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Abstract

We consider N = 2 moose/quiver gauge theories corresponding to N1 D3-
branes at a C2/ZN2 singularity in the “large moose” limit where N1 and N2

are scaled to infinity together. In the dual holographic description, this scaling
gives rise to a maximally supersymmetric pp-wave background with a compact
light-cone direction. We identify the gauge theory operators that describe the
Discrete Light-Cone Quantization (DLCQ) of the string in this background.
For each discrete light-cone momentum and winding sector there is a separate
ground state and Fock space. The large moose/quiver diagram provides a useful
graphical representation of the string and its excitations. This representation
has a natural explanation in a T-dual language. The dual theory is a non-
relativistic type IIA string wound around the T-dual direction, and bound by
a quadratic Newtonian potential. We end with some comments on D-string/D-
particle states, a possible lift to M-theory and the relation to deconstruction.
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1. Introduction

It is believed that gauge theories encode the dynamics of strings. Attempts to

physically realize this idea led to the large-N expansion of gauge theory [1]. In this

context, string theories have indeed been seen to emerge from gauge theories, most

notably in Matrix Theory [2, 3] and in the AdS/CFT correspondence [4].

Matrix theory gives, in principle, a precise definition for non-perturbative M-

theory using large-N supersymmetric quantum mechanics. Toroidal compactifications

of M-theory are then described by large-N gauge theories in various dimensions. The

construction of strings in terms of gauge fields can be made rather explicit in some

cases. The best example is Matrix String Theory [5, 6, 7]. Here, perturbative string

states and also D-branes in type IIA string theory can be identified in terms of

operators of a two-dimensional N = 8 supersymmetric gauge theory.

The AdS/CFT correspondence provided a very explicit map between gauge theory

operators and string theory states in the supergravity limit [8, 9]. Although the

proposal can be implicitly extended to the full string theory, it proves difficult to

construct strings explicitly out of gauge fields in this framework. Recently, new

insight was obtained by considering a special limit of the AdS background of type

IIB string theory, in which it is possible to construct string states from gauge theory

operators [10]. This is achieved by taking a Penrose limit [11] of the background,

which provides a maximally supersymmetric solution of type IIB string theory [12],

and relating this to a special subset of operators in N = 4 supersymmetric gauge

theory.

Penrose limits of spacetimes generally lead to pp-wave backgrounds, which are

exact backgrounds for string propagation [13, 14] and are exactly solvable in the

light-cone gauge [15, 16]. In light-cone quantization, it is often useful to compactify

a null direction. This leads to the Discrete Light-Cone Quantization (DLCQ), which

provides a convenient regulator for string theory [17]. In this picture, one has inter-

acting strings carrying quantized units of the light-cone momentum, with the minimal

momentum being carried by a “string bit”. The idea of DLCQ is most natural in

the context of Matrix Theory [18], where it has been argued that each sector of the

DLCQ of M-theory is exactly described by a U(N) matrix model. Although a com-

pact null direction may look somewhat strange, it is best thought of as the limit [19]

of a spacelike compactification.

Our aim is to study type IIB string theory in a DLCQ pp-wave background. The

Penrose limits that have been considered so far in the AdS/CFT context always lead

to a pp-wave with a non-compact null direction. We will show that there is a novel

scaling limit of a particular AdS background, which precisely gives rise to a DLCQ
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pp-wave. The radius of the null direction is a finite controllable parameter of this

background. The corresponding gauge theory is an N = 2 superconformal “moose”

or “quiver” theory [20].

A number of fascinating aspects of the gauge theory/pp-wave correspondence will

unfold as we explore this model. As in previous examples following the original

ideas of Ref.[10], we find gauge theory operators which can be identified to the string

ground state, zero-mode oscillators and excited oscillator states. However, there are

remarkable differences, and a much richer structure appears due to the DLCQ nature

of the string background. We find a gauge theory operator that describes a string

ground state for every value of the (positive) quantized light-cone momentum k.

We will also construct operators that describe winding states of the string over the

null direction. The gauge theory operators automatically possess all the properties

required of DLCQ string states.

Our construction turns out to have a tantalizing property: the operators that

describe DLCQ momentum states have the structure of a “string” of operators that

winds around the moose/quiver diagram. This is suggestive of a string winding state.

Conversely, the gauge theory operators that describe winding of the DLCQ string

look very much like momentum states. This suggests that we should consider T-

dualization of the DLCQ pp-wave to find the most direct correspondence with the

gauge theory. We perform the requisite T-duality and find a theory of non-relativistic

strings [21, 22, 23] bound in a harmonic-oscillator potential. The strings are wound

around a compact spatial direction which can be identified with the “theory space”

direction of the quiver. On lifting to M-theory we find non-relativistic membranes

winding around a 2-torus and bound in a potential. Both these observations suggest

that the moose/quiver theory, in our scaling limit, provides a precise realization of

the concept of “deconstruction” put forward in Refs.[24, 25, 26, 27].

This paper is organized as follows. In Section 2, we describe the moose/quiver

gauge theory and its AdS dual in some detail, and exhibit the scaling limit that we

consider. In Section 3, we discuss the DLCQ pp-wave background and show how it

arises in our scaling limit. We also discuss general properties of string propagation

in this background. Section 4 is devoted to the identification of spacetime quantum

numbers with charges of gauge-theory operators. In Section 5 we explicitly construct

gauge theory operators to describe various string excitations in the DLCQ pp-wave.

Section 6 deals with T-duality of the null direction to obtain a non-relativistic string,

while Section 7 gives a physical interpretation of the relationship between quivers

and strings. In Section 8 we make some conjectural remarks about how D-strings and

other non-perturbative objects may be described in our formalism, and exhibit the
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lift of the IIA non-relativistic string to M-theory. Finally, we relate our work to the

deconstruction idea, and close with some comments.

2. The Large Moose/Quiver Theory and its Holographic Dual

It has been known for some time that one can get four-dimensional conformal

field theories by placing D3-branes at orbifolds [20]. These theories admit an AdS

dual where the compact 5-manifold is an orbifold of S5 [28]. The specific case we

will consider here is obtained by starting with N1 D3-branes transverse to the 6-

dimensional space C3/ZN2 . In the covering space there are N1N2 D3-branes, which

define a “parent” N = 4 super-Yang-Mills theory, of which the orbifold theory is a

projection.

The orbifold group ZN2 acts on C3 by:

(z1, z2, z3) → (z1, ωz2, ω
−1z3), ω = e

2πi
N2 . (1)

The theory on the brane world-volume is a N = 2 superconformal field theory in four

dimensions, with the R-symmetry group U(1)R × SU(2)R. The gauge group is

SU(N1)
(1) × SU(N1)

(2) × · · ·SU(N1)
(N2). (2)

The fields in the vector multiplet for each factor of the gauge group are denoted

(AµI ,ΦI , ψaI) with I labelling the gauge group, I = 1, · · ·N2, and a = 1, 2. In

addition, there are hypermultiplets (AI , BI , χaI), where the AI are bi-fundamentals

in the (N1, N̄1) of SU(N1)
(I) × SU(N1)

(I+1) and the BI are bi-fundamentals in the

complex conjugate representation (N̄1, N1). The matter content of the gauge theory

can be succintly summarised in the form of a quiver/moose diagram, see Fig.1. Here

we use the N = 1 language to describe the N = 2 gauge theory, which will be of use

later. The fields ΦI , AI and BI can be identified with the z1, z2 and z3 directions of

the C3.

The holographic dual of the quiver theory in question is type IIB string theory

on AdS5 × S5/ZN2 . The action of ZN2 is obtained by thinking of the 5-sphere as

embedded in R6 ∼ C3 where the action is as prescribed in (1). This leaves a fixed

circle along an equator of S5. The AdS5 space has a radius given by

R2 =
√

4πgB
s α

′2N1N2 , (3)

where gB
s is the type IIB string coupling. There are also N1N2 units of 5-form flux

through the AdS5.
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Fig.1. In the large N2 limit the moose/quiver diagram of the gauge theory contains an

large number of nodes. The two lines connecting each pair of nodes correspond to the

bifundamental fields AI and BI and the line going back to the same node represents the

adjoint scalars ΦI .

