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Abstract: We investigate a class of 1
2
-BPS bubbling geometries associated to orien-

tifolds of type IIB string theory and thereby to excited states of the SO(N)/Sp(N)

N = 4 supersymmetric Yang-Mills theory. The geometries are in correspondence

with free fermions moving in a harmonic oscillator potential on the half-line. Branes

wrapped on torsion cycles of these geometries are identified in the fermi fluid de-

scription. Besides being of intrinsic interest, these solutions may also occur as local

geometries in flux compactifications where orientifold planes are present to ensure

global charge cancellation. We comment on the extension of this procedure to M-

theory orientifolds.
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1. Introduction

The recent discovery [1] of an infinite set of 1
2
-BPS geometries of type IIB supergravity

is of great interest. This discovery provides a correspondence between semiclassical

states of the matrix harmonic oscillator and 1
2
-BPS geometries, in which the ground

state of the matrix model (equivalent to a fermi fluid in a harmonic oscillator poten-

tial) corresponds to the well-known AdS5×S5 geometry. Also, the pp-wave geometry

emerges in the limit of relativistic fermions. A similar construction also exists for
1
2
-BPS backgrounds of 11-dimensional supergravity.

These geometries can have various interpretations, as D-branes and/or giant

gravitons/dual giant gravitons, depending on the typical sizes of various regions.

Their relation to a fermi fluid profile arises from the fact that one can pick an

arbitrary shading of the complex plane into black and white regions (denoting oc-

cupied/unoccupied regions of fermion phase space) and input this data to construct

a 1
2
-BPS supergravity solution with fluxes. The matrix oscillator in turn arises[2, 3]

(see also Ref.[4]) in the N = 4 supersymmetric Yang-Mills theory on a D3-brane
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wrapped on S3, which has a coupling of the form
∫ √

gR φ2
i for each complex scalar

field φi of the N = 4 supermultiplet.

This discovery provides a somewhat new insight into holography. Not only do 1
2
-

BPS operators of the N = 4 SYM theory correspond to excited states of supergravity

on AdS5 × S5, as was already known for a long time[5, 6, 7], but they can also be

identified with entirely new 1
2
-BPS geometries1. These geometries can possess quite

different topologies and one can understand topology change as the process of fermi

fluid profiles merging and separating[1, 11]. The phase space of the fermi fluid is

realised on 2 of the 9 space dimensions of 10-dimensional type IIB supergravity. This

implies that the gravity configuration space is partly noncommutative, explanations

of which have been proposed in Refs.[12, 13] (related observations can be found in

Ref.[14]).

In the present work we would like to investigate the bubbling geometry con-

struction in the presence of an intrinsically stringy effect, namely the orientifold

plane. This ubiquitous object has led to important insights in the past[15, 16].

In gauge theory terms it can be used to modify the gauge group from SU(N) to

SO(2N), SO(2N + 1) or Sp(2N) without breaking any supersymmetry. From the

gravity point of view, parallel orientifold planes and D-branes break the same super-

symmetries, so it is not surprising that we will find bubbling orientifolded geometries

that are 1
2
-BPS. This adds a nontrivial class of new geometries to the ones proposed

in Ref.[1]. The “ground state” geometry in this case is AdS5 × RP 5, an example

studied in depth in Ref.[17].

Besides providing more general examples of “bubbling geometries”, the introduc-

tion of orientifold planes in this context is likely to be of practical interest. For com-

pactifications of string theory with space-filling branes and/or fluxes, it is well-known

that the absence of tadpoles requires space-filling orientifolds. In Ref.[18], it has been

noted that the T 6/Z2 × R3,1 orientifold compactification has precisely AdS5 × RP 5

as the local geometry around the space-filling D3-branes if they are brought near an

orientifold. So besides representing a 1
2
-BPS geometry by itself, AdS5 × RP 5 can

also be thought of as a possible local geometry for a 1
2
-BPS compactification. This

suggests a more general class of 1
2
-BPS compactifications (involving both branes and

fluxes) for which the spacetimes discussed in the present paper could appear as local

geometries.

In what follows we first briefly review bubbling geometries as well as orientifold

3-planes. Following this we describe the bubbling orientifold geometries and their

realisation in terms of free fermions on a phase space that is the upper half-plane.

1The LLM framework thus provides a tool for studying supergravity excitations of AdS5 × S5

when the backreaction is large. In other circumstances, when the backreaction is limited, other

techniques may be more useful in the holographic context. One such example is the computations

of anomalous dimensions in super Yang-Mills theory using spin chains, as pioneered by [8] and

reviewed for example in Refs.[9, 10].
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We will see that the orientifold plane can be interpreted as the wall which truncates

a regular harmonic oscillator potential to a “half-oscillator”, a familiar problem in

quantum mechanics. We comment on the topology and other characteristics of the

most general bubbling solutions, including discrete torsion and the possibility of two

different types of topology change. Finally we briefly examine the analogue solutions

in M-theory. In the Appendix, we collect some useful facts about random matrices

in a harmonic oscillator potential, for the cases when the matrices are in the Lie

algebra of SO(2N + 1), Sp(2N), SO(2N). These matrix models compute the 1
2
-BPS

states of N = 4 super-Yang-Mills theory with the corresponding gauge groups.

2. Bubbling Geometries: A Brief Review

The type IIB 1
2
-BPS bubbling geometries of Ref.[1] can be summarised in a family

of classical solutions of type IIB supergravity given in terms of a single function

z(y; x1, x2). The metrics contain two 3-spheres S3 and S̃3 and are given by:

ds2 = −
[

y2

1
4
− z2

]
1
2

(dt + Vi dxi)
2 +

[ 1
4
− z2

y2

]

1
2

(dy2 + dxi dxi)

+

[

y2
1
2

+ z
1
2
− z

]

1
2

dΩ2
3 +

[

y2
1
2
− z

1
2

+ z

]

1
2

dΩ̃2
3 (2.1)

Additionally the solution has suitable 5-form fluxes. The function z = z(y; x1, x2)

satisfies:

(∂2
y + ∂i∂i)z − 1

y
∂yz = 0 (2.2)

and Vi is a vector field determined in terms of z via:

y ∂yVi = ǫij ∂jz, y ∂[iVj] = ǫij ∂yz (2.3)

¿From the metric, it is clear that the range of the y coordinate is restricted to

y ≥ 0. Also as y → 0, smoothness of the metric requires z → ±1
2

with y/
√

1
2
∓ z

fixed. Then if z → +1
2
, the 3-sphere S̃3 with metric proportional to dΩ̃2

3 shrinks to

zero size, while the other 3-sphere S3 with metric dΩ2
3 remains finite. When z → −1

2

the reverse is true, and it is S3 that shrinks to zero size. More details are given in

Ref.[1]. The geometries are parametrised by drawing smooth contours in the x1, x2

plane which demarcate regions of z = −1
2

(black) from regions of z = +1
2

(white). In

turn, these regions can be interpreted as semiclassical phase-space profiles of a fermi

fluid where the black regions are occupied and the white regions are unoccupied.

