-stabilized protein. (B) Changes in the FAD
fluorescence polarization of FprA with increasing concentrations of CaCl,. The symbols are same as in A. (C) Changes in the enzymatic
activity of FprA with increasing concentrations of CaCl,. The values are represented as percentage of the value observed for FprA in
the absence of CaCl,. (D) Changes in the CD ellipticity at 222 nm of FprA with increasing concentrations of CaCl,. The values are
represented as percentage of the value observed for FprA in absence of CaCl,. (E) Size-exclusion chromatographic profiles of FprA
at increasing concentrations of CaCl, on a Superdex 200HR column at pH 7.0 and 25°C. The curves 1 to 3 represent profiles of FprA
at low ionic strength and in the presence of 0.1 M and 1.0 M CaCl,, respectively.

tion suggests that incubation of FprA with high concentra-
tions of CaCl, resulted in alterations of the conformation of
protein such that the protein-bound FAD became either sol-
vent exposed or dissociated from the protein molecule. To
assess whether CaCl, induced the release of FAD from the
apoprotein, studies as those reported earlier were under-
taken (Ahmad et al. 2001). After incubation with 1 M
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CaCl,, FprA was concentrated on a Centricon ultrafiltration
device with a 3 kDa cutoff. The presence of FAD in free
form (in filtrate) and protein-bound form (in protein frac-
tion) was monitored by fluorescence spectroscopy. Under
these conditions, a major fraction of FAD was observed in
the filtrate (~80% relative fluorescence) with a little fraction
associated with the protein (~16% relative fluorescence). In
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the absence of CaCl,, under the same treatment, most of the
FAD (~90%) remained protein-bound to FprA. This con-
clusion was confirmed by following the enzymatic activity
of FprA: a decrease of activity was observed as the CaCl,
concentration was increased from 0 M to 1 M (Fig. 3C),
with only 9% residual activity at 1 M CaCl,. The CaCl,-
induced release of FAD from FprA seems probably due to
specific interaction of Ca”* ions with the enzyme. This pos-
sibility is supported by the observation that for 1 M NaCl-
stabilized enzyme the release of FAD from the enzyme
occurs at a significantly lower CaCl, concentration than that
observed for the native protein (Fig. 3B). These observa-
tions demonstrate that incubation of FprA with CaCl, leads
to dissociation of protein-bound FAD from the protein mol-
ecule as a result of specific interaction of Ca* ions with
protein. Figure 3D shows the changes in the secondary
structure of FprA on incubation with increasing CaCl, con-
centration as monitored by changes in CD ellipticity at 222
nm. With increasing salt concentration, an initial sharp en-
hancement of about 25% in ellipticity was observed. This
was followed by a smoother and continuous decrease in
ellipticity with further increase in CaCl, concentration up to
1 M. However, even at 1 M CaCl,, the CD ellipticity value
at 222 nm was slightly greater than that observed for the
FprA holoprotein in the absence of Ca®*. These observa-
tions suggest that incubation of FprA with low concentra-
tions of CaCl, induced an increase of the secondary struc-
ture content of protein, but that further increase in CaCl,
above 0.1 M concentration resulted in relaxation of the
CaCl,-induced secondary structure, along with release of
the bound flavin. However, the fact that the 1 M CaCl,-
stabilized FprA conformation had a secondary structure
content slightly higher than that observed in the absence of
Ca”* suggests that the CaCl,-stabilized apoprotein of FprA
also adopts a compact conformation.

These conclusions were supported by comparative size-
exclusion chromatography studies on FprA in the absence
and in the presence of different CaCl, concentrations. Fig-
ure 3E summarizes the results carried out on a S-200 Su-
perdex column. When FprA incubated with either 0.1 or 1
M CaCl, was chromatographed on the column in the pres-
ence of the same CaCl, concentrations in the mobile phase,
significant increases in the retention volumes to 15.5 and
15.2 mL, respectively, were observed, compared to the
value 15.0 mL obtained for FprA in the absence of salts.
This increase in retention volume is indicative of a signifi-
cantly reduced hydrodynamic radius of the CaCl,-stabilized
forms of FprA compared to the native protein. Thus, CaCl,
induced a compaction in the conformation of both the apo-
protein and the holoprotein forms of FprA. Furthermore, the
conformation of the FprA form stabilized at low CaCl, con-
centration (0.1 M) shows a higher degree of compaction in
comparison to that of the apoprotein form stabilized at
higher CaCl, concentration.

