
ar
X

iv
:h

ep
-t

h/
00

09
10

1v
3 

 1
3 

N
ov

 2
00

0

hep-th/0009101

TIFR/TH/00-50

Chern-Simons Terms on Noncommutative Branes

Sunil Mukhi and Nemani V. Suryanarayana

Tata Institute of Fundamental Research,

Homi Bhabha Rd, Mumbai 400 005, India

ABSTRACT

We write down couplings of the fields on a single BPS Dp-brane with noncommutative

world-volume coordinates to the RR-forms in type II theories, in a manifestly background

independent way. This generalises the usual Chern-Simons action for a commutative Dp-

brane. We show that the noncommutative Chern-Simons terms can be mapped to Myers
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tachyons on these branes leads to the correct Myers terms on the decay products.
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1. Introduction and Review

Much insight has been gained into the dynamics of brane decay using noncommuta-

tivity. Turning on a constant NS-NS 2-form B-field along the world-volume of a D-brane,

one finds that the world-volume action becomes a noncommutative field theory[1,2]. On

an unstable, non-BPS D-brane, one gets a noncommutative field theory involving tachy-

onic scalars, which generically possesses noncommutative static soliton solutions[3] at large

values of the noncommutativity parameter. These solutions can be used[4,5] to describe

the decay of these branes. Subsequently it was understood that large noncommutativity

is irrelevant to the problem, if one chooses the correct solution including gauge field ex-

citations along with the tachyon[6,7]. A beautiful background-independent formulation of

this, exhibiting the relation to matrix theory, was given by Seiberg recently[8].

Many of the above works deal with bosonic D-branes, which have a DBI action similar

to that for the bosonic fields of D-branes in superstring theory. However, a unique property

of branes in superstring theory is that they all have topological couplings of Chern-Simons

type to the Ramond-Ramond closed-string backgrounds. In what follows, we will propose

explicit expressions for the Chern-Simons couplings on BPS D-branes in the presence of

noncommutativity.

We will also find analogous couplings on non-BPS branes, and show that these terms

provide a useful testing ground for the conjectures involving brane decay via noncommu-

tative solitons. One key property of noncommutative solitons is that they can produce N

lower D-branes starting from a single higher brane. In recent times it has emerged that

collections of N D-branes have extra commutator couplings in their world-volume theory,

to all RR potentials, that do not appear for a single D-brane[9]. Hence one should expect

to find such terms starting with a noncommutative D-brane. We will see that such terms

indeed arise.
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A (Euclidean) Dp-brane in bosonic string or superstring theory has a Dirac-Born-

Infeld action for massless modes that can be written

SDBI = Tp

∫

dp+1x

√

det
(

gij + Fij + Bij

)

(1.1)

where i = 1, . . . , p + 1. gij and Bij are pull-backs of the spacetime metric and NS-NS

B-field onto the brane world-volume, Tp = (2π)
1−p
2

gs
, and we have set 2πα′ = 1. We are

working in static gauge and in the DBI limit, i.e. with constant fields.

The relevant results of ref.[2] can be summarised as follows. Let us assume for definite-

ness that we are dealing with a Euclidean Dp-brane with an even-dimensional world-volume

(so p is odd) and a constant non-zero background B-field has been turned on over all p+1

directions. In the presence of this B-field, the dynamics of the world-volume fields of the

brane is equivalently described by an action in terms of noncommutative variables given

by

ŜDBI = T̂p

∫

dp+1x

√

det
(

Gij + F̂ij + Φij

)

(1.2)

where T̂p = (2π)
1−p
2

Gs
, and products of fields appearing in this equation are understood to

be ∗ products with parameter θ:

f(x) ∗ g(x) ≡ e
i
2
θij∂i∂

′

j f(x)g(x′)
∣

∣

x=x′
(1.3)

The new field strength F̂ is given in terms of the commutative gauge field by the

Seiberg-Witten transform. In the case of a single Dp-brane with constant F̂ (rank one

commutative gauge field F ), F̂ is related to F by

F = F̂
1

1 − θF̂
(1.4)

The parameters Gij , Φij, Gs and θij are given in terms of the commutative variables g, B, gs

by
1

G + Φ
= −θ +

1

g + B

Gs = gs

(

det(G + Φ)

det(g + B)

)
1
2

(1.5)