The constant phase-space densities of these droplets map to constant densities in the

x1, x2 plane. This follows from the fact that the flux through a sphere formed by

drawing a surface ending on a black/white region can be converted to an integral of

a constant flux density over the region.
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Fermi fluid profiles consisting of a black disc with a circular boundary correspond

to the AdS5 ×S5 solution. Deformations of this by adding/removing thin concentric

shells correspond to giant gravitons or dual giant gravitons in this spacetime. But

the most generic geometry can have very little to do with AdS5×S5 and may contain,

for example, an arbitrary number of S5 factors.

The bubbling construction can be extended to 1
2
-BPS solutions of 11-dimensional

supergravity. In this case one finds metrics parametrised in terms of a function

D(y; x1, x2). In what follows, we denote ∂yD by D′. These metrics contain a five-

sphere S5 and a two-sphere S̃2, and are given by:

ds2 = −4

[

y

D′(1 − yD′)2

]
1
3

(dt + Vi dxi)2 +

[

D′2(1 − yD′)

y2

]

1
3 (

dy2 + eD(dx2
1 + dx2

2)
)

+4

[

y(1 − yD′)

D′

]
1
3

dΩ2
5 +

[

y2D′

(1 − yD′)

]
2
3

dΩ̃2
2 (2.4)

along with a suitable 4-form flux. The function D(y; x1, x2) satisfies the three-

dimensional Toda equation:

∂i∂iD + ∂2
ye

D = 0 (2.5)

and the vector field is determined in terms of D by:

Vi =
1

2
ǫij∂jD (2.6)

In this class of metrics too, the range of the coordinate y is restricted to y ≥ 0 and

as y → 0, the function D must obey one of two boundary conditions. One possibility

is D′ ∼ y while the other is D′ ∼ y−1. More precisely we have:

(i) D → y2 + g(x1, x2)

(ii) D → log y + h(x1, x2) (2.7)

where g, h are functions of (x1, x2) satisfying the two-dimensional Liouville equation:

∂i∂i g(x1, x2) + eg(x1,x2) = 0 (2.8)

and similarly for h(x1, x2).

In case (i), keeping D finite in the limit, it is evident from the metric Eq. (2.4)

that S̃2 shrinks to zero size while S5 remains finite. In case (ii) we keep D′ − y−1

finite in the limit and find that S5 shrinks with S̃2 remaining finite. Thus again the

x1, x2 plane is divided into two types of regions, which can be associated to fermi

fluid droplets. There is an important subtlety[1]: the density of fermions in a droplet

is not constant, unlike in the type IIB case. In fact the densities of the droplets are

(i) ρ(x1, x2) = 2 eg(x1,x2)

(ii) ρ(x1, x2) = 2 eh(x1,x2). (2.9)
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However, as argued by the authors of Ref.[1], two droplets related by a conformal

mapping of the plane give rise to the same 1
2
-BPS solution. Therefore the topology

of the bubbles in the (x1, x2) plane is expected to be the same as that in the fermion

phase space. In particular, they demonstrate that the M-theory pp-wave is given by

one of the two boundary conditions for x2 < 0 and the other one for x2 > 0, just as

one would expect from the correspondence of this system with the relativistic limit

of free fermions.

3. The AdS5 × RP 5 Orientifold

In Ref.[1], 1
2
-BPS excitations of a ground state geometry corresponding to AdS5×S5

in type IIB string theory were considered, and the full back reaction on the geometry

was determined. We will instead be interested in an AdS5×RP 5 ground state, arising

from a Z2 orientifold projection of the S5, as considered by Witten[17].

Introducing an orientifold plane changes the gauge group on a stack of D-branes

to SO(2N), SO(2N +1) or Sp(2N), instead of previously SU(N). The orientifolded

theory has no fixed points on the S5, so there is no open string sector. Being an

orientifold, traversing a non-contractible loop flips the orientation of the world-sheet

(or any embedded orientable manifold). This means that there is also no “winding

sector”. The spectrum therefore consists only of those AdS5 × S5 states which are

invariant under the orientifold projection, at least for weak coupling2.

The topology of the 2-form fields BNS NS and BRR is in general non-trivial,

in the sense that the field strength H = dB belongs to some equivalence class of

the cohomology group H3(AdS5 × RP 5, Z̃) = H3(RP 5, Z̃) = Z2, where Z̃ denotes

twisted coefficients, i.e. coefficients flipping sign along a non-contractible loop. To

preserve supersymmetry, it is necessary to choose H = 0. We have already said that

traversing a non-contractible loop flips the orientation of the world-sheet Σ. Again

using twisted coefficients, this means that the homology is Σ ∈ H2(RP 5, Z̃) = Z2,

and we may represent the non-trivial element by RP 2. Consequently, for non-trivial

choice of discrete torsion for the field strength, the contribution to the path integral

is ei
∫

Σ
BNS NS = (−1)s, where s is the number of RP 2’s making up the world-sheet.

Trivial choice of torsion always contributes a factor of unity.