Insights in the mechanism of the cation- or pH-induced
cooperativity in the thermal unfolding of FprA

On thermal denaturation, the FprA molecule was found to
undergo only partial unfolding. However, in the presence of
monovalent or divalent cations a complete and cooperative
thermal unfolding process was observed. To understand the
underlying mechanism of cation-induced cooperativity in
FprA, we carried out denaturation studies on protein incu-
bated with increasing concentration of salts. Figure 4, A and
B, summarizes the thermal unfolding profile of FprA in the
presence of increasing concentration of KCI and NaCl, re-
spectively, as monitored by the loss of the CD ellipticity at
222 nm. For FprA incubated with low concentrations of
salts (20 or 30 mM), a profile including a first transition
followed by a further loss of the CD signal occurring at
much higher temperatures, was obtained. The first transition
was in the temperature range of 35°C to 65°C, with only
about 30% loss of secondary structure, similar to what was
observed in the thermal denaturation of FprA in absence of
salts, whereas the second process occurred at temperatures
above 85°C and 75°C in the presence of 20 mM and 30 mM
KCl, respectively, and resulted in loss of about 80% of the
CD signal at 100°C. As the KCl concentration was in-
creased to 40 mM, two distinct transitions were observed,
showing 7, values of about 49°C and 58°C, respectively.
These observations demonstrate that NaCl or KCI affected
only the T,, of the second transition, whereas the first tran-
sition remained unchanged as the salt concentration was
increased. At KCI or NaCl concentrations of about 150 mM,
only a single transition with a 7, of about 52°C was ob-
served, resulting to the complete loss of the secondary struc-
ture of the protein. Further increase in KCI or NaCl con-
centration upto 1 M did not show any significant change in
the thermal denaturation profile or 7,,. The effect of MgCl,
and CaCl, on the thermal denaturation of FprA was evident
at much lower concentrations (Fig. 4C,D). At a MgCl, and
CaCl, concentration of 1 wM, respectively, two distinct
transitions were observed. This pattern switched to a mono-
phasic profile with complete unfolding of FprA at MgCl,
and CaCl, concentrations of 10 wM. Furthermore, unlike
the NaCl or KCl, the MgCl, or CaCl, showed an interesting
observation. With increasing concentration of MgCl, and
CaCl, a significant decrease in 7T, associated with the ther-
mal unfolding was observed. These results demonstrate that,
in comparison to NaCl or KCI, MgCl, and CaCl, were more
effective in destabilizing the heat-resistant structural unit of
FprA. Furthermore, higher concentrations of CaCl, and
MgCl, significantly affected the protein structure, resulting
in some degree of destabilization of the whole protein mol-
ecule.

The studies described so far suggest that modulation of
electrostatic interactions within the heat-resistant structural
unit of FprA by cations leads to its destabilization and in-
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Figure 4. Thermal denaturation profiles of FprA in the presence of increasing concentrations of cations, and at acidic pH, as measured
by loss of CD ellipticity at 222 nm. (A) Thermal denaturation profiles of FprA incubated with increasing concentrations of KCI. The
curves 1 to 6 represent profiles for FprA at low ionic strength, and in the presence of 20, 30, 40, 60, and 150 mM of KCl, respectively.
(B) Thermal denaturation profiles of FprA incubated with increasing concentrations of NaCl. The curves 1 to 5 represent samples of
FprA at low ionic strength, and in the presence of 30, 40, 60, and 150 mM of NaCl, respectively. (C) Thermal denaturation profiles
of FprA incubated with increasing concentrations of MgCl,. The curves 1 to 3 represent samples of FprA at low ionic strength, and
in the presence of 1 and 10 wM MgCl,, respectively. (D) Thermal denaturation profiles of FprA incubated with increasing concen-
trations of CaCl,. The curves 1 to 3 represent samples of FprA at low ionic strength, and in the presence of 1 and 10 uM CaCl,,
respectively. (E) Thermal denaturation profiles of FprA between pH 7.0 and 6.0 as measured by loss of CD ellipticity at 222 nm. The
curves 1 to 3 represent the denaturation of FprA at pH 7.0, 6.4, and 6.0, respectively. In all the figures the values for loss of CD signal
are represented as percentage of the value observed for the protein sample at 20°C.

