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ABSTRACT

We describe a tachyon-free stable non-BPS brane configuration in type IIA string

theory. The configuration is an elliptic model involving rotated NS5 branes, D4 branes

and anti-D4 branes, and is dual to a fractional brane-antibrane pair placed at a conifold

singularity. This configuration exhibits an interesting behaviour as we vary the radius of

the compact direction. Below a critical radius the D4 and anti-D4 branes are aligned,

but as the radius increases above the critical value the potential between them develops a

minimum away from zero. This signals a phase transition to a configuration with finitely

separated branes.
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Introduction and Review

Much has been learned in recent times about the physics of brane-antibrane pairs

and non-BPS branes in superstring theory[1-32]. Parallel, infinitely extended pairs attract

each other, and can annihilate into the vacuum by a process of tachyon condensation into a

constant minimum. An analogous decay process takes place for single or multiple non-BPS

branes. Condensation of the tachyon as a kink, vortex or more general soliton is associated

to brane-antibrane annihilation into branes of lower dimension.

The above considerations have been extended to backgrounds with lower supersym-

metry (orientifolds, orbifolds and smooth Calabi-Yau manifolds), where one finds new

phenomena including the existence of stable, non-BPS branes. As parameters of the back-

ground are varied, there can also be phase transitions between qualitatively different con-

figurations. The reader may consult the reviews in Refs.[33-36].

A different direction, explored in Ref.[37], is to consider non-BPS configurations of

intersecting branes and antibranes in the fully supersymmetric type II spacetime back-

ground. Here one encounters novel phenomena including both attractive and repulsive

interactions among branes and antibranes. Such configurations could be useful to study

non-supersymmetric field theories, and also to understand better the basic underlying

structure of superstring theory.

In the present note we examine a variant of a configuration of “adjacent brane-

antibrane pairs” that was discussed in Ref.[37]. Let us describe the original configura-

tion. In type IIA theory we start with a pair of parallel NS5-branes extended along

x1, x2, x3, x4, x5 and separated along x6. The x6 direction is compact, with circumference

2L. Now stretch a D4-brane along x6 from the first NS5-brane to the second, and a

D4-brane along x6 from the second NS5-brane to the first (Fig.1).

NS5 NS5

D4
__

NS5

D4

Fig.1: Adjacent D4 and D4 between parallel branes.
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In Ref.[37] it was argued that the D4-brane and D4-brane exert a net repulsive force

on each other, with the result that the configuration is unstable. From the point of view

of the field theory on the NS5 world volume, this repulsion is essentially due to the fact

that the D4 and D4 end on the NS5 brane from opposite sides, and their ends are charged

3-branes in the NS5 world volume. If we dimensionally reduce everything over these three

directions, then the ends become vortices living on the reduced NS5 world volume. These

vortices carry the same charge under the gauge field, hence they repel, and since the

configuration is non-supersymmetric there is no reason to expect that this repulsion is

cancelled by exchange of other massless fields. Because the NS5-branes are parallel, the

repelling D4- and D4-branes can run away from each other to infinity.

This instability can also be understood in the T-dual picture, where the D4- and

D4-branes are actually two types of fractional branes (denoted 1f and 1
′
f respectively in

[37]) at a Z2 ALE singularity. These two fractional branes repel, as they each carry a full

unit of twisted RR charge. There is also an attraction due to the fractional untwisted RR

charge, but an explicit computation of the amplitude using orbifold techniques[37] reveals

that the repulsive force dominates.

The variant of this configuration that we will describe in the next section involves

rotating the NS5-branes. This converts the T-dual ALE space into a conifold[38,39], hence

this brane construction is now T-dual to fractional branes at a conifold, for which we cannot

use orbifold techniques to compute the force. We will analyse the model using some obser-

vations in Refs.[38,39,40,15,37] and argue that this time a stable non-BPS configuration is

obtained.

A Stable Configuration

Consider the following brane configuration in Type IIA: an NS5-brane filling

x1, x2, x3, x4, x5 and located at (x8, x9) = (0, 0), and another NS5-brane (denoted by NS5’)

filling x1, x2, x3, x8, x9 and located at (x4, x5) = (0, 0). The two branes are placed at the

same point in the x7 direction and are separated along the compact x6 direction of cir-

cumference R6.