There will be four distinct combinations of discrete torsion which can be labelled

by

θNS NS =
1

2π

∫

Σ

BNS NS

θRR =
1

2π

∫

Σ

BRR, (3.1)

2On the other hand, interactions will become more complicated, due to contributions from non-

orientable world-sheets.
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so that θNS NS and θRR can independently take the values 0, 1
2
. The (0, 0) theory can

be shown to be SL(2, Z) invariant. The Montonen-Olive duality of such a theory

identifies it as SO(2N). Turning on θNS NS = 1
2

will change the gauge group to

Sp(2N), which can be seen in the following way. Feynman diagrams of Sp(2N) are

obtained from those of SO(2N) by sending N → −N . Since the contribution of a

generic diagram goes as N2−2g−s, where g is the genus and s is the number of glued

copies of RP 2, we conclude that each RP 2 contributes a factor −1. By definition of

the discrete torsion, this is precisely the effect of turning on θNS NS . This argument

therefore indicates that turning on θNS NS = 1
2

(with θRR = 0 or 1
2
) is equivalent

to changing the gauge group from SO(2N) (or SO(2N + 1)) to Sp(2N). The only

combination of discrete torsions which is left is (θNS NS , θRR) = (0, 1
2
), which can be

identified with the “remaining” gauge group, SO(2N + 1).

Interestingly, the torsion need not be constant all over the manifold. To explain

this, some background on 3-branes in this geometry is required. In addition to the

ordinary D3 brane, the AdS5 × RP 5 theory also contains 3-branes resulting from

wrapping a 5-brane on an RP 2 submanifold of the RP 5. Any 3-brane is localised in

one spatial direction on the AdS5 space. The D3 brane is a source of 5-form flux, so

the brane will act as a domain wall, separating SU(N) and SU(N +1) gauge theories

on the boundary. On the orientifold, the flux N through S5, which covers the RP 2

twice, will instead shift by two units. Therefore, the gauge group will shift between

SO(2N) and SO(2N+2) or between Sp(2N) and Sp(2N +2). But crossing a 3-brane

made by wrapping a D5 or NS5-brane on RP 2 also makes the θ angle jump. This is

because the wrapped 5-brane also acts as a source for the field H = dB. A wrapped

D5 brane sources RR-form flux, and so makes θRR jump. Similarly, a wrapped NS5

brane has NS-flux on it, making θNS NS jump upon crossing it. We will discuss how

these features relate to the LLM description in section 5.2.

In general, branes characterized by untwisted or twisted charges can only be

wrapped on non-trivial cycles with untwisted or twisted coefficients, respectively. In

addition, topological considerations may restrict the allowed values of the discrete

torsions. In spite of these restrictions, the RP 5 geometry still introduces new types

of objects, as compared to the unorientifolded theory, such as fat strings and Pfaffian

particles (on the gauge theory side). They can be constructed by wrapping branes

on non-trivial cycles of the RP 5 which lack any counterpart in the S5 theory. We

refer to Ref.[17] for details.

Here, we will content ourselves by illustrating some of the general features in-

volved by discussing some properties of the baryon vertex of SU(N) gauge theory,

which does exist both before and after the projection to the RP 5 geometry. In the

unprojected case, the only non-trivial cycle is the full S5 itself. The baryon vertex

is constructed by wrapping a D5 brane on this S5. Strings connect it to N external

quarks. Quarks are particles in the fundamental representation of the gauge group.

The combination is fermionic, since it is made gauge invariant by contracting the
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colour wave functions using an antisymmetric tensor of order N .

That this makes sense from the gravity point of view can be seen as follows. There

is a coupling 1
2π

∫

S5×R
a∧F5 on the world-volume of the D5 brane. As always,

∫

S5 F5 =

2πN , so the charge corresponding to the U(1) gauge field a gets a contribution of N

units due to the D5 brane. Similarly, each of the N fundamental strings ending on

the D5 contributes by −1, making the total charge vanish, as required.

The other ends of the strings connect to quarks at the boundary, modelled by

attaching their endpoints to a large D3 brane whose spatial world-volume is of the

topology S3×P , where P is a point on the S5. Placing the wrapped D5 at the point

Q in AdS5 and considering the “linking” numbers between the manifolds S3 × P

and Q×S5, there will be a change of sign associated with interchanging two strings,

confirming that the strings are fermionic.

In the projected theory, topological restrictions allow the D5 to wrap the RP 5

an even number of times only. Hence, the baryon vertex only couples to an even

number of quarks on the orientifold.

4. Bubbling Orientifolds and Fermi Fluids

In the previous section we have seen that the spacetime AdS5 × S5 admits an in-

volution that reflects all the directions of the 5-sphere and converts it into the real

projective space RP 5. The dual gauge theory is the N = 4 super-Yang-Mills theory

on a set of D3-branes parallel to an orientifold 3-plane. The gauge group can be

SO(2N), SO(2N + 1) or Sp(2N) depending on the precise type of O3-plane. In

keeping with the bubbling geometry idea, we expect that there should be an infinite

set of 1
2
-BPS bubbling geometries that correspond to the excited states of this gauge

theory.

To find these, we need to understand how the fermi fluid profile that corresponds

to AdS5 × S5 is affected by the orientifolding. This profile is a circle of radius

r0 = R2
AdS in the fermion phase space. In the geometry this space is realised as the

x1 − x2 plane. Now AdS5 × S5 is parametrised as:

(ds)2 = r0

(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dθ2 + cos2 θ dφ̃2 + sin2 θ dΩ̃2

3

)

(4.1)

with θ ∈ [0, π
2
], φ̃ ∈ [0, 2π]. In terms of embedding coordinates in an IR6, one can

write:

X1 = R cos γ sin α sin θ

X2 = R sin γ sin α sin θ

X3 = R cos β cos α sin θ

X4 = R sin β cos α sin θ

X5 = R cos φ̃ cos θ

X6 = R sin φ̃ cos θ (4.2)
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with α, θ ∈ [0, π
2
] and β, γ, φ̃ ∈ [0, 2π]. The embedding condition is

∑

i X
2
i = R2 ≡ r0.

The orientifold action on this IR6 is XI → −XI , I = 1, 2, · · · , 6. In terms of the

angular variables this amounts to

β → β + π

γ → γ + π

φ̃ → φ̃ + π. (4.3)

Going to the x1 − x2 plane of the bubbling geometry, we recall that it is described

by polar coordinates (r, φ) where

r = r0 cosh ρ cos θ

φ = φ̃ + t, (4.4)

and ρ, φ̃ are the coordinates appearing in Eq.(4.1) above. Therefore, under the

orientifolding operation, the x1 − x2 plane undergoes the involution φ → φ + π,

which is the same as the reflection (x1, x2) → (−x1,−x2).