duces cooperativity in the otherwise structurally noncoop-
erative FprA molecule. An obvious way to affect charge-
to-charge interactions in proteins is to change the proton-
ation of ionizable group by changing the pH of the medium.
Thus, to further support our conclusions about the role of
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ionic interactions in FprA, we carried out a survey on the
effect of pH on the thermal denaturation of the enzyme.
Figure 4E reports the thermal unfolding profiles of FprA at
different pH values within the range of 6.0-7.0, as moni-
tored by the loss of CD ellipticity at 222 nm. As the pH was
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lowered from pH 7.0 to 6.4, the unfolding of the heat-
resistant structural unit of FprA was obtained with increas-
ingly lower value of T,,. The profiles were clearly biphasic
under these conditions, indicating lack of cooperativity in
enzyme molecule. However, lowering the pH to 6.0 resulted
in a further destabilization of the heat-resistant unit. Under
these conditions, the unfolding profile of FprA showed a
single transition with a 7, of about 56°C, corresponding to
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a cooperative and complete loss of the secondary structure
of the protein.

pH-dependent changes in structure and function of FprA
were also studied. Figure 5 shows the changes in tryptophan
florescence emission maxima, FAD fluorescence, enzymat-
ic activity, and CD ellipticity at 222 nm of FprA in the pH
range of 7.0 to 4.0. A significant loss of secondary structure
and enzymatic activity of FprA as well as a significant
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Figure 5. pH-Induced changes in the structural properties of FprA between pH 7.0 and 4.0 at pH 7.0 and 25°C. (A) Changes in the
wavelength of the tryptophan fluorescence emission maximum of FprA with decreasing pH. (B) Changes in the FAD fluorescence
polarization of FprA with decreasing pH. (C) Changes in the enzymatic activity of FprA with decreasing pH. The values are represented
as percentage of the value observed for FprA at pH 7.0. (D) Changes in the CD ellipticity at 222 nm of FprA with decreasing pH. The
values are represented as percentage of the value observed for FprA at pH 7.0. (E) Size-exclusion chromatographic profiles of FprA
at decreasing pH on a Superdex 200HR column at 25°C. The curves 1 to 3 represent the profiles of FprA at pH 7.0, 6.0, and 5.0,

respectively.
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exposure of the buried tryptophan and FAD molecule pres-
ent in the native conformation was observed on decrease in
pH from 6.0 to 4.0. These observations suggest a significant
unfolding of FprA under these conditions. Between pH 7.0
and 6.0 no significant changes in enzymatic activity or sec-
ondary structure of protein was observed. However, a shift
in fluorescence emission maxima of tryptophan fluores-
cence from 337 nm to 335 nm was observed on changing
the pH from 7.0 to 6.0, which indicates the possibility of
compaction of conformation of FprA under these conditions
(as discussed earlier). This possibility was confirmed by
SEC studies (Fig. SE), where a significant enhancement in
retention volume (retention volume ~15.21 mL at pH 6.0)
compared to native protein (retention volume ~15 mL at pH
7.0) was observed for protein at pH 6.0. For protein at pH
5.0 (retention volume ~14.75 mL) a partial unfolding of
protein is observed.

Identification of the structural unit
destabilized by cations

As FprA contains two structural domains, the FAD-binding
domain and the NADP-binding domain, we tried to identify
which of these domains was the heat-resistant unit of the
protein. We first studied the effect of thermal denaturation
on the protein bound FAD molecule in FprA. Figure 6A
shows the effect of thermal denaturation on the FAD envi-
ronment of FprA, as studied by loss of the CD signal at 370
nm, which is a measure of the release of the FAD to a
nonchiral environment (Maeda et al. 2002; McLean et al.
2003). A single sigmoidal transition between 43°C and
80°C having a T, of about 56°C was observed. The loss of
the CD ellipticity at 370 nm demonstrates that thermal de-
naturation of FprA led to the release of the protein-bound
FAD from the protein molecule. The temperature at which
the CD signal corresponding to FAD dissociation started
decreasing (~47°C) is close to the 7, of 49°C observed for
the loss of secondary structure (Fig. 1A). This observation
suggests that during the thermal denaturation of FprA the
unfolding of the heat-sensitive unit occurs first, followed by
the release of FAD from the partially unfolded protein.
Thus, the heat-sensitive unit of the protein corresponds to
the FAD binding domain, and hence, the NADP-binding
domain of FprA should be the heat-resistant domain. To
unequivocally prove this we used a limited proteolysis ap-
proach. The factors determining the vulnerability to prote-
olysis of a protein depends on conformational parameters
such as accessibility, segmental motion, and protrusion. For
this reason, limited proteolysis has been effectively used to
identify structural domains in proteins, ligand-induced con-
formational changes, and to monitor protein folding and
unfolding processes (Hubbard 1998). Figure 6B shows the
SDS-PAGE profile of the protein digest obtained by limited
proteolysis of FprA with a-chymotrypsin at 45°C, condi-