Because of the orbifold action, the volume of S5/ZN2 is reduced by a factor N2

compared to that of the covering space S5, with the latter having the same radius as

that of AdS5 given in Eq.(3). Similarly, there are N1 units of 5-form flux through the

S5/ZN2 factor, which descend from N1N2 units of flux in the covering space.

It is also worth noting that the coupling constant in each of the gauge group

factors is given in terms of the Type IIB coupling constant as

(gY M)2
I = 4πgB

s N2 . (4)

This means that the ’t Hooft coupling relevant for each factor is

λ = (gY M)2
I N1 = 4πgB

s N1N2 . (5)

This is the same as the ’t Hooft coupling on the original N1N2 D3-branes before

orbifolding, for which the Yang-Mills coupling was equal to 4πgB
s .

In the following, we will consider a scaling limit when both N1 and N2 become

large, with the ratio N1

N2
held fixed. In this limit the ’t Hooft coupling λ diverges.
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As argued in Ref.[10] in the context of SU(N) super-Yang-Mills theory with N = 4

supersymmetry, the relevant quantity that needs to be kept finite, is gB
s N

J2 where J is

a U(1) charge and the relevant states have very large J . In our case, we will see that

the role of J is played by N2, while N is replaced by N1N2. So the quantity that

should be kept finite for us is gB
s N1

N2
. This is achieved precisely by scaling N1 and N2

to infinity and keeping gB
s small but finite.

3. The DLCQ pp-Wave

In this section we start from the holographic description of the quiver gauge theory

under consideration. We will take a limit of the dual spacetime, which is known as

the Penrose limit [11] (cf. [29], for generalization to supergravity). The essential idea

is to consider a null geodesic and look at the spacetime in the neighbourhood of the

geodesic. It was first demonstrated by Penrose that this is a sensible limit to consider

in any geometry and the result is always what is known as a plane-parallel wave or

pp-wave for short.

3.1. The Penrose Limit of AdS5 × S5/ZN2

As mentioned above, to obtain the Penrose limit of any gravitational background,

one has to focus on a light-like geodesic. In the particular case of AdS5 ×S5/ZN2 , we

choose a null geodesic which is based at the origin of AdS5 and carries some angular

momentum along the compact directions. Because of the singular nature of the com-

pact manifold, the result depends on whether one takes this trajectory to lie along the

singular locus or not. The former choice results in a pp-wave background that has the

ZN2 ALE singularity as part of its transverse space [30]-[36]. The latter choice, which

was briefly discussed in Ref.[33], results instead in the maximally supersymmetric

pp-wave background. In this paper we focus on the latter case as it is relevant for

the scaling limit in which we are interested.

Let us write the metric of AdS5 × S5/ZN2 as:

ds2 = R2

[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 +

dα2 + sin2 α dθ2 + cos2 α
(

dγ2 + cos2 γ dχ2 + sin2 γ dφ2
)
]

, (6)

where the first line is the AdS5 metric in global coordinates, while the remaining

terms describe the metric for an S5 embedded in a 6-dimensional space containing

a ZN2 ALE singularity. The relationship with the complex z1 coordinates and the
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angles is:

z1 = R sinα eiθ, z2 = R cosα cos γ eiχ, z3 = R cosα sin γ eiφ. (7)

In this parametrization the orbifold is obtained by demanding that the angles χ and

φ are periodic modulo 2π but in addition have a combined periodicity under

χ→ χ+
2π

N2
, φ→ φ− 2π

N2
. (8)

Note that with this choice there are no explicit factors of N2 occurring in the metric.

To take the pp-wave limit, we now define new coordinates r, w, y by

r = ρR, w = αR, y = γR . (9)

and introduce the light-cone coordinates

x+ = 1
2
(t+ χ) , x− =

R2

2
(t− χ) . (10)

Making the substitutions the metric (6) becomes

ds2 = R2

[

− cosh2 r

R

(

dx+ +
1

R2
dx−

)2

+
dr2

R2
+ sinh2 r

R
dΩ2

3 +
dw2

R2
+

sin2 w

R
dθ2 + cos2 w

R

(

dy2

R2
+ cos2 y

R

(

dx+ − 1

R2
dx−

)2

+ sin2 y

R
dφ2

)]

.(11)

In the limit R → ∞ the metric reduces to [33]

ds2 = −4dx+dx−−(r2+w2+y2) dx+2
+dr2+r2dΩ2

3+dw2+w2dθ2+dy2+y2dφ2 (12)

This is just the universal pp-wave background which has been found in many other

cases. It can be written in the standard form

ds2 = −4dx+dx− −
8∑

i=1

(xi)2 dx+2
+

8∑

i=1

dxi2 , (13)

where we introduced the eight transversal coordinates xi. There is also a Ramond-

Ramond flux in the geometry (13):

F+1234 = F+5678 = const . (14)

Although our model gives rise to the standard pp-wave metric in the Penrose

limit, there is actually an important difference: the lightlike direction x− is compact.
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From Eq.(8), the 2π
N2

periodicity of the angle χ translates into the following periodicity

condition on the light-cone coordinates

x+ → x+ +
π

N2

x− → x− +
πR2

N2
. (15)

This combined shift in x+ and x− has to be accompanied by a simultaneous shift in

φ → φ − 2π
N2

. Under a scaling N1 ∼ N2, we have R2 ∼ N2. Now if N2 → ∞ we see

that x− is periodic in the limit, with period1:

πR2

N2
= 2πR−, R− =

(

πgB
s

N1

N2

) 1
2

α′ . (16)

After taking the limit, there are no longer accompanying shifts in x+ and φ. So the

periodic direction has become pure lightlike. As a consequence the corresponding

light-cone momentum 2p+ is quantized in units of 1
R−

. The way the compact null

direction arises from a limit of a spacelike circle is exactly as discussed in [19] in the

context of Matrix theory.

In other words, the Penrose limit of AdS5 × S5/ZN2 with N2 → ∞ leads to a

Discrete Light-Cone Quantization (DLCQ) of the string on a pp-wave background,

in which the null direction x− is periodic. We now turn to a discussion of string

propagation in such a spacetime.

3.2. String Propagation in DLCQ pp-wave

String propagation in pp-wave backgrounds is a subject which has been explored

extensively in the literature. A very interesting fact about these backgrounds is that

they are solutions to the world-sheet beta function equations (in covariant quanti-

zation) to all orders [13, 14], thereby being exact string backgrounds. The pp-wave

backgrounds admit a covariantly constant null Killing vector, implying that one can

always choose to quantize the sigma model in light-cone gauge [15]. One can extend

the analysis to strings on Ramond-Ramond backgrounds following [16].

Let us begin by writing down the sigma model action for the pp-wave geometry

(13):

S = − 1

4πα′

∫

dσ dτ

(

−4∂ax
+∂ax− + ∂ax

i∂axi −
8∑

i=1

(xi)2 ∂ax
+∂ax+

)

. (17)

1Note that x− as defined has dimensions of (length)2.
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The worldsheet equations of motion resulting from this are

∂a∂
ax+ = 0

∂a∂
axi − xi(∂ax

+∂ax+) = 0 . (18)

In the light-cone gauge the first equation is solved by x+ = τ , where at the same

time one takes σ to range from 0 to 2πα′p+. In addition, in order to maintain

reparametrization invariance, one requires that the world-sheet stress tensor vanishes.