The precise picture is a little more complicated because at y = 0, the full spatial

geometry is not really 2-dimensional. In the regions where z = ±1
2

(the white

and black regions) the geometry is 5-dimensional, and consists of the (x1, x2) plane

together with one of the 3-spheres S3 or S̃3, parametrised respectively by dΩ3 or dΩ̃3,

while the other 3-sphere has shrunk to zero size. The sphere S̃3 lies inside S5 (and is

parametrised by the angles α, β, γ in Eq.(4.2)). Thus it is inverted by the orientifold

action, while the other 3-sphere S3 that lies in AdS5 remains unaffected. Thus, at a

generic point of the (x1, x2) plane, the orientifold involution acts by reflecting (x1, x2)

and simultaneously inverting S̃3. In the white regions, where z = 1
2
, the S̃3 shrinks to

zero size, while in the black regions, where z = −1
2
, it is S3 that shrinks. It follows

that in the white regions, the orientifolding operation acts solely by inverting the

(x1, x2) plane and turning it into IC/ZZ2. The same is true on boundaries between the

black and white regions with z = −1
2
, z = +1

2
respectively (where both S3, S̃3 shrink).

In the black region, however, one has to keep in mind that the S̃3 above a given point

of the (x1, x2) plane is identified with a reversed S̃3 above the diametrically opposite

point. Finally, at the origin x1 = x2 = 0 which is the fixed point of φ → φ + π, the

S̃3 gets an antipodal identification and becomes RP 3.

The above discussion was based on an involution that is a symmetry of the

AdS5 × S5 background. Therefore strictly speaking it applies only to the simple

fermi fluid profile consisting of a black disc of fixed radius centred at the origin. But

now it is clear how to define orientifolding for the most general bubbling geometry:

simply consider all fermi fluid profiles whose boundaries are well-defined on IC/ZZ2.

Such boundaries have to be invariant under a rotation by π in the (x1, x2) plane.

Alternatively they may be drawn on the fundamental domain of IC/ZZ2: the upper
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half-plane with the positive and negative halves of the x1 axis identified with each

other.

What is the fermi system dual to these spacetimes? For this system, the eigen-

value phase space should be an orbifold IC/ZZ2. This means the position x of the

fermion is strictly positive (recall that the identification between coordinate space

and phase space is (x1, x2) → (p, x)). The identification of the positive and negative

momentum axes tells us that at x = 0 the momentum is instantaneously reversed.

This is consistent with the harmonic oscillator being truncated to the “half har-

monic oscillator” with an infinite vertical wall at x = 0, a well-known system in

quantum mechanics. Thus we have a (Hermitian) matrix-valued particle, or equiva-

lently fermionic eigenvalues, moving in this potential. The fermionic wave functions

are made in the usual way out of one-particle wave functions, the latter now being

the parity-odd solutions of the full harmonic oscillator.

¿From the correspondence between states of the matrix harmonic oscillator and
1
2
-BPS excitations of N = 4 SYM, we would expect the appropriate matrix model for

an orientifolded geometry to be related to N = 4 SYM with gauge group SO(2N)3.

Then, following the arguments of Refs.[2, 3], one should get a usual, not semi-infinite,

harmonic oscillator, the only change being that the Hermitian matrix (in the algebra

of SU(N)) is replaced by an antisymmetric matrix (in the algebra of SO(2N)).

This appears to be a different theory, but in fact the two descriptions are equiv-

alent, for the same reason that (in flat space) an orientifold plane projects SU(N)

Chan-Paton factors down to the SO or Sp subgroup. Consider the random matrix

model for 2N ×2N real antisymmetric matrices A (for simplicity we choose constant

matrices) with a potential V (A):

Z =

∫

[dA]e− trV (A) (4.5)

This is invariant under the orthogonal transformations, which can be used to reduce

the matrix A to the form

Λ =























λ1

(

0 1

−1 0

)

0 · · · 0

0 λ2

(

0 1

−1 0

)

· · · 0

· · · · · · · · ·

0 0 · · · λN

(

0 1

−1 0

)























= iσ2 ⊗ diag(λ1, λ2, . . . , λN). (4.6)

Importantly, all λi are real and can be chosen to be non-negative. For example, in

each block, a negative λi can be brought to a positive one by conjugating with σ3⊗11.

3Or SO(2N + 1) or Sp(2N).
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The matrix measure

[dA] ≡
∏

P<Q

dAPQ (4.7)

can then be shown to reduce to

[dA] =

N
∏

j<k=1

(λ2
j − λ2

k)
2

N
∏

i=1

dλi

=
N
∏

j<k=1

(λj − λk)
2

N
∏

j<k=1

(λj + λk)
2

N
∏

i=1

dλi. (4.8)

The nontrivial measure factor just corresponds to
√

g for the metric gIJ on the

space of deformations, in the coordinates made up of the λi and the orthogonal

transformations4.

Once we know the metric, we easily derive the kinetic term in the Hamiltonian

for this matrix model, which is just the Laplacian on the deformation space,

H =
∑

i

1√
g

∂

∂λi

√
g

∂

∂λi
=

1
∏

j<k(λ
2
j − λ2

k)
2

∑

i

∂

∂λi

∏

j<k

(λ2
j − λ2

k)
2 ∂

∂λi

=
1

∏

j<k(λ
2
j − λ2

k)

∑

i

∂2

∂λ2
i

∏

j<k

(λ2
j − λ2

k). (4.9)

The equality of the two lines above follows from the identity

∑

i

∂2

∂λ2
i

(

∏

j<k

(λ2
j − λ2

k)

)

= 0. (4.10)

We see that with some changes, this works out much like the case of Hermitian

matrix models. Absorbing the factor
∏

j<k(λ
2
j − λ2

k) into the wave function makes

it fermionic. All this is in agreement with our argument that orientifolding confines

the coordinates of the free fermions to a half-line. In fact it tells us something more

precise – from Eq.(4.8), we see that the positive “eigenvalues”5 λi not only repel

each other, but also repel their images −λi. This is just what we would expect in

the presence of an orientifold plane.