988 Protein Science, vol. 14

tions under which the heat-sensitive unit should be mostly
unfolded. Besides several minor bands, a major protein
band, with a molecular mass of about 24 kDa, was observed.
This 24 kDa protease-resistant FprA fragment showed high
affinity to Cibacron Blue resin (Fig. 6C). Indeed, it eluted at
a higher salt concentration in comparison to the native
FprA, indicating that the protease-resistant fragment binds
more strongly to the Cibacron Blue resin than the native
protein. The nature of the interaction of the proteolysed
FprA with the resin ligand was further investigated by ex-
amining the effect of presence of NADP* in the sample. An
earlier elution of the protease-resistant fragment was ob-
tained when 0.5 mM NADP" was included in the mobile
phase, demonstrating that NADP" was able to avoid binding
of the protein to the resin, although only partially. The
above observations indicate that the intact protein fragment
obtained on proteolysis of FprA with a-chymotrypsin is
probably the NADP-binding domain of protein. This was
confirmed by N-terminal sequencing of the protein frag-
ment obtained on proteolysis of FprA with a-chymotrypsin.
The first five amino acids of the protein fragment were
VGWYN, suggesting that the protease acted between the
amino acid residues Phenyalanine 128 and Valine 129 in the
primary sequence of FprA, and as a result, the NADP-bind-
ing domain (amino acid 129-334) is obtained.

The NADP-binding domain of FprA obtained by limited
proteolysis was purified by affinity chromatography on a
Cibacron Blue column. In Figure 6D the size-exclusion
chromatography profile of the purified domain is compared
to that of native FprA. The purified preparation of the FprA
fragment yielded a single peak with a molecular weight of
about 25 kDa. These results were confirmed by electrospray
mass spectrometry (data not shown). The effect of NaCl and
pH on the thermal denaturation of the isolated NADP-do-
main of the protein was then studied. On thermal denatur-
ation, the FprA fragment showed a single transition, occur-
ring in the temperature range of 50°C to 80°C, with an
apparent 7,, of about 62°C, and corresponding to a loss in
secondary structure of about 15% (Fig. SE). When the pro-
teolytic fragment was incubated at pH 6.0 or with 150 mM
NaCl at pH 7.0 and then subjected to thermal denaturation,
a single sigmoidal transition, however, with significantly
decreased T, of 52°C and 50°C, respectively, and a com-
plete loss of the secondary structure was obtained. These
observations demonstrate that the isolated NADP*-binding
domain of FprA is indeed resistant to thermal denaturation,
and interaction of this domain with NaCl leads to its sig-
nificant destabilization.

Discussion

Based on the results presented in this paper, the effect of
modulation of the ionic interactions in FprA by cations on
the cooperativity, structural, and functional properties of the
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Figure 6. (A) Release of protein-bound FAD during thermal denaturation of FprA. Changes in the visible CD spectrum of FprA during
thermal denaturation of the protein, as monitored by loss of the CD signal at 370 nm. The values are represented as percentage of the
value observed for FprA sample at 20°C. (B) SDS-PAGE profiles of FprA (lane /), FprA after treatment with a-chymotrypsin (lane
2), and purified NADP-binding domain of FprA (lane 3). Lane 4 represents protein standards of molecular masses between 66 and 18
kDa. The conditions for proteolysis and purification of the NADP-binding domain are detailed in the Experimental Procedures section.
(C) Affinity chromatography of FprA and the NADP-binding domain on HiTrap Blue Sepharose column. The curves 1 to 3 represent
the elution profiles of FprA, and the FprA fragment in the absence and presence of 0.5 mM NADP", respectively. Experimental details
are described in Experimental Procedures section. (D) Properties of the purified NADP-binding domain of FprA. Size-exclusion
chromatographic profiles of FprA (curve 1) and of the purified NADP-binding domain of the enzyme (curve 2) on Superdex 200HR
column at pH 7.0 and 25°C. (E) Thermal denaturation profiles of the NADP-binding domain of FprA at low ionic strength (curve 1);
in the presence of 0.15 M NaCl (curve 2) and at pH 6 (curve 3) as measured by loss of the CD ellipticity at 222 nm. The values for
loss of CD signal are represented as percentage of the value observed for protein sample at 20°C.