This can be expressed as:

2∂τx
− =

1

2

(

(∂τx
i)2 + (∂σx

i)2 + (xi)2
)

2∂σx
− = ∂τx

i ∂σx
i (19)

From these equations we can easily derive the light-cone Hamiltonian for the string

and also derive the momentum constraints. Note that the presence of the mass term
∑8

i=1 (xi)2, for the transverse scalars inhibits the separation of the scalars into left and

right movers. So far we have ignored the world-sheet fermions in the discussion. Just

like in the standard pp-wave background they are given by massive Dirac fermions

in the light-cone gauge. They get their mass from the Ramond-Ramond background

flux, supporting the pp-wave geometry (14).

The solution to the world-sheet theory proceeds in the usual way by normal mode

expansion and introduction of oscillators. In particular, mode expansion of the trans-

verse coordinates xi is

xi(σ, τ) =
∞∑

n=−∞
ai

n

1√
ωn

e
i n

p+α′
σ+iωnτ

+ h.c.

ωn =

√
√
√
√1 +

n2

(p+)2α′2 . (20)

One very important fact is that with the compact x+ direction, the light-cone

momentum p+ is quantized. This means that we have a positive integer k labelling

our states, with

2p+ =
k

R−
. (21)

As is well-known, the theory then splits into sectors, labelled by a discrete number

parametrising the light-cone momentum.

The Hamiltonian and total momentum of the world-sheet theory are given as

H =
∞∑

n=−∞
Nn

√

1 +
4n2R2

−
k2α′2
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P =
∞∑

n=−∞
nNn , (22)

where Nn is the total occupation number of the Fourier mode labeled by n. These are

related to the usual Virasoro generators as L0 = 1
2
(Hl.c + P ) and L̄0 = 1

2
(Hl.c − P ).

Since we are dealing with strings, we should also expect to find states with non-

zero winding number m. These arise as follows. If we expand x− in a mode expansion

we will get oscillators a−n , which can be solved in terms of the transverse scalars. In

addition we can have a zero-mode piece mσR−, the usual winding term, since x− is

compact. Note that m can take any integral value, positive or negative. So we can

label our string states as | k,m〉. These will be our string ground states in the sector

with DLCQ momentum k and winding number m. We can further act on these states

by the transverse oscillators to build other string states. A general string state can

therefore be denoted as
M∏

j=1

a†nj
| k,m〉 , (23)

where for convenience of notation we dropped the superscript i, denoting the partic-

ular transverse coordinate on the oscillators.

The world-sheet reparametrization invariance gives a constraint on the action of

the oscillators for the states written in Eq.(23). This arises from the second equation

in (19) and implies
M∑

j=1

nj = km. (24)

In the next section, we will turn our attention to the construction of operators in the

gauge theory which will describe the string states.

4. Identification of Charges and Light-cone Momenta

As has been noted in other cases [30, 31, 32], a maximally supersymmetric pp-wave

limit implies that the gauge theory has a sector which is maximally supersymmetric.

A key ingredient in identifying this sector of the moose/quiver gauge theory is the

interpretation of the light-cone momenta p+ and p− in terms of the global symmetries

of the gauge theory.

The R-symmetry group of the N = 2 quiver gauge theory is SU(2)R × U(1)R.

Now, recall that Φ is associated with the z1 direction of the C3, while A and B are

related to z2 and z3 respectively. The U(1)R factor corresponds to the transformation

z1 → eiξz1, and therefore acts as phase rotations on the Φ scalars. The A and B
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fields have charge zero under this U(1)R. The SU(2)R symmetry acts on the A and B

fields and their complex conjugates. Indeed these fields form a N = 2 hypermultiplet,

which is known to have a quaternionic structure. In fact, (A, B̄) as well as (Ā, B)

form doublets under SU(2)R. Hence, one of the generators of this SU(2)R acts on

A and B as phase rotations. We will denote this generator by J ′. In addition there

is a U(1) symmetry that is not an R-symmetry. This is the U(1) symmetry that

rotates A and B in opposite directions, and corresponds to z2 → eiξz2, z3 → e−iξz3.

But, because of the orbifold identification in the (z2, z3) directions (1), having ξ = 2π
N2

brings us back to the same point. Its generator J together with the U(1) ⊂ SU(2)R

generator J ′ will appear in the definition of the light-cone momentum.

In terms of the coordinates on the S5/ZN2 the generators J and J ′ are given by

J = − i

2N2

(∂χ − ∂φ) , J ′ = − i

2
(∂χ + ∂φ) . (25)

This leads to the following identifications for the light-cone momenta

2p− = i(∂t + ∂χ) = ∆ −N2J − J ′

2p+ = i
(∂t − ∂χ)

R2
=

∆ +N2J + J ′

R2
. (26)

In our conventions, the light-cone Hamiltonian is H = 2p−.

As explained in Ref.[10], to relate gauge theory operators to string states, we need

to look for operators that have both p− and p+ finite. Since R → ∞, this means

∆ and N2J + J ′ must both be large, while their difference remains finite. Physical

gauge invariant operators should have half-integral values for J and J ′. This implies

that N2J automatically becomes large when N2 → ∞ even when J is kept fixed.

We will see that J ′ also grows like N2. The scaling dimension ∆ also becomes large

automatically, because we have the BPS bound ∆ ≥ N2J + J ′. In fact, if we keep

∆ − N2J − J ′ fixed, then both quantities precisely grow in the right way for the

pp-wave limit, provided we take N1 and N2 simultaneously to infinity with the ratio

N1/N2 fixed. In this double scaling limit we have R2 ∼ √
N1N2 ∼ N2, and so indeed

p+ and p− stay both finite. We would like to emphasize again that, in contrast with

the other pp-wave backgrounds considered so far, there is no need in our case to send

J to infinity. In fact, in order to reproduce the DLCQ spectrum we have to keep

J finite, since it will give the discrete value of the light-cone momentum. We have

J = 1
2
k.

We now discuss the (∆, J, J ′) eigenvalues of the various local operators in the

gauge theory, and construct the string ground state and oscillators in terms of these.
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∆ N2J J ′ H ∆ N2J J ′ H

AI 1 1
2

1
2

0 AI 1 −1
2

−1
2

2

BI 1 −1
2

1
2

1 BI 1 1
2

−1
2

1

ΦI 1 0 0 1 ΦI 1 0 0 1

χAI
3
2

1
2

0 1 χAI
3
2

−1
2

0 2

χBI
3
2

−1
2

0 2 χBI
3
2

1
2

0 1

ψΦI
3
2

0 −1
2

2 ψΦI
3
2

0 1
2

1

ψI
3
2

0 −1
2

2 ψI
3
2

0 1
2

1

Table 1: Dimensions and charges for
chiral fields and gauginos

Table 2: Dimensions and charges for
complex conjugate fields

Because of N = 2 supersymmetry, all the fundamental bosonic fields have exact

conformal dimension 1, the same as their free field value, while the fermions similarly

have dimension 3
2
.

The charges are obtained as follows. The AI and BI fields that make up the

hypermultiplets have fractional charge under J . The reason is that e4πiJ precisely

generates the orbifold transformation z2 → ωz2, z3 → ω−1z3. The A and B fields

transform accordingly, and hence have charge 1
2N2

and − 1
2N2

respectively. The opera-

tor J ′ generates a U(1) symmetry contained in the SU(2)R factor of the R-symmetry

group U(1)R × SU(2)R. Under this U(1) ⊂ SU(2)R, the fields ΦI are neutral since

they correspond to translations of the original N1N2 D3-branes along the transverse

R2 that is unaffected by the orbifold group. On the other hand, the scalars AI , BI in

the hypermultiplets both have charge 1
2

under J ′. Complex conjugation and super-

symmetry give us the remaining charge assignments, for the the fermions and all the

conjugate fields.