In the above we have mostly focused on the “standard” orientifold action that

leads to the gauge group SO(2N) on the gauge theory side. The above procedure

admits a straightforward modification when the orientifold action is modified to

produce SO(2N + 1) or Sp(2N). For convenience, we provide a unified derivation of

the matrix measures for all the cases SO(2N), Sp(2N), SO(2N +1) in an Appendix.

As reviewed in section 3, the latter groups arise when discrete BNS NS or BRR torsion

is introduced in spacetime. We will return to this in section 5.2.

4The formula above has appeared in, for example, Ref.[19].
5One should keep in mind that the actual eigenvalues are ±iλi.
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5. Properties of Orientifolded Fermi Fluids

5.1 General Properties

We now discuss some qualitative properties of the orientifolded fermi fluid and asso-

ciated 1
2
-BPS geometries, using the standard orientifold projection of SO(2N) type.

As we have seen, the allowed fluid profiles have to be invariant under a rotation by

π about the origin of phase space, or equivalently under (x, p) → (−x,−p). The

resulting space under this quotient is IC/Z2 and can be represented by the upper

half-plane x > 0 along with half of the x = 0 axis, since points (0, p) are identified

with (0,−p). Fermi fluid profiles on this space can be represented either as bubbles in

a fundamental region, such as the upper half-plane, or as Z2-invariant configurations

in the whole plane.

p

x

p

x

Figure 1: Profile describing AdS5 ×
RP 5.

Figure 2: Profile describing AdS5 × S5,

arising from D3 branes far from the ori-

entifold.

The simplest example is the semi-circle centred at the origin, which seeds the

geometry AdS5 ×RP 5. As a fluid profile, it is the ground state of N free fermions in

the semi-infinite harmonic oscillator. We may note right away that the quotienting

destroys translational invariance in the x− p plane and therefore the semi-circle has

to be centred at the origin (Fig. 1). Here and in what follows, the fundamental part

of the bubble is shaded while the Z2 image is indicated with a dotted line to exhibit

the fact that in the “upstairs” space this is a Z2 invariant configuration.

We can also have circular configurations such as the one in Fig.2, where no part

of the circle touches the horizontal axis. This arises as the near-horizon geometry

of D3-branes parallel to, but far away from, an orientifold plane. This example

shows that geometries which occur in the un-orientifolded case can also occur in the

presence of the orientifold. All that is required is for the boundaries to be completely

contained in the upper half-plane. The lack of translational invariance, alluded to

above, means that the distance of the disc in this figure from the horizontal axis is

physically meaningful, in contrast to the un-orientifolded case.
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p

x

p

x

Figure 3: Bubble excluding the origin. Figure 4: Bubble including the origin.

More general configurations are the union of bubbles of two basic types: those

where the origin is included in the black region, and those where it is not. Examples

of the two types are shown in Figs.3,4. From Fig.4 we notice that a boundary

component of the latter type will be smooth only if, at the two points where it

touches the real axis, the slope is the same.

As noted earlier, when the origin is in a black region there is an RP 3 in the

spacetime geometry. This is the case for the bubble in Fig.4. For bubbles that do

not include the origin, at first sight there appear to be two types: one illustrated

in Fig.3 where the bubbles are completely contained in the upper half plane (along

with their images in the lower half plane), and another type as in Fig.5 where the

boundaries cross the horizontal axis at x = 0.

The difference between these two examples is

p

x

Figure 5: Profile similar to

Fig.3 after rotation.

only superficial and can be eliminated by making a

different choice of fundamental region. Choosing the

right half plane as the fundamental region in Fig.5

puts the bubble completely inside the region, with

its image on the other side. Thus we see that there

are only two types of bubbles. Deforming these two

types into each other leads to topology change via

singular geometries, as we will see below.

In the models of Ref.[1], particular types of bub-

bles were identified with “giant gravitons”. These

are bubbles consisting of a black region with a small hole inside, the area of the hole

being much smaller than the area of the black region surrounding it. The correspond-

ing geometries were interpreted as containing giant gravitons made up of D3-branes

wrapping a maximal S̃3 in S5. In the orientifolded case we may instead consider a

hole inside the bubble of Fig.1. We see that there are two types of such holes, and

correspondingly two types of giant gravitons (Fig.6). If the small hole is in a generic

location then we have giant gravitons wrapping a 3-sphere S̃3 in RP 5. On the other

hand if the hole surrounds the origin, we have giant gravitons wrapping an RP 3 cycle
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of RP 5.

Interestingly, as the hole around the origin be-

p

x

Figure 6: Two types of giant

gravitons in AdS5 × RP 5.

comes large enough to interpret this as a new back-

reacted geometry, we find that the RP 3 cycle has dis-

appeared – for the reason, stated earlier, that the black

region does not enclose the origin. Also, when the hole

expands further so that the black region forms a thin

semicircular ring (stuck to the horizontal axis), we can

interpret the configuration as consisting of dual giant

gravitons wrapping an S3 of AdS5, and uniformly dis-

tributed around an equator of RP 5.

5.2 Torsion Cycles

A unique feature of the AdS5 ×RP 5 theory as compared to the unorientifolded case

is the appearance of discrete torsion, as explained by Witten[17] and discussed in

section 3. This means that there are topologically distinct configurations of the

B-field, described by the theta angles θNS NS and θRR. In this section, we wish to

understand how this feature manifests itself in terms of the free fermion description

on the distinguished (x1, x2) geometry-seeding plane.

As a warm-up, consider first a D3 brane in AdS5×S5. We

Figure 7: The path

T , with endpoints P

and Q, intersects the

D3 brane.

may take it to be localized in the radial direction ρ on AdS5,

as well as located at a point on the S5. It then extends along

an S3 in the AdS5. Suppose now that we choose a path T

whose endpoints are two points P and Q on opposite sides of

the 3-brane, as shown in Fig.7. Consider the integral of dF5

over the domain T × S5. Since the brane provides a source

for the five-form flux F5, and upon using Stokes’s theorem, we

find

2π =

∫

T×S5

dF5 =

∫

P×S5

F5 −
∫

Q×S5

F5. (5.1)

We can conclude that the flux through the S5 changes by one

upon crossing the brane, changing the the gauge group from

SU(N) to SU(N ± 1). On the orientifold, the gauge group

instead changes from SO(2N), SO(2N+1) or Sp(2N) to SO(2N±2), SO(2N+1±2)

or Sp(2N ± 2) respectively, since RP 5 is covered twice by S5.