Suspend a D4-brane between NS5-NS5’ in one of the two intervals and a D4 in the

other, so that the 4-branes extend along x1, x2, x3 and x6 (Fig.2). This configuration

breaks all the supersymmetries of Type IIA, though each of the D4 and D4, together with

the NS5-branes, separately preserves some supersymmetry.
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NS5 NS5NS5’

D4 D4
__

Fig.2: Adjacent D4 and D4 between rotated branes.

Unlike the case discussed in the previous section, here the configuration of NS5-branes

is no longer dual to an ALE space but rather to a conifold[38,39]. Nevertheless, one can

still argue that the stretched D4- and D4-branes repel. In the case of parallel NS5-branes,

the repulsion was identified as coming from like charges carried by the ends of the 4-

branes. In this picture the repulsive effect is localised on each NS5-brane separately, hence

introducing a relative rotation should not matter. Moreover, from the string theory point

of view, the repulsion between the D4 and D4 is obtained by calculating a closed-string

tree amplitude (cylinder amplitude). Translated into the open-string channel, this is a one-

loop open-string amplitude. This amplitude depends only on the spectrum obtained by

quantizing the open strings connecting D4 and D4 across any one NS5 brane. This again

suggests that the force is localized near one NS5 brane at a time1. Using these arguments,

we conclude that the D4- and D4-branes in Fig.2 repel each other, and that the repulsion

is the same as that between adjacent D4- and D4-branes when the NS5-branes are not

rotated with respect to each other.

With rotated NS5-branes, the important difference is that the the D4-branes no longer

have moduli to move away from each other. As they move with their ends on the NS5-

branes, the D4-branes get stretched. In the process their effective 3-brane tension increases,

providing a restoring force for the repelling ends of the adjacent D4 − D4. Thus one

can expect a configuration in which the repulsive force and the restoring force due to the

increased tension of the adjacent D4−D4 pair exactly cancel, giving rise to a configuration

that is stable at least under small perturbations.

In fact, as we now show explicitly, such a stable configuration exists for some range

of values of the circumference R6. For simplicity, let us assume that the NS5 and NS5’-

branes are located at diametrically opposite points on the compact x6 direction, with the

1 This feature of open strings across NS5-branes was exploited in Refs.[38,39] to obtain the

spectrum of the gauge theory living on related (BPS) brane configurations.
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separation between them being L = 1
2R6. With this, and the fact that the branes are

rotated at 90 degrees to each other, there is a high degree of symmetry in the problem.

If we let r be the displacement of the end of the D4 brane from the origin in the x4 (or

x5) direction, then the D4-brane will also be displaced by an equal amount r, and the

displacement of the other ends of the 4-branes along x8 (or x9) will also be r (Fig.3).

NS5 NS5

D4 D4
__r

NS5’

Fig.3: Equilibrium configuration after displacement of 4-branes.

With the above data, the net tension of the stretched D4(D4) is V T4

√
L2 + 2r2 where

V is the (infinite) 3-volume of the (x1, x2, x3) directions and T4 = 1
gs(2π)4 is the tension

of a BPS D4-brane. The contribution from the repulsion between the ends of D4- and

D4-branes on an NS5-brane to the energy of the system is given by[37]:

V
16(2π)4

∫ ∞

0

dt

t3
e−

2X
2

t

π F(q) (1)

Here X = 2r is the separation of D4 and D4 along the NS5 brane, and q = exp(−πt). The

function F(q) is given by

F(q) =
f4(q)

8

f1(q)8

[
1 − 4

f1(q)
4f3(q)

4

f2(q)4f4(q)4

]
(2)

where the fi(q) are defined as:

f1(q) = q
1
12

∞∏

n=1

(1 − q2n) f2(q) =
√

2q
1
12

∞∏

n=1

(1 + q2n)

f3(q) = q−
1
24

∞∏

n=1

(1 + q2n−1) f4(q) = q−
1
24

∞∏

n=1

(1 − q2n−1)

(3)
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Dropping the common factor V, the total potential energy of the system of branes in Fig.3

is

V (r) =
1

gs(2π)4

√
L2 + 2r2 − 1

16(2π)4

∫ ∞

0

dt

t3
e−

8r
2

t

π F(q)

= V (1)(r) + V (2)(r)

(4)

This expression can be minimized to get the condition for the equilibrium value for r.