Because these equations determine four parameters in terms of three physical (constant)

backgrounds, there is a freedom in the description. This can be seen either as the free-

dom to choose the noncommutativity parameter θ at will (in which case Gij , Φij, Gs are

determined), or the freedom to choose Φij , in which case Gij , θ
ij, Gs are determined).
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Three choices of the description are particularly interesting. For Φij = Bij , we have

θ = 0, Gs = gs and Gij = gij . This is the commutative description. For Φ = 0 we have

some definite value of θ and the remaining parameters, such that all the noncommutativity

is absorbed into F̂ and the ∗ product. And for Φij = −Bij , we have the special values:

θij = (B−1)ij , Gij = −BikgklBlj , Gs = gs

√

det B

det g
(1.6)

This last choice has the special feature of manifest background independence. This means

the following: remaining within the description via Φ = −B, we can vary B, keeping g, gs

and F +B fixed. Then it was shown[2] that the DBI action is invariant under this change.

Let us rewrite the DBI action in a way that makes this background-independence manifest.

Substituting Φ = −B = −θ−1 into Eq.(1.2), we find that in this description:

ŜDBI = T̂p

∫

dp+1x

√

det
(

Gij + F̂ij − θ−1
ij

)

= Tp

√

det g
√

det θ

∫

dp+1x

√

det
(

− θ−1
ik gklθ−1

lj + F̂ij − θ−1
ij

)

= Tp

∫

dp+1x
Pf Q

Pf θ

√

det
(

gij + (Q−1)ij

)

(1.7)

where Pf denotes the Pfaffian of an antisymmetric matrix, and we have defined

Qij = θij − θikF̂klθ
lj (1.8)

Note that this differs by a sign from the corresponding definition in Ref.[2].

It turns out that Qij is background-independent in the sense explained above[2]. This

follows from Eqs.(1.4) and (1.6), which give:

F + B = F̂
1

1 − θF̂
+

1

θ
=

1

Q
(1.9)

The final step is to note[3] that the integral over noncommutative variables xi satis-

fying

[xi, xj] = iθij (1.10)

can be re-expressed in terms of a trace Tr over a Hilbert space of operators whose com-

mutation relations are independent of θ. The transcription is:

∫

dp+1x → Tr (2π)
p+1

2 Pf θ (1.11)
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from which we finally get:

ŜDBI =
2π

gs

TrPf Q

√

det
(

gij + (Q−1)ij

)

(1.12)

In this form, the background independence is manifest, from the background-independence

of Qij and the fact that all the other quantities in this action are closed-string quantities,

which are manifestly B-independent.

We can go one step further to obtain a useful insight into the meaning of this action.

Since F̂ and therefore Q is constant, we can try to find coordinates X i which satisfy

[X i, Xj] = iQij (1.13)

Then we can use Eq.(1.11) in the reverse direction, with the noncommutativity parameter

being Q instead of θ:

Tr → 1

(2π)
p+1

2 Pf Q

∫

dp+1X (1.14)

This enables us to write the action Eq.(1.12) schematically as:

ŜDBI = Tp

∫

dp+1X

√

det
(

gij + Fij + Bij

)

(1.15)

where we have also used Eq.(1.9). This deceptively simple expression is just the original

DBI action, in the original variables, but with all products replaced by ∗ products with

noncommutativity parameter Q = 1
F+B

. The complication resides in the fact that it has

to be interpreted as an action for the dynamical variable Â, which is defined in terms of

F + B via Eqs.(1.9) and (1.8).

Thus there is a “short route” from the commutative action Eq.(1.1) to the manifestly

background-independent noncommutative action Eq.(1.15), bypassing the conversion to a

formalism with Φ-dependence and the introduction of an “open-string” metric and string

coupling. It consists of introducing noncommuting coordinates X and interpreting their

noncommutativity parameter as the Q defined in Eq.(1.8). Alternatively, the prescription

can be defined to lead to the last line of Eq.(1.7), namely insert a factor of Pf Q
Pf θ

inside the

integral, and replace all products by ∗ products with parameter θij. In either case, one

must replace (F + B)ij wherever it occurs by (Q−1)ij.

It is also straightforward to understand the relation between the new X satisfying

Eq.(1.13) and the old ones satisfying Eq.(1.10). This relation is

X i = xi + θijÂj(x) (1.16)
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It was discovered in Refs.[10,11] and used recently in Ref.[8] to argue a relation between

matrix theory and noncommutativity, exhibiting the role of matrix theory in ensuring

background-independence. For our purposes it is not necessary to invoke matrix theory

per se. The mere existence of the X i variables gives us a recipe to find a noncommutative

DBI action equivalent to the original commutative one, namely replacing xi by X i.