¿From the outset, the orientifolded theory has no preferred set of discrete torsion,

i.e. theta angles (θNS NS , θRR). However, once a particular set of values has been

assigned to some region, discrete torsions will automatically be induced on the entire

space, depending on the distribution of magnetic sources. In the absence of magnetic

sources for the B-fields, the torsions are constant over the entire space.
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However, D5 or NS5 branes wrapped on RP 2 cycles, forming effective D3 branes

on AdS5, do provide such sources. Crossing such a D3 brane will, in addition to

changing the rank of the gauge group as we just described, also cause the discrete

torsion to change.

More concretely, suppose we are wrapping a D5 brane on an RP 2 cycle6. This

will result in an effective D3 brane which additionally has an RR-form flux HRR =

dBRR, which we choose to vanish to preserve supersymmetry. On the AdS5 space,

suppose the brane is again localized in the radial direction, but extended in the S3

directions. On the RP 5, the brane is extended along an RP 2. This means that it

must be localised on an RP 3, at least locally. The RP 2 and the RP 3 are generically

intersecting at one point. Consider, then, the integral of dH over T × RP 3, where

T is the same path as before. Similar to the dF5 integral dealt with previously, we

now find

2π =

∫

T×RP 3

dH =

∫

P×RP 3

H −
∫

Q×RP 3

H. (5.2)

Hence, the theta angle θRR jumps upon crossing the brane.

Our objective is now to understand what this picture corresponds to on the LLM

plane (x1, x2) of [1]. An AdS5 × RP 5 background geometry implies that we should

start out with a “semicircular” black region centred at the origin. The quotation

marks indicate that the correct designation of the geometry in the LLM plane requires

taking the non-trivial identifications into account.

In general, an RP i submanifold is realized in RP j, i < j, by the inclusion

(x1, . . . , xi+1) → (x1, . . . , xi+1, 0, . . . , 0). (5.3)

To find an RP 2 inside RP 5, we must therefore choose three coordinates {X̃1, X̃2, X̃3}
among the six embedding coordinates {Xi}, defined by Eq.(4.2). The remaining Xi’s

should be set to zero.

For the S3 of AdS5 to separate two well-defined regions on the boundary plane, it

should not shrink to zero size there. The magnetic D3 branes will then be associated

with the white region. In this region, the radius of the S̃3 embedded in S5 shrinks

to zero, corresponding to sin θ = 0. Hence, X1 = X2 = X3 = X4 = 0. We must

therefore include at least one of the LLM coordinates in the generically non-vanishing

set {X̃i}, since otherwise the Xi’s cannot square to unity. Actually, X5 and X6 are

only proportional to the LLM coordinates x1 and x2, differing by a ρ-dependent

factor. Recalling Eq.(4.4), we can write

x1 =
√

r0 X5 cosh ρ

x2 =
√

r0 X6 cosh ρ. (5.4)

6The case of wrapping an NS5 brane on an RP 2 cycle is handled similarly, and will lead to a

domain wall across which θNS NS jumps.
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This confirms that the brane will always be positioned outside of the black “semidisc”

of radius r0 ≡ R2.

Suppose first that precisely one of the two LLM coordinates belong to the gener-

ically non-vanishing set. All the other embedding coordinates must then vanish.

Consequently, the non-vanishing coordinate, which is either X5 or X6, must be as-

signed the value R. Due to (5.4), this means that the brane appears as a point at

radial position r0 cosh ρ.

The other type of brane appears if we choose both of the LLM coordinates to

belong to the generically non-vanishing set. Again, all other embedding coordinates

vanish. The embedding condition then implies that X2
5 + X2

6 = R2 = r0. Taking

(5.4) into account, this leads us to conclude that in this case, the brane appears as a

“semicircle” of radius r0 cosh ρ. More precisely, the RP 2 collapses to an RP 1 in the

LLM plane.

In conclusion, we have found two different

p

x

Figure 8: Magnetically charged D3

branes in an AdS5×RP 5 background.

types of magnetic D3 branes, appearing on the

LLM plane as illustrated in Fig.8. One type ap-

pears as points, restricted to lie on one of the

axes. The positions of two such branes are indi-

cated by black dots in the figure. The other type

appears as RP 1 cycles, one of which is shown.

Every such cycle divides the LLM plane into two

parts, allowing these D-branes to separate re-

gions of unequal discrete torsion (θNS NS , θRR).

In both cases, the RP 2 is completely collapsed

onto the LLM plane. In addition, the branes

extend along the S3 directions of the AdS5.

We have illustrated the ideas involved assuming an AdS5 × RP 5 background,

but our conclusions should be equally valid also for the other 1
2
-BPS geometries.

In particular, the topology on the LLM plane, including the distribution of domain

walls, is expected to reflect the topology of the full bulk geometry.

5.3 Topology Change

In the absence of orientifolds, topology change in the family of 1
2
-BPS geometries of

LLM type takes place at a fermi fluid boundary satisfying a local equation[11] like

x1 x2 = 0. This can be thought of as a limit of the smooth boundary x1 x2 = µ.

Suppose this bounds a fermi fluid profile where for µ > 0 there is a single black

region extending to infinity in, say, the upper left and lower right quadrants. Then

for µ < 0 we have instead two separated black regions, one extending to infinity on

the upper left and the other on the lower right. Clearly the connected black region

splits into two disconnected ones as we pass through µ = 0 in the parameter space.

It has been argued in Ref.[11] that this is the “irreducible” transition responsible
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for topology change, and that more general topology changes can be decomposed

into a sequence of such transitions. The 10-dimensional geometry changes by the

appearance or disappearance of S5 factors.

p

x

p

x

Figure 9: Configuration of the topology

of AdS5 × RP 5, developing a neck.

Figure 10: Configuration of the topol-

ogy of AdS5 × S5.