The dimension and charge assignments, along with the H = 2p− values, are

summarized in Tables 1 and 2. In Table 1, AI , BI refer to the scalar components of

the N = 1 chiral superfields that form the N = 2 hypermultiplets. χAI
, χBI

are their

fermionic partners. ΦI are the complex scalars in the vector multiplet, while ψΦI are

their fermionic partners. Finally, ψI are the gauginos in the theory. Table 2 lists the

complex conjugate fields.
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5. String States from Gauge Theory Operators

The duality between type IIB string theory and the quiver gauge theory implies that

all string states must have corresponding states in the gauge theory. As emphasized

in Ref.[10] one can use radial quantization to map the gauge theory states on S3 ×R

to local operators. Therefore, string states are holographically dual to operators

in the gauge theory. In this section we will identify these operators in the large

moose/quiver theory and discuss how they match the string spectrum in the DLCQ

pp-wave background. The construction will be similar in spirit to the BMN-operators2

[10] in the N = 4 case, but there will be important differences in the details. One of

the main differences is that in our case we find a set of operators that matches the

DLCQ string spectrum in the pp-wave background, which carry discrete light-cone

momenta label by an integer k as well as discrete winding numbers m.

To explain the basic construction and to simplify the notation we will first discuss

the states in the k = 1 DLCQ sector. These states correspond to a single “bit” of

string carrying the smallest possible momentum, namely 2p+ = 1
R−

. After that we

explain how to put these string bits together to form strings with arbitrary light-cone

momentum.

5.1. DLCQ ground states and zero mode oscillators

The simplest state in the string theory is the |k = 1, m = 0〉 DLCQ ground state.

According to our identification of p+ this should be a state with ∆ = N2J +J ′ = N2.

Since this state has H = 0, it is clear that it has to be constructed out of the AI

alone. The AI fields are bi-fundamental with respect to the pair of gauge groups

SU(N1)
(I) × SU(N1)

(I+1), hence the simplest gauge-invariant operator that can be

made out of them should contain all N2 AI fields precisely once. We thus arrive at

the identification

|k=1, m=0〉 =
1√
N

Tr (A1A2 · · ·AN2) (27)

with N = NN2
1 . This operator has H = 0 and ∆ = N2, and is illustrated in Fig.2,

where it appears as a string of A′
Is wrapping once around the moose diagram. The

normalization of the operator can be determined by looking at the two-point function

in the free field limit. Basically, each of the AI has to contract with the corresponding

object and we get a factor of N1 from each gauge group trace.

The states with arbitrary light-cone momentum are obtained by literally stringing

together the k = 1 string bits. In particular, the ground states in the sector with k

2 The acronym BMN refers to the authors of Ref.[10], viz., Berenstein, Maldacena and Nastase.
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A

A

I

I+1

A I−1

Fig.2. The k = 1 ground state, |k=1,m=0〉 ∼ Tr (A1A2 · · ·AN2).

units of momentum is described by

|k,m=0〉 = 1√
N k

Tr
(

A1A2 · · ·AN2A1A2 · · ·AN2 . . . . . . . . . A1A2 · · ·AN2
︸ ︷︷ ︸

)

.

k times
(28)

Thus we have a single gauge-invariant operator with H = 0 and ∆ = N2k for each

value of k. One easily checks that it has the right properties to describe the DLCQ

ground state with momentum 2p+ = k
R−

. The k = 2 operator is pictorially repre-

A

A

I

I+1

I−1A

A I−1

A I

A I+1

Fig.3. The k = 2 ground state, |k=2,m=0〉 ∼ Tr (A1A2 · · ·AN2A1A2 · · ·AN2).

sented in Fig.3 as a string of AI ’s that wraps twice around the moose.
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String oscillator modes are obtained by inserting the various fields with H = 1 in

the appropriate locations in the string of A-fields. We will first discuss the oscillator

states for the case k = 1. In this case the notation is simpler, and furthermore, it will

more clearly exhibit the differences between the operators in the quiver theory and

the BMN-operators of the N = 4 Yang-Mills theory.

We now come to the first excited states in the k = 1 sector with light-cone

hamiltonian H = 1. For the string in the pp-wave background, these states are

obtained by acting once with a single zero mode oscillator on the ground states. There

are eight bosonic zero mode oscillators, corresponding to the transversal coordinates

xi, so we expect to find eight bosonic states with H = 1. In the gauge theory these

states are obtained by inserting appropriate combinations of the Φ and B fields and

covariant derivatives into the trace of the string of A-fields.

From the dimensions and charges of the bosonic operators listed in the table, it

is clear that we can admit precisely one insertion of a covariant derivative, a ΦI , BI ,

or their complex conjugates, since they all have H = 1. The matrix nature of these

fields (adjoint or bi-fundamental) constrains what gauge-invariant operators can be

written down. For example, the fields ΦI are in the adjoint of SU(N1)
(I) and therefore

must be inserted between AI−1 and AI in the string of operators. The same is true

for Φ̄I and the covariant derivatives D
(I)
i . The field BI , however, is a bifundamental

and requires an extra insertion of AI , while BI can only be inserted in the place of

AI .

In this way we get the following set of operators with H = 1. First, for the Φ

fields we have

a†Φ,0|k=1, m=0〉 =
1√

N1N2N
N2∑

I=1

Tr (A1A2 · · ·AI−1ΦIAI · · ·AN2) (29)

a†
Φ,0

|k=1, m=0〉 =
1√

N1N2N
N2∑

I=1

Tr (A1A2 · · ·AI−1Φ̄IAI · · ·AN2) (30)

The expressions for the covariant derivatives D
(I)
i are similar, and will not be written

explicitly. The states containing B fields are:

a†B,0|k=1, m=0〉 =
1

√

N2
1N2N

N2∑

I=1

Tr (A1A2 · · ·AIBIAI · · ·AN2). (31)

a†
B,0

|k=1, m=0〉 =
1√
N2N

N2∑

I=1

Tr (A1A2 · · ·AI−1BIAI+1 · · ·AN2) (32)

The sum over the position of the insertions is necessary to ensure that we are de-

scribing the zero mode fluctuations. This differs from the BMN operators Tr (ZJΦ)
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for which the sum was automatically implemented by the cyclicity of the trace. Thus

we have found the eight expected bosonic states at H = 1. The operators involving

A

A

I

I+1

A I−1
AI−1

A I

AI+1

Φ Φ
_

I

Insertion of Φ ΦInsertion of
_

Fig.4. The building blocks for the states a†Φ,0|k=1,m=0〉 and a†
Φ,0

|k=1,m=0〉.

insertions of Φ, Φ̄ are represented in Fig.4, and those representing insertions of B, B̄

A I+1

A I−1
AI−1

I

AI+1

AI

BI

AI
B
_

Insertion of B
_

Insertion of B

Fig.5. The building blocks for the states a†B,0|k=1,m=0〉, a†
B,0

|k=1,m=0〉.

in Fig.5.

In addition there are eight fermion states. They are obtained in a similar way

by inserting the fermionic partners of these fields. The complex A, B and Φ scalars

each have a Weyl doublet fermionic partner, that together make up 12 real fermionic

fields. In addition we have two gaugino fields, making up 16 fermions in the theory.

From the table, we see that precisely half of these have H = 1, and these are the ones
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that are used to construct the eight fermionic oscillators of the string. Four of these

are associated to χA and χ̄B, which are superpartners of the A fields under N = 2

supersymmetry.

5.2. Winding states and non-zero mode oscillators

An important difference between our large moose/quiver theory and the N = 4

Yang Mills theory is that the A-fields carry labels, and have to appear in a particular

order inside the trace. This means that a field that is inserted somewhere in the

string of A’s will have a definite position associated with it which can not be changed

using cyclicity of the trace. This fact will be important in what follows because it

allows us to identify the states with non-zero winding along the light-cone. To keep

the notation simple we consider insertions of only Φ fields. The extension of our

discussion to other fields will be straightforward. We also drop the normalization

factors from here on.