protein can be summarized as shown in Figure 7. Thermal protein-bound FAD. The NADP-binding domain remains
denaturation of native FprA results in the unfolding of only intact and folded under these conditions. The incubation of
the FAD-binding domain of the protein with release of the = FprA with monovalent cation results in the compaction of
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Figure 7. Diagrammatic scheme of the cation-induced structural and func-
tional alteration in FprA.

the native conformation of the enzyme. This monovalent
cation-stabilized compact conformation of FprA undergoes
a complete cooperative unfolding on thermal denaturation.
The divalent cation treatment of FprA stabilized two differ-
ent intermediates, depending on the divalent cation concen-
tration. The first intermediate, stabilized at very low diva-
lent cation concentration, is a catalytically active, compact
form of FprA, which might be similar to that found to be

stabilized by monovalent cations (discussed above). How-
ever, at higher divalent cation concentrations, a catalytically
inactive, apoprotein form, having molecular dimensions
similar to that of the holoprotein, is stabilized. Both CaCl,-
stabilized intermediates of FprA showed a cooperative un-
folding on thermal denaturation. As expected, the apopro-
tein form stabilized at higher CaCl, concentration showed a
lower T,, on thermal denaturation than that observed for
FprA in the absence of CaCl, or at low CaCl, concentration.

Electrostatic interactions among charged moieties of sur-
face of ionizable residues contribute significantly to the
conformational stability of proteins. The pH and cation de-
pendence by stability is likely to be affected by the net
charge on the protein, especially in highly charged proteins,
in which long-range electrostatic interactions can contribute
to the stability of native state. FprA is an acidic protein
having an isoelectric point of about 5.5. For having an in-
sight into the mechanism of cation- or pH-induced compac-
tion of native conformation of FprA and subsequent induc-
tion of cooperativity in the protein molecule we studied the
charge distribution on the protein surface. Figure 8 shows
the electrostatic surface potential of FprA as obtained by
GRASP (Nichollas 1992) from its crystal structure. The
protein surface shows significant clustering of negative
charges (Fig. 8), with a higher concentration of negative
surface potential localized in the surface of FprA. Because
of the large number of acidic residues, at pH 7.0, there are
substantial repulsive long-range electrostatic interactions.
The repulsion among the similar charges clustered in this
region would be the main force that stabilizes the protein in
a relatively open conformation. The interaction of cations
with the negatively charged groups present in the protein
will be helpful in screening, and hence weakening, of re-
pulsive electrostatic forces present in a native conformation
of the protein. Thus, a compaction of the protein will be
favored in the presence of cations or acidic pH. The salt-

v

¢ domam

Figure 8. Molecular surface of FprA colored according to its electrostatic potential (blue for positive potential and red for negative
potential). (A,B) The FprA molecule in different orientations. The surface was displayed using GRASP.
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induced compaction of the protein may, in turn, lead to the
observed enhanced cooperativity in its thermal unfolding.

A crucial problem in the designing of molecules, which
can be effective drugs against a disease, is to achieve speci-
ficity for the protein/enzyme molecule of target organism.
The importance of this problem lies in the fact that in most
of the cases the conformational and physical properties of
the host and the pathogen protein are not very different, and
hence, it is a small difference, which can be exploited to
bring about specificity for a molecule as a specific inhibitor
of pathogen protein. In this regard correct information on
the conformation and physical characteristics of the patho-
gen protein is of significant importance. Factors like pH and
presence of ions are known to influence the protein confor-
mation and physical properties, especially in the case of
charged proteins. Due to this fact the role of the microen-
vironment in which the pathogen grows becomes important,
especially in case of pathogen like M. tuberculosis, which
grows in a hostile environment of the phagosomes. M. tu-
berculosis grows within the phagocytic vacuole of macro-
phages, which has a relatively hostile environment with
limited nutrients and acidic pH. Although M. tuberculosis
limits the acidification of phagosomes by recruiting a trans-
port system which exchanges protons for cations like Na*
and Mg>*, the vacuole is still moderately acidic with a pH
of about 6.1 (Xu et al. 1994). Studies on the influence of pH
and divalent cations on the growth of Mycobacteria has
demonstrated that growth of M. tuberculosis is extremely
sensitive to acidic pH, and indicate that the organism ac-
quires sufficient Mg”* in order to grow in a mildly acidic
environment such as that present in the phagocytic vacuole
of the macrophages (Piddington et al. 2000). The results of
the studies presented in this paper demonstrate that the con-
formation, stability, and cooperativity of the M. tuberculosis
protein are significantly changed in the microenvironment
in which the pathogen grows and proliferates. Such drastic
changes in protein conformation and physical properties
will have significant consequences on the inhibition prop-
erties of the molecule being used as specific inhibitor of the
enzyme.