In the following section we will apply this recipe to finding the Chern-Simons terms

for a noncommutative D-brane in type II superstring theory.

2. Chern-Simons Terms for a Noncommutative BPS D-brane

It is convenient to start with a single Euclidean BPS D9-brane of type IIB theory.

We follow the normalization of Ramond-Ramond forms as in Ref.[9]. Let µp be the RR

charge (which equals the tension Tp in these conventions) of a BPS Dp-brane. With these

conventions, the Chern-Simons terms on a D9-brane are:

SCS = µ9

∫

∑

n

C(n) eB+F (2.1)

where C(n) denotes the n-form RR potential. As is well-known, the above expression

involves the following prescription: the exponential is to be expanded in a formal power

series of wedge products, and each term is then wedged with the appropriate RR form so

that the total form dimension is 10.

In the presence of non-zero constant NS-NS B-field background, we have seen that

the DBI action has a manifestly background-independent description in which the world-

volume becomes a noncommutative space with noncommutativity parameter Q = 1
F+B

.

Following the procedure outlined in the previous section, we now write down the Chern-

Simons terms on the noncommutative D9-brane. Thus, in the previous equation we simply

replace (F +B)ij , wherever it occurs, by (Q−1)ij , and insert a factor Pf Q
Pf θ

under the integral

sign. Then the noncommutative Chern-Simons term is:

ŜCS = µ9

∫

x

Pf Q

Pf θ

∑

n

C(n) eQ−1

(2.2)

where the underlying coordinates are the xi and all the products are understood to be ∗
products defined in terms of θ. Here Q−1 is understood to be the 2-form 1

2(Q−1)ij dxi∧dxj .

5



Just as was done for the DBI action, this can alternatively be expressed as the Hilbert-space

trace:

ŜCS =
2π

gs

Tr Pf Q
∑

n

C(n) eQ−1

(2.3)

This can also be re-expressed schematically in terms of “original” variables as:

ŜCS = µ9

∫

X

∑

n

C(n)eF+B (2.4)

where this time the integral is over coordinates X i with noncommutativity parameter Q.

The modification of the Chern-Simons terms on a D9-brane due to noncommutativity

can be understood physically as follows. Suppose that, to start with, we turn on a constant

B field on the D9-brane only along the directions (x9, x10). In noncompact space, this

effectively induces infinitely many D7-branes on the world-volume of the D9-brane. But

we know that such a collection of D7-branes must couple to the RR 10-form potential via

Myers terms[9], see also Refs.[12,13]. Hence the expression we have proposed in Eq.(2.3)

must contain these terms. Indeed, since we have taken maximal noncommutativity there,

our situation is more like that of infinitely many D-instantons, which explains why the

integral has been completely replaced by a trace over an infinite dimensional Hilbert space.

This action then should contain Myers terms describing the coupling of the D-instantons

to all p-form potentials (even p) in type IIB theory.

To see that this is so, let us first examine the term containing the 10-form C(10). The

Myers term proportional to this form, on a collection of N D-instantons, looks like:

2π

gs

tr ei(iΦiΦ)C(10) (2.5)

where iΦ is interpreted to mean the inner product of the N × N matrix-valued scalar

field Φi transverse to the brane, with a lower index on the RR potential. Expanding the

exponential, we find the relevant Myers term is:

2π

gs

tr ei(iΦiΦ)C(10) =
2π

gs

tr
i5

5!
Φi10Φi9 . . .Φi2Φi1 C

(10)
i1i2···i9i10

= −2π

gs

tr
1

5!25

(

i[Φi1 , Φi2 ]
)

. . .
(

i[Φi9 , Φi10 ]
)

C
(10)
i1i2···i9i10

(2.6)
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To compare, let us extract the 10-form term from Eq.(2.3):

2π

gs

Tr (Pf Q) C(10) =
2π

gs

Tr
1

5!25
ǫi1i2···i9i10Q

i1i2 . . .Qi9i10
1

10!
ǫj1j2···j9j10 C

(10)
j1j2···j9j10

=
2π

gs

Tr
1

5!25
Qi1i2 . . .Qi9i10 C

(10)
i1i2···i9i10

(2.7)

Now in noncommutative theory, as we have seen, the identification with matrix-valued

transverse coordinates comes about as Qij = −i[X i, Xj]. Identifying the X i with Φi, we

see that the two expressions above agree.