The second term in Eqn.(4) is somewhat complicated. So we first analyze it in two

different limits and extract some physical information. In the r → ∞ limit, the most

significant contribution comes from the t → 0 behaviour of F(q).

F(e−πt) → −16t2 as t → 0 (5)

Therefore we have

V (2)(r) = − 1

16(2π)4

∫ ∞

0

dt

t3
e−

8r
2

t

π (−16t2), r ≫ 1 (6)

(we are measuring distances in units of
√

α′). This integral diverges logarithmically because

of the behaviour of the integrand in the t → 0 limit. To extract the behaviour of this

quantity as a function of r, let us regulate it by putting a cut-off ǫ for the lower limit of

the integration variable t, and then take ǫ → 0. Thus Eqn.(6) becomes

V (2)(r) =
1

(2π)4

[
−γ − log(

8r2ǫ

π
) −

∞∑

n=1

(−1)n( 8r2ǫ
π

)n

n.n!

]
, r ≫ 1 (7)

where γ is the Euler constant. In the limit ǫ → 0 the third term vanishes and we are left

with a potential of the form:

V (2)(r) = A − B log(r), r ≫ 1 (8)

where A is an infinite constant and B = 2
(2π)4 . From this the contribution of the second

term in Eq.(4) to the force between the two D4-branes, given by −dV (2)

dr
, is

F (2)(r) =
B

r
, r ≫ 1 (9)

Thus in the large-separation limit this contribution to the force between two 4-brane

segments is repulsive, as expected.
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Now let us look at the behaviour of this contribution for small values of r. In this

limit we can expand the the exponential in Eqn.(4) in powers of r to get

V (2)(r) = C − Dr2, r ≪ 1 (10)

where

C =
1

8(2π)4

∫ ∞

0

dt

t3
F(q)

D = − 1

(2π)5

∫ ∞

0

dt

t2
F(q)

(11)

Notice that C is a divergent integral whereas D is convergent. D is also positive because

F(q) is negative all through the range of integration. From Eqn.(10) the small-r behaviour

of the force turns out to be

F (2)(r) = 2Dr, r ≪ 1 (12)

which is also repulsive, as expected. From Eqn.(4), the restoring force is:

F (1)(r) = −dV (1)

dr
= − 1

gs(2π)4
2r√

2L2 + (2r)
2

(13)

which is attractive as explained above. The strength of attraction depends on the value of

L, related to the size of the compact x6 direction.

We want to know whether there is a stable minimum of the total potential, and

under what conditions this minimum is attained away from r = 0. In order to argue for

the presence of a stable minimum at nonzero separation of the brane-antibrane pair, it is

sufficient to show that the potential has an unstable turning point at the origin. Combined

with the attractive behaviour for large r, this suffices to show that the potential develops

a stable minimum somewhere in between.

From Eqns.(4) and (10), we have for r ≪ 1,

V (r) ≃ 1

gs(2π)4
r2

L
− Dr2 (14)

upto additive constants. Here, D is the positive constant given in Eqn.(11). It follows that

V has a turning point at the origin that is unstable (tachyonic) when L is greater than a

critical value Lc, namely:

L > Lc =
1

gs(2π)4D
(15)
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The function F(q) defined in Eqn.(2) tends to the constant value −8 as t → ∞. Hence an

estimate for D can be made by approximating F in the integrand in Eqn.(11) by −16t2

for 0 < t < 1√
2

and −8 for 1√
2

< t < ∞. With this, we find

(2π)4D ∼ 16
√

2

2π
∼ 3.60 (16)

so the phase transition takes place at Lc ∼ 0.28 g−1
s .

We expect that there will be no loop corrections to the restoring potential V (1), as

this depends only on the D-brane tension which is unrenormalized. The repulsive potential

V (2) will, on the other hand, receive loop corrections, but they are independent of L, and

can be expected to be small for sufficiently small gs. Hence we do not expect stringy

corrections to invalidate the conclusions of this section.