Similarly as in Ref.[10] we can construct operators in which the sum over the

locations of the fields includes phase factors. The simplest states of this kind are the

single oscillator states with winding number m

a†Φ,m|k=1, m〉 =
N2∑

I=1

Tr (A1A2 · · ·AI−1ΦIAI · · ·AN2)ω
mI , (33)

where ω = e
2πi
N2 . Note that, unlike the cases previously studied, these operators do

not vanish due to the cyclicity of the trace. This is just as well, because we want

to have these states in the DLCQ spectrum of the string. More generally we can

construct operators with multiple insertions of Φ-fields corresponding to states with

more oscillators.

M∏

i=1

a†Φ,ni
|k=1, m〉 =

N2∑

lM>···>l2>l1

Tr (A1 · · ·Al1−1Φl1Al1 · · ·Ali−1ΦliAli · · ·AN2)ω
∑

nili ,

(34)

where the winding number m is defined as the sum of the mode numbers ni:

m ≡
∑

i

ni. (35)

The operators (34) represent the most general perturbative string states in the k = 1

sector with one unit of light-cone momentum.
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5.3. Matrix notation

Before we turn to the operators with general k, we would like to rewrite our result

for k = 1 in a concise notation. For this purpose, it will be convenient to introduce

(N1N2) × (N1N2) matrices to represent the (ΦI , AI , BI) as follows:

A ≡











0 A1 0 · · · 0
0 0 A2 · · · 0
...

. . .
...

0 0 0 · · · AN2−1

AN2 0 0 · · · 0











B ≡











0 0 · · · 0 BN2

B1 0 · · · 0 0
0 B2 · · · 0 0
...

. . .
...

...
0 0 · · · BN2−1 0











(36)

and

Φ ≡








Φ1 0 · · · 0
0 Φ2 · · · 0
...

. . .
...

0 0 · · · ΦN2







, (37)

where the blocks AI , BI ,ΦI are N1 ×N1 matrices.

The k = 1 ground state is simply Tr (AN2), where Tr represents the trace over

the larger N1N2-dimensional space. The eight bosonic states with H = 1 may up to

normalization be written as

Tr (ΦAN2), Tr (Φ̄AN2), Tr (BAN2+1), Tr (B̄AN2−1), Tr (DiA
N2). (38)

In this notation the expression of our operators are very similar to the BMN-operators

Tr (ZJΦ) etc. This is not a coincidence, because our operators can be obtained from

theirs via an orbifold projection.

In the sector with zero winding number we can write the states with many oscil-

lators as:

M∏

i=1

a†Φ,ni
|k=1, m=0〉 =

N2∑

lM>···>l2>l1

Tr (Al1ΦAl2−l1Φ · · ·ΦAN2−lM )ω
∑

nili . (39)

It follows from cyclicity of the trace that the r.h.s.vanishes unless
∑

i ni = 0 (mod

N2). Cyclicity is implemented by the shift li → li + 1, which causes the expression

to pick up a phase ω
∑

ni. This phase must be equal to 1 and hence the total mode

number is set to zero modulo N2. This all seems nice and well, but we appear to have

lost our winding states! This is not surprising because we have written our states in

a notation that is inherited from the parent N = 4 theory. The winding states are

not present in the parent theory, but originate as twisted sectors in the orbifold.
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To describe the states with non-zero winding we introduce the clock matrix:

V ≡ ω








1 0 · · · 0
0 ω · · · 0
...

. . .
...

0 0 · · · ωN2−1







. (40)

where the additional phase is introduced for convenience. This is actually an N1N2 ×
N1N2 matrix made up of N1 ×N1 blocks proportional to the identity. It obeys

AV = ωVA (41)

and commutes with Φ. To obtain the operators in the sector of winding number

m, we insert an explicit factor of Vm in the trace, say, at the end. As a result a

cyclic permutation of all the other operators in the trace produces an extra phase

ωm. Hence the argument that first gave a zero total mode number now gives indeed

that
∑

i ni = m. In fact, we can use the clock matrix V to rewrite the states with

many oscillators in a way that does not require any explicit phases to be inserted.

Namely, we associate to each oscillator a matrix-valued operator given by:

a†Φ,n ↔ Φn ≡ ΦVn . (42)

The matrix on the r.h.s. is diagonal and has entries ΦIω
nI . Then the general oscillator

state for momentum k = 1 is simply given by:

M∏

i=1

a†Φ,ni
|k=1, m=

∑

i

ni〉 =
N2∑

lM >···>l2>l1

Tr (Al1Φn1A
l2−l1Φn2 · · ·ΦnM

AN2−lM ) , (43)

where no additional phases are inserted. The winding number of this state is the

total “mode number” of the Φn, which is just the number of V matrices inside the

trace.

For future purpose we also introduce the shift matrix

U ≡











0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0











. (44)

The clock and shift matrices obey the familiar relation

UV = ωVU.
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We can for example use the shift matrix U to shift all AI fields in the A matrix by

the map A → U−1AU. Applying this map to the A and Φ matrices in the operators

(43) gives back the same operator, but multiplied by a phase ωm where m is the

winding number. This observation will be useful when we consider the generalization

to arbitrary light-cone momentum k.

5.4. String states at arbitrary light-cone momentum

To describe the operators for general k we make use of a similar matrix notation

as just described for the k = 1 states. To this end we introduce even bigger A,B and

Φ matrices of size kN1N2, where for example

A ≡





















0 A1 0 · · · · · · · · · · · · · · · 0
0 0 A2 · · · · · · · · · · · · · · · 0
...

. . .
...

...
...

0 · · · · · · 0 AN2−1 0 · · · · · · 0
0 · · · · · · · · · 0 AN2 0 · · · 0
0 · · · · · · · · · · · · 0 A1 · · · 0
...

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · · · · AN2−1

AN2 0 · · · · · · · · · · · · · · · · · · 0





















(45)

where the string of entries above the diagonal is repeated k times before terminating

in the lower left corner. We continue to use the previous notation to label these larger

matrices.

The ground state in the momentum 2p+ = k
R−

sector can simply be written as

Tr (AN2k). Then, in a similar way as for k = 1, we can introduce N2k × N2k shift

and clock matrices U and V, where U again has unit entries just off the diagonal

and in the left lower corner, while

V = diag
(

ω
1
k , ω

2
k , · · · , ω (N2k−1)

k

)

. (46)

These matrices now satisfy:

UV = ω
1
k VU . (47)

The general oscillator states can be written as in Eq.(43) in terms of the new A,Φ

and V. We get

M∏

i=1

a†Φ,ni
|k,m〉 =

N2k∑

lM>···>l2>l1

Tr (Al1Φn1A
l2−l1Φn2 · · ·ΦnM

AN2k−lM ) , (48)
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In this case, the sum of all oscillator mode numbers is equal to

∑

i

ni = km. (49)

To see that the l.h.s. is a multiple of k, we note that the A and Φ matrices are

invariant under shifting all entries over N2 places. Thus, we have

U−N2AUN2 = A, U−N2ΦUN2 = Φ . (50)

We now apply the first relation to replace all the A matrices inside the trace. By

conjugating the U matrices through the V and Φ matrices one picks up a phase

ωN2

∑

i
ni

k . In effect we have not changed anything: we simply shifted all AI fields by

N2 steps, which gives back the same operator. Therefore, the operator vanishes unless

the phase is equal to one. Thus, one concludes that the sum of all mode numbers is

indeed a multiple of k.

In most of the above discussion, we have focussed on the oscillators constructed

out of Φ. However, it is straightforward to see that similar expressions hold for

the remaining oscillators, with Φ replaced by Φ̄, AB, A−1B̄ and Di, or one of the

fermionic fields. This completes our construction of perturbative string states for

the pp-wave background with a compact light-cone direction. The entire spectrum

of the string in the DLCQ pp-wave is thus reproduced by this set of operators of

the N = 2 gauge theory. They represent a sector of the gauge theory with maximal

supersymmetry.