Note that the above manipulations are covariant without specifying a spacetime met-

ric: Q naturally has upper indices, while C(10) is a 10-form and has lower indices. The ǫ

symbols above have constant components ±1, so they are tensor densities (the upper- and

lower-indexed ones having equal and opposite weight). Hence the action is always a true

scalar.

One can actually display the equivalence of the noncommutative action Eq.(2.3) to

the Myers terms on a D-instanton in complete generality. Like the commutative Chern-

Simons terms in Eq.(2.1), the noncommutative version Eq.(2.3) also involves a prescription

whereby the exponential of the 2-form Q−1 is expanded and its wedge products taken with

the appropriate RR form to make 10-forms. Since the integral has now been converted

to a trace, these 10-forms are contracted with the totally antisymmetric ǫ-tensor in 10

dimensions (whose components are ±1) to make 0-forms. By manipulations similar to

those above, it is then easy to derive the following identity:

Tr Pf Q
∑

n

C(n)eQ−1

= Tr e−
1
2
iQ

∑

n

C(n) (2.8)

where iQ acting on a 2-form ωij is defined as Qjiωij , and the prescription on the RHS is

as follows: the exponential is expanded out to such an order that the n-form on which it

acts is reduced by contractions to a scalar. This is precisely Myers’ prescription applied

to D-instantons! Thus we see that noncommutativity can be used to derive the Myers-

Chern-Simons terms, with the “dotting” prescription of Myers being dual to the wedge

prescription arising in conventional Chern-Simons terms on branes. This in particular

demonstrates that the expression Eq.(2.3) is nonsingular despite the appearance of Q−1.

Let us next consider lower BPS D-branes, for example a (Euclidean) D7-brane in type

IIB. The noncommutativity parameter θij is now chosen to be maximal with respect to the

eight Euclidean directions x1, x2, . . . , x8. Therefore this D7-brane is T-dual to a D9-brane
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with noncommutativity only along the first eight directions. Note that on this D7-brane

we now have transverse coordinates Φ9, Φ10 that are functions of the noncommuting brane

world-volume coordinates xi, i = 1, . . . , 8. It follows that Φ9 and Φ10 do not commute, or

alternatively that they are multiplied using the ∗ product. This suggests that in addition

to the Q-dependent modification to the Chern-Simons term as in Eq.(2.2), we also have

Myers-type terms involving Φ9, Φ10.

Thus we claim that the Chern-Simons term on the D7-brane is:

ŜCS = µ7

∫

x

Pf Q

Pf θ
P

[

ei(iΦ∗iΦ)
∑

n

C(n)

]

eQ−1

(2.9)

where P represents the pull-back of the transverse brane coordinates to the world-volume

(this pullback was not required while studying the 9-brane, since there were no directions

transverse to the brane in that case). Note that here, Q is an 8 × 8 rather than 10 × 10

matrix.

This expression is basically equivalent to Eq.(2.2). To see this, notice that the expo-

nential term ei(iΦ∗iΦ) is equivalent to 1 + i(iΦ ∗ iΦ) since higher powers cannot contribute

by antisymmetry of the object that they contract. If we convert the 8-dimensional integral

above into a Hilbert-space trace, and define Q9,10 = −i[Φ9, Φ10], then it is not hard to see

that Eq.(2.9) becomes equivalent to Eq.(2.2). For example, in Eq.(2.9), the term (Q−1)9,10

is missing, but the term in Eq.(2.2) where it would contribute by cancelling a factor of

Q9,10 from the Pfaffian, arises instead from the 1 in 1 + i(iΦ ∗ iΦ).

Thus we see that Chern-Simons terms on BPS D-branes in the presence of noncom-

mutativity are summarised by Eq.(2.2), though for different p they are more appropriately

written in terms of a hybrid of Pf Q for the directions within the brane, and exponential

terms of the Myers type for the directions transverse to the brane, as in Eq.(2.9) for the

case of the D7-brane.

3. Chern-Simons Terms for a Noncommutative Non-BPS D-brane

We now turn to the discussion of unstable, non-BPS D-branes and determine the

Chern-Simons action on their world-volumes in the presence of noncommutativity. Type

II superstring theories have unstable Dp-branes, where p is odd in type IIA and even in

type IIB. Like the BPS branes, these branes too have Chern-Simons terms on their world-

volumes[14,15,16,17,18] which play an important role in arguing that their decay products
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(in the commutative case) carry the right RR charges. However, these Chern-Simons terms

now depend on the tachyon field as well.