In the orientifolded theory there is another basic process of topology change that

creates or destroys cycles of order two. The basic process of this type is the conversion

of RP 5 into S5 and vice versa. What happens is that an AdS5 × RP 5 configuration

consisting of a semi-disc anchored on the x1 axis can be deformed until it develops

a narrow neck connecting it to its image, as shown in Fig.9. At some stage the neck

pinches off (Fig.10), and the bubble is no longer anchored to the horizontal axis.

Therefore this process represents a transition be-

p

x

Figure 11: Basic configu-

ration for order-2 topology

change.

tween RP 5 and S5. We see that the origin was con-

tained inside the bubble in the initial configuration,

but is no longer contained at the end of the process.

As we saw earlier, the former type of configuration has

an RP 3 in the geometry while the latter does not. Thus

this type of topology change causes us to lose or gain

cycles of order two. At the transition, the (singular)

configuration looks like a filled quadrant along with its

mirror image, as shown in Fig.11. We expect that there

will be topology-changing processes of “order n” built

out of this basic process, as in Ref.[11].

6. M-theory Orientifolds

M-theory contains orientifold 5-planes[20, 21], so one can try to apply the con-

struction above to this case. These orientifolds have been investigated further in

Refs.[22, 23]. In particular one can take N M5-branes parallel to an orientifold 5-

plane, and the near-horizon geometry is AdS7×RP 4[24]. Unlike the D3-O3 system in

type IIB string theory, here the sphere factor becomes non-orientable after quotient-
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ing. This is because the space transverse to the original branes (and the orientifold

plane) was R5, whose orientation is reversed upon reflection.

What is the effect of orientifolding on the x1−x2 plane of the LLM geometry? We

cannot be as explicit as in the type IIB case. There we had a precise map between this

plane and the phase space of free fermions. The orientifold plane was realised on the

phase space as a wall, blocking off the region of x < 0 (or more precisely identifying

the lower half plane with a rotated copy of the upper half plane). Therefore this was

also the case in the x1 −x2 plane and one could easily characterise functions z which

gave rise to the general orientifolded 1
2
-BPS geometry – as we did in the previous

sections.

In the M-theory case, the free fermions are related to 1
2
-BPS excitations of the

(2, 0) theory on M5-branes and arise from the transverse coordinates of the brane

which are realised as scalar fields of the (2, 0) theory7. Since all the transverse

directions are being orientifolded, we again expect the fermions to move in a semi-

infinite harmonic oscillator. Though we have seen in section 2 that the map from the

fermion phase space to the x1 − x2 plane is not a simple identification, it was noted

there that the topology of the two should be the same. Therefore we expect that the

orientifold plane in the M-theory case is realised as the x1 axis in the x1−x2 plane of

the geometry8 just as for type IIB strings. In that case most of the considerations in

this paper will go through and we can generate a precise collection of 1
2
-BPS bubbling

orientifolds in M-theory. We leave a more detailed analysis of this system for future

work.

7. Conclusions

We have found an infinite class of new 1
2
-BPS geometries in type IIB string theory

and, somewhat less explicitly, in M-theory. These have the same local geometry

as the so-called “bubbling geometries” of Ref.[1], but have global identifications.

The geometries themselves have no orientifold plane and therefore the underlying

string theory has no open-string sector, but the identifications can nevertheless be

thought of as due to orientifold planes. The geometries have cycles of order 2, some

of which support discrete torsion, in addition to the usual homology cycles. These

backgrounds have the same amount of supersymmetry and, upto discrete factors, the

same SO(4) × SO(4) symmetry as the original bubbling geometries. We saw that

they are associated to free fermions in a half-oscillator potential, which in turn arise

as the eigenvalues of matrices in the Lie algebra of SO(2N), Sp(2N) and SO(2N+1).

7For a discussion of geometries in a pp-wave background, see Ref.[25].
8More precisely, there should be a choice of conformal transformation which maps the orientifold

to the x1 axis. Thereafter we will only be allowed to make conformal transformations that preserve

the real axis, namely those which lie in SL(2, R) ⊂ SL(2, C).
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It would be interesting to extend these results to the 1
4
-BPS geometries asso-

ciated to D3 − D7 − O3 − O7 systems. The introduction of D7-branes leads to a

varying axion-dilaton background and the associated bubbling geometries are fairly

simple and have already been found in Ref.[26]. The introduction of orientifold 7-

planes makes the system more interesting as it can then be related to “F-theory”

compactifications[27, 28, 29]. It has been argued[30] that orientifold 7-planes are

dynamical and behave in some regions of moduli space like non-perturbative D-

branes (which at strong coupling exhibit remarkable effects including, for example,

exceptional global symmetries[31, 32]). In this context, aspects of the AdS/CFT

correspondence have been discussed in Refs.[33, 34] and it should be possible to find

more general solutions of this kind using the bubbling prescription.

Finally, as we mentioned at the beginning, orientifolded bubbling geometries

could be realised as local geometries of supersymmetric flux compactifications. When-

ever the fermi fluid is localised in a bounded domain, the geometry is asymptotically

AdS5×RP 5 (or AdS5×S5), and therefore can be matched on to flat spacetime. But

there might be a prescription as powerful as bubbling (with its connection to free

fermions) that describes genuine compact geometries with orientifolds. This might

make it much easier to classify supersymmetric flux vacua.
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A. Free fermions from matrix quantum mechanics

In this appendix, we show that free fermions emerge from all the traditional gauge

groups. While some of this material is known or implicit in the matrix model litera-

ture, it is useful to compile all the needed results here.

The key observation is that

H =
m
∑

i=1

1√
g

∂

∂λi

√
g

∂

∂λi
=

m
∑

i=1

1

∆2

∂

∂λi
∆2 ∂

∂λi

=
1

∆

m
∑

i=1

∂2

∂λ2
i

∆, (A.1)

where the measure factor
√

g = ∆2 is given by

(∆−)2 SU(m)

(∆−)2(∆+)2(∆0)
2 Sp(N), N = 2m

(∆−)2(∆+)2 SO(N), N = 2m

– 18 –



(∆−)2(∆+)2(∆0)
2 SO(N), N = 2m + 1, (A.2)

where we have defined

∆− ≡∏m
i<j (λi − λj)

∆+ ≡∏m
i<j (λi + λj)

∆0 ≡ ∏m
i λi, (A.3)

expressed in terms of the eigenvalues {λi}i=1,2,···,m. The last equality in (A.1) follows

from the identity

m
∑

i=1

∂2

∂λ2
i

∆ = 0. (A.4)

The relation (A.1) means that a factor of ∆ can be absorbed by the wave function,

giving rise to a system of free fermions.