The picture of gauge theory operators winding around a circular moose diagram,

which has a circumference of order N2 and is therefore very large, is rather suggestive.

Even though these operators describe momentum modes in type IIB string theory,

they appear to build up a string winding over a spatial dimension, Similarly, the

gauge theory operators describing winding modes in type IIB string theory have the

appearance of momentum states. This strongly suggests that T-duality is involved.

In the next section we will carry out the relevant T-duality explicitly and exhibit the

relation between the large moose diagram and the T-dual string.

This is also somewhat related to the idea of “deconstruction” [24, 25, 26, 27] in

which a spatial dimension is created by taking a suitable limit of a moose/quiver

theory. However, as we will explain in section 9., our limit differs from the one in

Ref.[26].
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6. T-duality of the DLCQ PP-wave Background

The periodicity of the x− direction is a remnant of the combined 2π
N2

periodicity

in the angles χ and φ, exhibited in Eq.(8). Before taking the limit N1, N2 → ∞ the

periodic direction was space-like. Hence, one can perform a Buscher-type T-duality

along this periodic direction.

To perform the T -duality, we go back to the original metric in Eq.(6) and write

down only the terms in the t and χ directions explicitly:

ds2 = R2
[

− cosh2 ρ dt2 + cos2 α cos2 γ dχ2
]

+ ds2
transverse . (51)

Next we make the substitutions defined in Eq.(9), and express χ in terms of t and x−

as in Eq.(10). As a result, the metric becomes:

ds2 = R2
(

cos2 w

R
cos2 y

R
− cosh2 r

R

)

dt2 − 4 cos2 w

R
cos2 y

R
dt dx−

+
4

R2
cos2 w

R
cos2 y

R
(dx−)2 + hij

(

xi

R

)

dxidxj , (52)

where we parametrize the transverse metric by hij . We know that hij

(
xi

R

)

→ δij as

R → ∞.

We see that, before taking the pp-wave limit, x− is spacelike: there is a small

g−− in the metric of order 1
R2 . The metric of the transverse space, which we have

not written down explicitly here, is the usual flat metric with no factors of R2 in

front. For the transverse space we can consistently ignore corrections in 1
R2 , since

those directions will be unaffected by T-duality.

We now perform a T-duality along the spacelike direction x−, following the usual

duality rules. Note that this is a different T-duality than the one considered in [37].

After this, we denote the T-dual coordinate by 2x9, to end up with the metric:

ds2 = −R2 cosh2 r

R
dt2 +

R2

cos2 w
R

cos2 y

R

(dx9)2 + hij dx
idxj , (53)

along with a B-field and dilaton:

Bt 9 = −R2, gA
s =

√
α′R

R− cos w
R

cos y
R

gB
s . (54)

Note that x9 now has period 2πα′

R−

, with R− as given in Eq.(16).

Now let us take the limit R → ∞. We see that some components of the metric,

and the B-field and string coupling, become infinite in this limit. However, it turns
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out that string propagation on this background is finite. The reason is that the B-

field is a critical electric field, and cancels the leading divergent piece in the string

world-sheet action
√

− det(γ)+B where γab = gab + ∂ax
i∂bx

i is the induced metric in

static gauge. Here gab denotes the spacetime metric in the (t, x9) plane. Momentarily

ignoring the derivative terms, we find:

√

− det(g) +B = R2 cosh r
R

cos w
R

cos y
R

−R2

=
1

2
(r2 + w2 + y2) + O

(
1

R2

)

=
1

2

8∑

i=1

(xi)2 + O
(

1

R2

)

. (55)

If we put back the derivative terms, the above calculation will instead give:

√

− det(γ) +B =
1

2

8∑

i=1

[

∂ax
i∂axi + (xi)2

]

+ O
(

1

R2

)

. (56)

This is just the non-relativistic string propagating in a background with a Newtonian

potential of harmonic-oscillator type. Indeed, the leading dependence onR in Eqs.(53,

54) above is identical to that which appears in the Non-Commutative Open String

(NCOS) [38, 39] and Non-Relativistic Closed String (NRCS) theories [21, 22, 23]. Our

model is therefore an NRCS theory. However, because of the pp-wave metric that

we started with, it inherits a harmonic oscillator potential in which the light closed

strings are bound.

To see that the effective coupling constant of this non-relativistic theory is finite,

we recall that the coupling for the NR closed strings winding in the direction of the

critical electric field is the same as for the NC open strings. The latter is well-known

to be [40]:

g2
o = gs

√

det(g +B)

det g
. (57)

Inserting the appropriate values from Eqs.(53, 54) above and taking R → ∞, we see

that for our model,

g2
o =

gB
s

R−

√
√
√
√α′

8∑

i=1

(xi)2. (58)

So the effective coupling for the type IIA NR closed string is independent of R in the

limit, but it varies in the transverse directions. Because of the potential, low-lying

states of the string are localized in the region around xi ∼ 0, and on dimensional

grounds one expects that the square root in the above equation is replaced by α′ for

such states.
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There is also a 5-form Ramond-Ramond background on the type IIB side that

must be T-dualized. To start with, we had:

F (5) = R4 dt ∧ (dV )4 +R4 dχ ∧ (dV ′)4 (59)

where dV, dV ′ are the 4-forms on the (ρ,Ω3) and (α, θ, γ, φ) spaces respectively. We

use Eq.(9) and the definition of x− in Eq.(10), and take the limit R → ∞. Then the

above expression becomes:

F (5) = dt ∧ (dr)4 + dt ∧ (dw)2 ∧ (dy)2 −
2

R2
dx− ∧ (dw)2 ∧ (dy)2 . (60)

Next, performing a T-duality, we find a 4-form and a 6-form field strength on the

type IIA side:

F (6) = 2dt ∧ (dr)4 ∧ dx9,

F (4) = − 2

R2
(dw)2 ∧ (dy)2. (61)

Thus we have an electric 6-form and a magnetic 4-form field strength. As one can

check, the two are dual to each other. These RR fields will give masses to the

worldsheet fermions of the string, which are necessary for maximal supersymmetry,

just as the 5-forms do on the type IIB side.

In section 8 we discuss the lift of this background to M-theory, on which it gives

rise to an analogous non-relativistic membrane wrapped on a 2-torus.

7. Large Quiver as Non-relativistic String

We have argued that the quiver gauge theory with gauge group SU(N1)
N2 with

large N1, N2 is dual to type IIB string theory on the pp-wave background with a

compact lightlike direction x−. We have also shown that one can perform a T-duality

over the lightlike direction, thereby going to a type IIA description in terms of a

non-relativistic closed string theory (NRCS). In the following, we present a number

of observations which address the physical meaning of this correspondence. We will

argue that the large moose/quiver theory deconstructs the non-relativistic string, and

eventually M-theory, in a rather precise way.

We have described how ground states and oscillators of type IIB string theory

on a DLCQ pp-wave background can be constructed from gauge theory operators.

A key ingredient was the construction of a string ground state for every (positive

integer) DLCQ momentum k. This state was associated to the trace of a “string” of
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bi-fundamental A fields wrapping k times around the “theory space” defined by the

quiver diagram. Although in the type IIB language it is a momentum state, in the

quiver theory it is reminiscent of a winding state of some other string theory. Similarly,

the states describing the winding of IIB strings around the DLCQ direction, obtained

using the V-matrices, look very much like momentum states of a string theory.

We now see that this other string theory is precisely the type IIA NRCS theory!

It is known that in NRCS theory, along the direction of the critical electric field there

are light states which are closed-string winding modes. However, the winding can take

place only in one orientation around the circle. The physical reason is simple [21].

Consider the Non-Commutative Open String (NCOS) theories obtained by turning

on critical electric B-fields over a D-brane. In these theories, we know that open

strings are very light when they align one way along the electric field, and very heavy

when they are lined up the other way. Now if the direction along the electric field

is compact, an open string can align along it and stretch most of the way around.