Some further analysis of this potential can be found in the Appendix.

The T-dual Configuration

It has been argued that the elliptic configuration involving rotated NS5-branes is

T-dual to the conifold geometry[38,39]. Above we have studied an adjacent D4 − D4

pair intersecting with this elliptic configuration. Hence one may ask what is the precise

configuration, involving a suitable D3−D3 pair at a conifold, obtained by T-duality along

the compact x6 direction. Such a configuration should describe a stable non-BPS system

exhibiting a phase transition.

As discussed above in the introduction, there is a simpler situation where the analogous

T-duality relation holds: the elliptic model of two parallel NS5-branes[41], which is T-

dual[42] to a Z2 ALE geometry. An adjacent D4 − D4 pair in this geometry is dual to a

particular pair of fractional branes at an ALE space[37]. In this system, the adjacent brane-

antibrane pair can separate along the (x4, x5) directions, which lie within the bounding

NS5-branes. In the T-dual picture the fractional branes live in the 5-plane transverse to

the ALE space, and due to their mutual repulsion, they separate along the same directions

(x4, x5), that are transverse both to their own worldvolume and to the ALE space. In this

discussion, one gets a satisfactory physical picture without having to take into account the

back-reaction of the D-branes on the NS5-branes, or on the geometry.

For rotated NS5-branes the situation is somewhat different. On the one hand, the

model of a wrapped D4-brane intersecting with rotated NS5-branes is fairly similar to the

one with parallel NS5-branes: locally there is always a D4-brane ending on a codimension-2

7



locus inside an NS5-brane. On the other hand, in the T-dual conifold geometry we know[43]

that D3-branes completely smoothen out the conifold singularity: the near-horizon geome-

try becomes AdS5 ×T1,1. Thus in the latter picture the back reaction of the branes on the

geometry is qualitatively very important. This can be traced to the fact that the branes

completely fill the space transverse to the singularity.

The stable non-BPS configuration discussed in the previous section is an example of

this type. While it can be visualised explicitly in the brane-construction picture, it is not

so easy to describe in terms of branes at a conifold. For very weak string coupling (and

fixed L) the problem is somewhat easier, since in this case the D4 − D4 pair is aligned.

The T-dual configuration will consist of a pair of fractional branes (more precisely, the first

fractional part of a BPS brane, along with the second fractional part of a BPS antibrane)

at the conifold. As for the case in Ref.[43], here too we expect the conifold geometry to be

smoothed out near the origin. As the string coupling increases, a phase transition takes

place and the D4−D4 separates, as discussed above. In this case the T-dual configuration

is harder to visualise. The fractional pair cannot separate in any direction transverse

to the conifold, so it must be thought of as separating within the conifold directions.

Asymptotically this should look like a D3 −D3 pair at separated locations away from the

conifold singularity. But close to the origin the behaviour could be more complicated, with

the conifold geometry being replaced by a more nontrivial one.

Both these situations should be amenable to study as supergravity solutions. With

N1 branes in the first segment and N2 antibranes in the second, and for sufficiently large

N1 and N2, there should be a trustworthy non-supersymmetric supergravity solution dual

to the RG flow of a non-supersymmetric SU(N1) × SU(N2) gauge theory. This situa-

tion is very similar to the one recently considered in Ref.[44,45,46,47], except that these

authors considered supersymmetric configurations with full branes and fractional branes.

If each full brane is replaced by a fractional brane-antibrane pair (in the sense discussed

above) then our desired configuration is obtained. Since in this process supersymmetry is

completely broken, it remains to be seen whether an explicit solution can be found. This

should be a fascinating direction to explore, as one would hope to see our phase transition

as an instability of the supergravity solution when some parameter is varied.

Summary and Discussion

We have exhibited a configuration of adjacent D4 and D4 branes in type IIA string

theory, suspended between relatively rotated NS5-branes, which corresponds to a stable
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non-BPS state. A crucial assumption was that the force between adjacent brane-antibrane

pairs can be estimated using a “locality” property, according to which it originates from

the repulsion between the ends of these 4-branes in the NS5-brane worldvolumes. This

repulsion can in turn be computed using standard orbifold techniques, valid for the model

with parallel NS5-branes which is dual to a Z2 ALE singularity.