For a single unstable commutative p-brane, the CS term has been argued to be:

SCS =
µp−2

2Tmin

∫

dT C(n) eF+B (3.1)

where Tmin is the value of the tachyon at the minimum of the potential. Note that dT is a

1-form, and the prescription for the Chern-Simons term involves expanding the exponential

so that, after wedging with an appropriate RR potential and the tachyon factor dT , we

get a 10-form.

For the noncommutative case, let us work with a Euclidean D9-brane in type IIA

with noncommutativity over all the 10 directions. Following the procedure described in

the previous sections, we can try to write down the Chern-Simons action. However, there is

an important subtlety to be taken care of. The exterior derivative dT of the tachyon in the

above equation must be promoted to a covariant derivative in the noncommutative case.

The covariant derivative in our notation is Di = θ−1
ij Xj with X i defined in Eq.(1.16). The

problem is that since X i is background-independent, Di depends explicitly on θ. We need

to find a 1-form in place of dT that is linear in [X i, T ] and also background-independent.

The unique candidate seems to be

DiT = −i (Q−1)ij [X
j, T ] (3.2)

where Q has been defined in Eq.(1.8). One piece of encouragement for this replacement,

besides background-independence, comes from the fact that at F̂ = 0, Q is the same as θ,

so our covariant derivative reduces to the standard one in that case. We will see another

justification for it in the following section.

Accordingly, we propose the following Chern-Simons action for an unstable D9-brane:

ŜCS =
µ8

2Tmin

∫

x

Pf Q

Pf θ
DT C(n) eQ−1

(3.3)

with DT as defined above. We will see in the following section that this modification is

crucial in reproducing expected results after brane decay via noncommutative solitons.

Note that even the commutative Chern-Simons term of Eq.(3.1) could have higher-

order corrections containing powers of T , as noted in Refs.[19,18]. In this case, the non-

commutative version will also generalise in an obvious way.
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4. Noncommutative Solitons, Brane Decay and Myers Terms

Now we can use the known classical solutions for noncommutative tachyons represent-

ing lower dimensional unstable D-branes, and study the Chern-Simons action expanded

around these solutions.

Let us first review the relevant information in Ref.[7], which extended the observations

in Refs.[4,5], about noncommutative soliton solutions on unstable D-branes. However,

unlike these references, we work in the description Φij = −Bij following Seiberg[8]. In this

description the action is manifestly independent of both θ and B. Written as a trace over

a Hilbert space, the DBI action for an unstable D9-brane is:

ŜDBI =
2π

gs

Tr

[

V (T )

√

det
(

δ
j
i − igik[Xk, Xj]

)

− f(T ) gkl [X
k, T ][X l, T ] + · · ·

]

(4.1)

where V (T ) is the tachyon potential, and all products are understood to be ∗ products.

f(T ) is some function whose form we will not need, although from Refs.[20,21] it follows

that it is proportional to V (T ).

The above action can be obtained following the “long route” described in Section 1.

However, it can also be obtained via the short route if we assume the formula in Eq.(3.2).

For this, we start with the commutative action in the form[20,21]:

SDBI = Tp

∫

dp+1x

√

det
(

gij + Fij + Bij + ∂iT∂jT
)

(4.2)

Using the prescription in Section 1 along with the one in Eq.(3.2), the noncommutative

action written as a trace is:

ŜDBI =
2π

gs

Tr Pf Q

√

det
(

gij + (Q−1)ij + DiTDjT †
)

(4.3)

Taking the Pfaffian factor inside the square root and expanding, we easily recover Eq.(4.1),

with f(T ) = V (T )1. This provides additional confirmation of Eq.(3.2).

Now one can extremise this action and find the classical equations of motion for both

the operators T and X i. For the equation of motion of the tachyon field we get:

V ′(T )
√

det M − f ′(T ) gkl [X
k, T ][X l, T ] + 2gkl [X

k, [X l, T ] f(T )] = 0 (4.4)

1 It is important to note that the expansion of the DBI action is being carried out for

|g|, |∂T |2 ≪ |B + F |, while in the commutative theory the DBI action is expanded in the op-

posite regime, where |∂T |2, |B + F | ≪ |g|.
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and for the X i we get:

2gij

[

T, [T, Xj] f(T )
]

+ igkl

[

X l, V (T )
√

detM(M−1)k
i

]

= 0 (4.5)

where we have defined:

(M)j
i = δ

j
i − igik [Xk, Xj] (4.6)

The equations of motion above actually suffer from an ordering problem, as does the

DBI action itself. However, as was essentially noted in Ref.[7], the classical solutions

representing noncommutative solitons turn out to be independent of any rearragements of

terms one might make above (so long as one does not, of course, open out commutators).