When its end points come close to each other, and because the open-string coupling

is finite, this string can close up and become a closed string wound on the compact

direction. As a result, NCOS theories on compact directions include light winding

strings. If now we remove the open-string sector by taking away the original D-brane,

we will be left with the closed strings wound in one direction as the light states. This

is the NRCS theory.

Evidently these NRCS winding modes are just the T-dual states of the DLCQ mo-

mentum modes. Just as DLCQ momenta are always positive and never negative (the

latter become infinitely heavy), the NRCS winding modes are light for one orientation

and very heavy for the other. Thus winding states of the non-relativistic closed string

are identified with the gauge theory operators wrapping our large moose/quiver.

In fact, the quiver deconstructs this string in a very precise way. The “string” of

A-fields winding around the quiver in one way is the light NR closed string. A string

of Ā-fields, which wrap the quiver in the other sense, would be identified with the very

heavy closed string that is wrongly aligned with the electric field, so it is not in the

spectrum of light states. Single wrapping of AI , corresponding to k = 1, is identified

with a “string bit” in DLCQ language, while the AI ’s themselves are the latticized

components of this string bit. The vanishing p− value of the A fields leads to the

vanishing energy of the string bit which is aligned with the electric field. And the V

operators in the quiver theory, which created winding states of the DLCQ string, are

the momenta of the NR closed string. Indeed, we can insert V raised to any positive

or negative integer power, just like the allowed momenta of an NRCS. The quiver

theory in the limit we consider is a non-relativistic string with a quadratic potential.
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The observations of [21, 22, 23] made in the context of flat space NRCS theory and

its relation to DLCQ strings are not modified in the pp-wave background.

8. Beyond Perturbation Theory

So far we have analyzed the large moose theory at the perturbative level. In this

section we will discuss some ideas on how to describe non-perturbative aspects of

our theory. In particular, we propose an identification of D-string states in terms of

operators in the gauge theory. We also discuss the lift of the type IIA solution to

M-theory.

8.1. D-string States

In addition to the fundamental string oscillator and winding states that we have

discussed, we also expect to find states in the string theory that represent D-strings

winding around the DLCQ direction. These would be S-dual, in the framework of

type IIB string theory, to the F-string winding states. In fact, using various elements

of the SL(2,Z) S-duality group, one can construct (p, q) winding strings where p and

q are relatively prime.

The moose/quiver gauge theory that we started with is also believed to have a

large S-duality group which contains SL(2,Z) as a subgroup [43]. The perturbative

operators that we have considered so far are constructed out of electric variables that

are weakly coupled when the Yang-Mills coupling is small. But in principle for each

operator that we have constructed there must exist corresponding operators that are

expressed in magnetic or even in dyonic variables. These different operators are then

related by SL(2,Z) tranformations. The ground states that we considered can easily

be seen to be invariant under the electromagnetic SL(2,Z) transformations. They

represent supersymmetric graviton states that carry only space-time momentum. Also

the states that are obtained by acting with zero mode oscillators will be invariant:

they correspond to gravitons whose transversal movements are described by excited

harmonic oscillator states.

The non-zero mode oscillator states and the states with non-zero winding are true

F -string states, and will transform non-trivially under SL(2,Z) and are mapped on

excited (p, q) string states with non-zero winding. It is useful to think about these

states from a T -dual perspective. After T -duality the discrete light-cone momentum k

becomes string winding, while string winding m is mapped on to the discrete momen-

tum along the string. D-string winding becomes identified with D-particle number.

25



In this dual language the extra states that we are looking for are thus described by

strings bound to D-particles.

Can we introduce D-particles on the quiver/moose diagram? This is a hard ques-

tion, because it involves non-perturbative issues in the gauge theory, and might require

the introduction of the dual magnetic gauge field. However, there appears to be a

natural proposal for these D-string/particle states which only involves pure electric

variables. To give some motivation for the proposal, we note that the perturbative

string states represent “electric” states associated to the confining phase of the the-

ory. This suggests that the “magnetic” states must be obtained from a dual Higgs

phase. Suppose the A-fields get a vacuum expectation value. ZN2 invariance implies

that they all get the same VEV. Since the theory is conformal invariant, we can put

these VEV’s equal to one. Hence we have 〈A〉 = U. In the Higgs phase, it is very

natural to construct operators using the shift matrix U in the same way as we did

for the V-matrix. Specifically, in the k = 1 DLCQ sector we can define oscillators

a†
Φ,m,n ↔ Φm,n ≡ ΦUmVn , (62)

insert them into the trace, and sum over all locations. The F- and D- string winding

numbers may then be defined as the sum of the n and m mode numbers respectively.

The states with n = 0 will be pure D-strings, while those with (n,m) = l(p, q) with

(p, q) both nonzero and relatively prime will correspond to l (p, q) strings. Clearly

this reproduces the operators we had before, and extends them in an almost manifest

SL(2,Z) invariant manner. There is one subtlety however. The number of A fields

that are inside the trace must be reduced by the number ofD-string windings, because

otherwise the trace would vanish. The U matrices play the role of ‘place holders’ and

create ‘holes’ in the string of A-fields. This is just because the fields are replaced by

their vacuum expectation values. These holes are the locations of the D-particles on

the string.

This can be generalized to general k values by extending U,V,A,Φ to be (kN1N2)×
(kN1N2) matrices, and requiring that the resulting states be invariant. The D-

string/particle number is then defined in terms of the phase that is picked up when

we replace all A fields by VAV−1 and similarly for the Φ’s. This phase will be an

N2’th root of unity, and from UV = VUω
1
k we get

ω
∑ mi

k ≡ ωm̃, (63)

where ω = e
2πi
N2 and m̃ is the D-string winding number.

We should perhaps emphasize that the proposed description of theD-string/particle

states came from a heuristic argument and was not derived in a precise way. How-

ever, we are pretty sure that there must be states that carry these quantum number,
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basically because of the SL(2,Z) symmetry of the underlying gauge theory. At finite

coupling the gauge theory contains perturbative as well as non-perturbative states,

and therefore it should also give a non-perturbative of the IIB string in the DLCQ

background description, or the type IIA string in the dual background. If this is

indeed true than we should conclude that the large quiver/moose theory also has a

dual M-theory description in which the F - and D-string states combine to form the

states of a membrane that wraps the x9 as well as the x10 M-theory circle. In the next

section we will describe the M-theory background that is dual to the DLCQ pp-wave

and in which the membrane is living.

8.2. Lift to M-Theory

The type IIA background T-dual to the DLCQ pp-wave, described in Eqs.(53, 54)

can be lifted to M-theory in the standard way at finite R. It will be convenient to

rewrite these formulae as follows. Define:

H(w, y) =
1

gB
s

R−√
α′R

cos
w

R
cos

y

R
. (64)

In addition, we rescale x9 so that it has periodicity 2π
√
α′. The type IIA background

is now given by:

ds2 = −R2 cosh2 r

R
dt2 +

1

(gB
s )2H2

(dx9)2 + hij dx
idxj,

Bt 9 = −R2

R−
, eφ =

1

H
. (65)

This solution lifts to the following M-theory background:

1

(lp)2
ds2

11 = H
2
3

[

−R2 cosh2 r

R
dt2 +H−2

( 1

(gB
s )2

(dx9)2 + (dx10)2
)

+ hij dx
idxj

]

,

Ct 9 10 = −R2

R−
. (66)

where x9 and x10 are periodic modulo 2π, and R2 in this equation is just
√

4πgB
s N1N2

with no dimensional factors. From the metric, we see that the ratio of the physical

radii of x10 and x9 is gB
s , as expected.