Materials and methods

Materials

All the chemicals were purchased from Sigma Chemical Co., and
were of highest purity available.

Methods

Overexpression and purification of FprA

The overproduction in Escherichia coli and purification of re-
combinant FprA was carried out as described earlier (Fischer et al.

2002). The purified FprA showed >95% purity, as seen by ESI-MS
and SDS-PAGE analysis.

Incubation of FprA with different salts

FprA (7 uM) was dissolved in 50 mM sodium phosphate (pH
7.0), in the absence and presence of increasing concentrations of
NaCl, KCI, or CsCl, and incubated for 4 h at 4°C before the
measurements were made. For CaCl, or MgCl, incubations con-
ditions were as above, with the difference that sodium phosphate
buffer was replaced by 20 mM Tris-HCI (pH 7.0).

pH denaturation of FprA

FprA (7 uM) was incubated in the presence of 10 mM phos-
phate buffer at various pH values in the range of 6.0-7.0 for 5 h
at 4°C. The pH of the solution was maintained throughout the
studies.

Enzyme assay

Diaphorase activity of the enzyme was measured at 25°C in
sodium phosphate or Tris-HCI buffers using K Fe(CN)y as an
electron acceptor and NADPH as a reductant as described earlier
(Fischer et al. 2002). When investigating the effect of salts, the salt
under study was included into the assay mixture, at the same
concentration as present in the enzyme incubation solution.

Fluorescence spectroscopy

Fluorescence spectra were recorded with a Perkin-Elmer LS
50B spectrofluorometer in a 5 mm path-length quartz cell. The
excitation wavelength for tryptophan and FAD fluorescence mea-
surements were 290 nm and 370 nm, respectively. Emission spec-
tra were recorded from 300 nm to 400 nm, and from 400 nm to
600 nm, respectively.

Circular dichroism

CD measurements were made with a Jasco J800 spectropolar-
imeter calibrated with ammonium (+)-10-camphorsulfonate. The
results were expressed as the mean residual ellipticity [8], which is
defined as [0] = 100 x 0, /(Ic), where 0, is the observed ellip-
ticity in degrees, c is the concentration in mol residue 17, and [ is
the length of the light path in centimeters. The CD spectra were
recorded in a 1-mm cell at 25°C at an enzyme concentration of
7 pM and 100 pM for the far- and near-UV or visible regions,
respectively. The values obtained were corrected by subtracting
the baseline recorded in the absence of FprA under the same con-
ditions. For thermal denaturation studies a scan rate of 60°C/min
was used.

Size-exclusion chromatography

Gel filtration experiments were carried out on a Superdex
200HR 10/30 column (manufacturer’s exclusion limit for proteins:
600 kDa) on an AKTA FPLC (Amersham Biosciences). The col-
umn was equilibrated and run in 50 mM sodium phosphate buffer
(pH 7.0), containing the desired NaCl concentration, at 25°C at a
flow rate of 0.3 mL/min. For studies using CaCl,, the column was
equilibrated and run at 25°C with 20 mM Tris-HC1 (pH 7.0),
containing the desired CaCl, concentration.

Limited proteolysis

FprA at a 0.5 mg/mL concentration was subjected to limited
proteolysis by a-chymotrypsin at a protein to protease ratio of
50:1. Digestion mixture was incubated for 1 h at 45°C in 100 pnL
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reaction volume. The reaction was stopped by adding a protease
inhibitor cocktail. The samples were analyzed by SDS-PAGE on a
15% polyacrylammide gel (Laemmli 1970).

Purification of the NADP-binding domain

The purification of the heat-stable domain of FprA was carried
out by affinity chromatography using a HiTrap Blue Sepharose
pre-packed 5 mL column (Amersham Biosciences). The column
was equilibrated with 50 mM sodium phosphate (pH 7.4), using
the AKTA-FPLC system (Amersham Biosciences) at 25°C. Native
and a-chymotrypsin proteolysed FprA samples were separately
loaded on to the column and eluted with a linear gradient from
0 to 1.5 M NaCl in the equilibration buffer at a flow rate of 2
mL/min. For chromatography in the presence of NADP™", 0.5 mM
NADP™" was present in both the mobile phase and protein samples.
The purity of the eluted protein samples was checked by SDS-
PAGE (Laemmli 1970).
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