In these variables we can find solutions for these equations that correspond to the

“nothing state” and to various lower dimensional branes. As was pointed out by various

authors[7,8], each such state has in general a multitude of solutions. Recently Sen[22] has

argued that this apparent degeneracy of solutions arises because the variables in which the

DBI action is written are not the correct variables at the end-point of tachyon condensation.

One has to use some combinations of these variables to get rid of the unwanted degeracy

of solutions. For our purpose, however, it is enough to carry out the analysis using any

one of the many physically equivalent solutions.

Hence we take the following solution as the “nothing state”:

Tcl = Tmin1

X i
cl = 0 for i = 1, 2, . . . , 10

(4.7)

where 1 represents the identity operator. For a codimension-two soliton representing a D7

brane (say along the x1, x2, . . . , x8 directions), we choose the following solution:

Tcl = TmaxPN + Tmin(1 − PN )

X i
cl = PNxi for i = 1, 2, . . . , 8

X i
cl = 0 for i = 9, 10

(4.8)

where Tmax and Tmin are the values of the tachyon field at the extrema of V (T ), and PN

is the level-N projection operator in the harmonic oscillator Hilbert space made out of the

noncommutative directions x8, x9.
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It is easy to see that for the “nothing state” solution Eq.(4.7), the action vanishes

identically. For the codimension-two soliton, using:

V
(

TmaxPN + Tmin(1 − PN )
)

= V (Tmax) PN (4.9)

we find that the action is given by:

Ŝ =
2π

gs

TrV (Tmax)PN

√

det
(

δi
j + PNgikθkj

)

=
2π

gs

N

√

det
(

δi
j + gikθkj

)

(4.10)

This expression is identified with the action for N unstable D7 branes with all fluctuations

set to zero (in particular, this means that T = Tmax and Â = 0).

The apparent θ-dependence of this result is understood as follows. We have obtained

the action for unstable D7-branes in the description with Φ = −θ−1, and at F̂ = 0. For

general Φ the answer should be proportional to
√

det(G + Φ). Hence in the background-

independent description, with Φ = −θ−1, it should be proportional to
√

det(G − θ−1),

which is the case. Another way to put it is that the θ in Eq.(4.10) is really Q, as defined

in Eq.(1.8), and evaluated at F̂ = 0.

We could in fact have chosen the classical solution for X i to be given by X i
cl = PNxi

for arbitrary xi satisfying [xi, xj ] = iQ
ij

, this would have reproduced D7-branes in the

state with Qij = Q
ij

. But the state with Â = 0 (hence Q
ij

= θij) is special in that it

describes the final D7-branes in their undecayed state.

We can now insert these solutions into the Chern-Simons term of Eq.(3.3) and find the

Chern-Simons action for the fluctuations of these solitons. Here we will just demonstrate

how to get Chern-Simons terms for an unstable D7 brane of type IIA. For this, let us first

consider a specific term from Eq.(3.3) for an unstable D9 brane:

ŜCS =
µ8

2Tmin

∫

x

Pf Q

Pf θ
(−i)(Q−1)ij [X

j, T ] C(9) (4.11)

Now we condense the noncommutative tachyon as a codimension two soliton given in

Eq.(4.8) to obtain N D7-branes along x1, x2, ..., x8 directions. We substitute

T = Tcl + δT, X i = X i
cl + δX i (4.12)
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with the classical solutions defined in Eq.(4.8), into Eq.(4.11). In (4.12) we take the fluc-

tuations δT and δX i to be independent of the x9, x10 directions. Then this CS action

will have the form of an action on a set of D7-branes. Indeed, we saw in Eq.(4.10) that

expanding the DBI action brings out a projection operator PN for the Hilbert space along

the noncommutative directions 9, 10, so that the remaining (∞− N) modes become non-

propagating. The same projection arises in the CS action because of the PN in the classical

solution for the X i.