Again we see that the background itself is singular as R → ∞, but membrane

propagation is finite and non-relativistic. Non-relativistic membranes are related to

OM (open membrane) theory [41] in a similar way as non-relativistic strings are
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related to NCOS theories [22, 42]. We can compute the membrane action in static

gauge, again ignoring derivative terms to start with:

√

− det(g) + C =
1

gB
s H

R cosh
r

R
− R2

R−

=
1

2R−

8∑

i=1

(xi)2 + O
(

1

R2

)

. (67)

As for the string, the kinetic terms can be restored leading to a free action for the

transverse scalars on the membrane world-volume. The background will also have a

7-form field strength and its dual 4-form, following from Eqs.(61). These will give

masses to the fermions of the membrane world-volume theory as required by maximal

supersymmetry.

9. Relation to Deconstruction

We have been working with the SU(N1)
N2 N = 2 supersymmetric quiver gauge

theory for large N1, N2. The same theory, for finite N1 and large N2, was the starting

point for deconstructing (2, 0) superconformal field theory in six dimensions [26].

The essential idea in deconstruction [24] is to start with a four-dimensional gauge

theory for which the “theory space” is large. To be precise, one takes a large number of

gauge groups and introduce matter in non-trivial representations of two of the gauge

groups simultaneously; a prototypical example of this being the quiver gauge theory

under consideration. Upon going to the Higgs branch of the theory by giving VEVs to

the matter in the bifundamentals, one can at some intermediate energy scales recover

approximate five-dimensional gauge dynamics. The role of the fifth dimension is

played by the direction in the theory space. In the deep infra-red the theory recovers

four-dimensional behaviour, since the Higgs VEV causes the large gauge group to be

broken down to the diagonal subgroup. The five-dimensional gauge coupling and the

lattice spacing are governed by the Higgs VEV along with other parameters of the

gauge theory.

In [26], this idea was extended to supersymmetric gauge theories in four-dimensions,

and the quiver N = 2 theory was the starting point for deconstruction of two extra

dimensions. One takes a set of N1 D3-branes probing a C2/ZN2 orbifold. However,

if N2 happens to be large, then the resulting wedge of C2 is like a thin sliver. The

D3-branes are moved away from the orbifold point to a distance d. In the dual gauge

theory, this corresponds to giving a VEV to the bifundamental hypermultiplets. The

D3-branes are now in a very thin cone, and being away from the tip, they essentially
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can be considered to be in a cylindrical geometry where the radius of the transverse

circle is d
N2

. For large N2, when this radius is vanishingly small in string units, one

can T-dualize and work with D4-branes wrapping a dual circle of radius RA = N2α′

d
.

The Type IIA coupling constant is gA
s = N2

√
α′

d
.

The limit considered in Ref.[26] is to take N2 large and α′ → 0 with gB
s and d

N2α′

fixed. In this limit the Type IIA coupling blows up, so we can lift the configuration

to M-theory. The M-theory circle has a radius R10 = gB
s N2α′

d
and the 11-dimensional

Planck length is l3P = (α′)2N2gB
s

d
. The Type IIA four-branes have become M5-branes

wrapping the x10 circle. We are left with an M-theory background with N1 M5-branes,

which for lp → 0 defines the (2, 0) theory with parameter N1.

To summarize, the basic idea in Ref.[26] is to keep N1 and gB
s fixed, taking N2

large while staying in the Higgs branch. The states which survive in the gauge theory

are of energies 〈A〉
N2

, where 〈A〉 is the Higgs expectation value.

In our approach, we go over to the AdS limit, N1 → ∞, simultaneously with

the “deconstruction” limit N2 → ∞. In the AdS background, we pick a circle along

the χ direction, which lies a distance R away from the fixed circle of the orbifold

action. This is the analog of staying away a distance d from the tip of the cone in

the discussion of [26]. But d is not to be identified with R as such, since the energy

scale R
N2α′

is vanishingly small in the limit we consider. In addition to staying away

from the fixed circle, the pp-wave limit also involves a boost along the χ direction.

This introduces another factor of R, and therefore we need to compare the scale d
N2α′

of [26] with R2

N2α′3/2 . We look at states which have energy of order the inverse of this

length scale.

Recall that the radius of our compact null direction is proportional to
√

N1

N2
. We

now see that the conventional AdS limit and the limit of Ref.[26] probe opposite

ends of the DLCQ compactification moduli space, with the former corresponding to

R− → ∞ and the latter corresponding to R− → 0. By a double scaling of N1 and

N2, we have succeeded in retaining the DLCQ radius as a tunable parameter.

10. Discussion

We end with some final comments and speculate about using the large moose/quiver

theory as a definition of M-theory.

10.1. Concluding Comments

Our work indicates several interesting directions to explore. One such direction
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is to consider N = 1 superconformal gauge theories obtained by placing N1 D3-

branes at a C3/(ZN2 × ZN3) orbifold singularity. The holographically dual AdS5 ×
S5/(ZN2 × ZN3) background naturally admits three different pp-wave limits. Two of

these are DLCQ pp-wave backgrounds with an orbifold in the transverse space, hence

they have reduced supersymmetry. The third limit, which is more interesting, gives

a maximally supersymmetric pp-wave. The corresponding quiver diagram is a two-

dimensional discretized torus, and the gauge theory operators wind along a diagonal

of this torus, sampling all the N2N3 points [44].

An alternative description of the N = 2 quiver theory that we studied in this

paper is provided by a type IIA brane construction in terms of NS5 and D4-branes

[43]. This construction lifts to M-theory as an M5-brane wrapped on a Riemann

surface. It would be worthwhile to examine whether this approach, in our scaling

limit, can be related to the non-relativistic membrane theory that we have exhibited

here.

Another interesting study, similar to the deconstruction idea, deals with the matrix

theory description of our quiver theory [45]. In this work, a relation is found between

SU(N1)
N2 and SU(N2)

N1 quiver theories. This exchange of N1 and N2 is reminiscent

of the T-duality that we perform, and might have implications for it.

Finally, we note that the DLCQ formalism is intended to facilitate the study of

string interactions in a controlled fashion. It is clearly important to understand string

interactions within the gauge theory/pp-wave correspondence, and the framework

provided in this paper should be useful to address this issue.

10.2. Might ‘M’ Mean ‘Moose’?

In this paper we considered a particular limit of the N = 2 moose/quiver theory

in which not only N1 and N2 are taken to be larger, but at the same time one focusses

on a particular sector of the theory: only operators are considered for which ∆ and

J ′ grow like N2 and J and ∆−N2J − J ′ are kept finite. The latter conditions imply

that the operators are constructed mostly out of A fields. In principle one could

have chosen to look at a different sector for which another combination of ∆ and the

charges is kept finite leading to operators that contain for example mostly Ā, B or B̄

fields. This seems to suggest that the large moose/quiver theory may be even richer

and may contain all kinds of sectors that we have not yet explored.

This brings us to an important question: is one allowed to send N1 and N2 to

infinity without taking the string coupling to zero? Or does this only makes sense

provided one also restricts to an appropriate subset of operators? To see why this is an
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important question, let us assume that one can make sense of the large moose/quiver

theory without any severe restrictions on the coupling or the class of operators one

is considering. In that case one expects that the resulting theory is dual to type IIB

string theory on AdS5×S5/ZN2 in limit where the radius of the AdS5 and the S5 both

go to infinity, while taking also the order N2 of the ZN2 orbifold group to infinity.

Without the orbifold identification one would, at least naively, expect to get the type

IIB theory in a flat background. One of the spatial direction is, however, infinitely

small due to the orbifold symmetry, and hence should be replaced by a T-dual co-

ordinate. This gives a type IIA theory in flat space but with a coupling constant

that becomes infinite. In other words, the large N1 and N2 limit of the moose/quiver

theory, if it exists, is a serious candidate for a non-perturbative description of type

IIA string theory, that is of M-theory! So we may ask: “Might M mean Moose?”
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