While we do not know at present how to estimate the validity of this assumption,

it is encouraging that it gives a definite and physically reasonable answer. As we have

indicated in the previous section, a supergravity calculation might be one route to provide

an independent check of our conclusions.

The 3 + 1-dimensional field theory on the common worldvolume in our brane con-

struction will be a non-supersymmetric, tachyon-free theory. Because the model is elliptic,

it should flow to a CFT. One can generalise the model to include N1 D4-branes in one

segment and N2 D4-branes in the other segment. For N1 = N2 = N this will again flow

to a CFT. Its large-N limit should be interesting.

There are various other generalisations of our model which we have not discussed

here but should be quite straightforward to analyse. This includes choosing the relative

rotation of the NS5-branes to lie somewhere between 0 and π/2, introducing more NS5-

branes rotated at various angles[38], and varying the spacing between the NS5-branes. One

can also study non-elliptic models and incorporate semi-infinite D4-branes and D4-branes.

Above the critical radius, our model provides a situation where a brane and an an-

tibrane are at a finite separation that is calculable in terms of various parameters including

the string coupling and the radius of a compact direction. Such configurations might per-

haps be useful to construct novel “brane-world” type models.
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Appendix

The numerical value of Lc below Eqn.(16) is only approximate, since we have made

a crude estimate for the integral in Eqn.(11). An improvement on this estimate can be

made by taking

F(q) ∼ −16t2 + 16t4, t small

F(q) ∼ −8 + 45q, t large
(17)

and then finding an intermediate value of t at which these two functions match. We find

that t is shifted from 1√
2

to ∼ 0.76, and the value of (2π)4D decreases from 3.60 to 3.02.

As a result, Lc moves up to about 0.33g−1
s , an increase of 18%. This suggests that at least

the order of magnitude of Lc has been correctly estimated.

One may wonder if the potential has a unique minimum away from 0 for L > Lc or

whether there are several minima, some of them metastable. For this, it is convenient to

make the same approximation above, but not just for the r ≪ 1 behaviour. We take the

term V (2)(r) in Eqn.(4) and write it as follows:

V (2)(r) = − 1

16(2π)4

∫ ∞

0

dt

t3
e−

8r
2

t

π F(q)

∼ − 1

16(2π)4

∫ 1
√

2

0

dt

t3
e−

8r
2

t

π (−16t2) − 1

16(2π)4

∫ ∞

1
√

2

dt

t3
e−

8r
2

t

π (−8)

(18)

The integrals can now be evaluated. It is convenient to rescale the distance by defining

y = 2
5
4√
π
r, then we find:

V (2) ∼ 1

(2π)4

(
1

2
(1 − y2)e−y2

+ (1 − y4

2
) Ei (−y2) − 2 log y − 1

2
− γ

)
(19)

Here, Ei is the exponential-integral function and γ is the Euler constant. We have dropped

an infinite constant associated to the logarithmic term in the potential, and subtracted a

finite constant −1
2 − γ to make the potential vanish at the origin.

Now we add the first term in Eqn.(4), which we write:

V (1) =
1

gs(2π)4

√
L2 + 2r2 − L =

√
π

2
3
4 gs(2π)4

(√
L̃2 + y2 − L̃

)
(20)

where L̃ = 2
3
4√
π
L, and again a constant has been subtracted to make the function vanish

at the origin. It is now straightforward to plot V (1)(y) + V (2)(y) for different values of L̃
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(Figs.4,5). In these plots we have set gs = 0.1. For this value of gs, the phase transition

is at L̃c ∼ 2.65. We see that, at least for the L̃ values in the plots, there seems to be a

unique and nonzero minimum when L̃ > L̃c.

0.05 0.1 0.15 0.2
y

0.001

0.002

0.003

0.004

16 (pi)4 V

0.05 0.1 0.15 0.2y

-0.0002
-0.0001

0.0001
0.0002

16 (pi)4 V

Fig.4: Potential for L̃ = 2.6, 2.7.
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Fig.5: Potential for L̃ = 10, 10000.
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