Notice that with this classical solution we have [X i
cl, Tcl] = 0, so the Chern-Simons

action of the classical solution vanishes identically. The decay product therefore has no

“winding brane charge”, contrary to the claim in Refs.[4,23]. This is particularly reassuring

in view of a recent argument[24] that some of the configurations that were thought to carry

such charge are pure gauge under a certain discrete symmetry.

Now let us consider the case in which the 9-form C
(9)
i1i2..i9

has its indices along the

directions 2, 3, ..., 10. In this case the index i in the 1-form (Q−1)ij [X
j, T ] in Eq.(4.11) will

have to be along the direction 1. In a coordinate basis in which the matrix Qij is in the

canonical form, it follows that the index j must be 2. Then we end up with the following

action for the fluctuations δT and δX i:

ŜUD7
CS =

µ6

2Tmin

trN

∫

x

(−i) [δX9, δX10] (−i)(Q−1
cl )12 [X2

cl, δT ] C
(9)
23...10 (4.13)

where Q
ij
cl = θij. Now in the above expression, X9, X10 are N × N matrices (because of

the PN projection) and the Hilbert-space trace over the directions of the noncommutative

soliton becomes a trace over these matrices. Hence, what we have found here is a Myers

term on N unstable D7-branes.

Actually, the commutator [δX9, δX10] that enters above does not vanish even for

N = 1. This is because the X i’s appearing in it are not only N × N matrices, but also

functions of the remaining 8 coordinates which are multiplied using the ∗ product. This

is due to our choice of noncommutativity over all the directions, and not just over the two

directions along the noncommutative soliton solution and transverse to the final D7-brane.

Next we may consider the term where the indices on C(9) are 1, 2, . . . , 8, 10. In this

case, i in Eq.(4.11) must be 9 and therefore j is 10. The resulting term is:

ŜUD7
CS =

µ6

2Tmin

trN

∫

x

(−i) [δX9, δX10] (−i)(δQ−1)9,10 [δX10, δT ] C
(9)
12...8,10

=
µ6

2Tmin

trN

∫

x

(−i)[δX10, δT ] C
(9)
12...8,10

(4.14)

13



where δQ9,10 is shorthand for −i[δX9, δX10]. This is a new kind of Myers term on N

unstable branes, that has no analogue for BPS branes. It was discovered very recently in

Ref.[18].

We see that the Chern-Simons terms on a noncommutative unstable D-brane,

Eq.(4.11), beautifully reproduce the structure of extra commutator terms that are ex-

pected to be present for an assembly of N unstable D-branes, lending further support

to the idea that noncommutative tachyons really do reproduce N unstable D-branes of

codimension 2 and that the U(N) of these D-branes is naturally embedded in the U(∞)

associated to noncommutativity.

5. Discussion and Conclusions

We have found Chern-Simons actions for D-branes of type IIB superstring theory,

with noncommutativity (a B-field) along their world-volume. These actions are mani-

festly background-independent, and also manifestly gauge-invariant as they are expressed

in terms of traces over a Hilbert space with U(∞) symmetry. The noncommutative expres-

sions are elegant and turn out to contain all information about Myers terms on multiple

branes.

In our work we focussed on Euclidean branes with maximal noncommutativity, hence

branes of even world-volume dimension. This means that we studied BPS branes in type

IIB, and unstable branes in type IIA. The other cases: BPS branes in type IIA and unstable

branes in type IIB, can be studied by remaining in Minkoswki signature and turning on

a B-field over all the spatial directions. In this case, the noncommutative actions will

resemble actions for D0-branes rather than D-instantons.

The noncommutative Chern-Simons terms found above are valid, as for the Myers

terms, in the static gauge for a D-brane with very slowly varying fields. A covariant

generalisation of this should be expected to exist and could perhaps be found along the

lines of Ref.[25]. Extension to higher-derivative terms in the field strength is also an

interesting open question, for example one could try to generalise the results of Ref.[26] to

the noncommutative case.

It would also be interesting to check how the noncommutative CS terms transform

under T-duality — they should form a consistent collection, as for the case of the DBI

action[20,21] and Chern-Simons action[9,18] on single or multiple branes. One can also
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hope to check that these terms, on unstable branes, give correct results when evalu-

ated on codimension-one noncommutative solitons[27]. And, with our methods it should

be straightforward to write down the Chern-Simons terms on a noncommutative brane-

antibrane pair, generalising the result of Ref.[17], and study noncommutative solitons on

these pairs[5,23,28].
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