It remains to establish (A.2). Let us begin by considering the unitary group,

consisting of matrices U satisfying UU † = I. The Lie algebra su(2) consists of anti-

hermitian matrices A† = −A. An infinitesimal variation δU = U−1dU of a unitary

matrix U is an element of the Lie algebra, δU † = −δU .

The hermitian matrix A can be diagonalized using unitary matrices,

U−1AU = Λ = diag(λ1, λ2, · · · , λm) (A.5)

The significance is that we are trading degrees of freedom in the anti-hermitian matrix

for those of the eigenvalues themselves and of the diagonalizing unitary transforma-

tion. Differentiating equation (A.5) and solving for dA gives

Tr (dAdA†) = Tr
(

2δUΛ [δU, Λ] + (dΛ)2) , (A.6)

which is manifestly invariant under unitary similarity transformations. Hence it

defines a metric on the space of antihermitian matrices.

Denoting matrix elements of a matrix M by Mij, this becomes

Tr (dAdA†) = 2
m
∑

i<j

δuijδu
∗
ij(λi − λj)

2 +
m
∑

i=1

dλ2
i , (A.7)

We can read off the measure

√
g = (∆−)2, (A.8)

(up to some numerical constant) in accordance with (A.2).

Next, we turn our attention to the symplectic gauge group Sp(2m), consisting

of matrices S satisfying ST JS = J , where

J =

(

0 I

−I 0

)

, (A.9)
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where I is the m × m identity matrix. The Lie algebra sp(2m) then consists of

matrices A such that AT = JAJ . Infinitesimal variations δS = S−1dS belong to the

Lie algebra sp(2m).

Again, a Lie algebra element can be diagonalized using symplectic matrices,

S−1AS = Λ. Differentiating S−1AS = Λ and solving for dA gives

Tr (dAJdAT J) = Tr
(

2δSΛ [δS, Λ] + (dΛ)2
)

. (A.10)

Defining (ePQ)LM = δPLδQM , a basis for sp(2m) is

e1
j,k ≡ ej,k − ek+m,j+m

e2
j,k ≡ ej,k+m + ek,j+m

e3
j,k ≡ ej,k − ek+m,j+m. (A.11)

Note that since 0 = det(A − λI) = − det(A + λI), eigenvalues come in pairs,

{(λi,−λi)}i=1,2,···,m. Consequently, we can write Λ on the form

Λ =

k
∑

i=1

Λie
1
ii = diag(λ1, λ2, · · · , λm,−λ1,−λ2, · · · ,−λm). (A.12)

Similarly, we write δS as

δS =
m
∑

i=1

δSd
i e

1
ii

+
m
∑

j<k

[

δSi
jk(e

1
jk + e1

kj) + δSii
jk(e

1
jk − e1

kj)
]

+

m
∑

j≤k

[

δSa
jk(ejk2+e3

jk
) + δSb

jk(e
2
jk − e3

jk)
]

. (A.13)

The reason for this particular expansion is that it will make the metric diagonal.

Indeed, differentiating S−1AS = Λ and solving for dA gives

Tr (dATJdAJ) = 2
m
∑

i=1

dλ2
i

+8
∑

j<k

(λj − λk)
2
[

(δSii
jk)

2 − (δSi
jk)

2
]

+8
∑

j≤k

+(λj + λk)
2
[

(δSb
jk)

2 − (δSa
jk)

2
]

. (A.14)

Hence, the measure is

√
g = (∆−)2(∆+)2(∆0)

2, (A.15)

as anticipated in (A.2).
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The orthogonal gauge group remains to be analysed. Orthogonal matrices O

satisfy OOT = I, and corresponding Lie algebra elements are antisymmetric, AAT =

−A. The infinitesimal variation δO = O−1dO of an orthogonal matrix O is antisym-

metric, δOT = −δO.

As in the symplectic case, the eigenvalues come in pairs, differing only by a

sign. This means that SO(2m) and SO(2m + 1) both have m independent eigenval-

ues. Consider first the case SO(2m). Using orthogonal similarity transformations,

antisymmetric matrices can only be brought to the block-diagonal form

Λ =























λ1

(

0 1

−1 0

)

0 · · · 0

0 λ2

(

0 1

−1 0

)

· · · 0

· · · · · · · · ·

0 0 · · · λN

(

0 1

−1 0

)























= iσ2 ⊗ diag(λ1, λ2, . . . , λN). (A.16)

Suppose that O is the orthogonal matrix which block-diagonalizes the antisym-

metric matrix A, i.e.

O−1AO = Λ. (A.17)

Differentiating equation (A.17) and solving for dA gives

Tr (dAdAT ) = −Tr
(

2δOΛ [δO, Λ] + (dΛ)2
)

. (A.18)

Defining

σ0 ≡ I2×2 =

(

+1 0

0 +1

)

σ2 ≡ iσ2 =

(

0 +1

−1 0

)

σ1 ≡ σ1 =

(

0 +1

+1 0

)

σ3 ≡ σ3 =

(

+1 0

0 −1

)

(A.19)

as a basis of real 2 × 2 matrices in terms of the identity matrix I2×2 and the Pauli

matrices {σi}, we can write the variation δO as

δO =























δO11

(

0 1

−1 0

)

δOA
12σ

A · · · δOA
1NσA · · ·

−δOA
12σ

A δO22

(

0 1

−1 0

)

· · · δOA
2NσA

· · · · · · · · ·

−δOA
1NσA −δOA

2NσA · · · δONN

(

0 1

−1 0

)























= σA ⊗ δOA + iσ2 ⊗ diag(δO11, δO22, . . . , δONN). (A.20)
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The antisymmetric matrix δOA is defined such that the entry at row i and column

j is the coefficient δOA
ij. We are using the convention that repeated indices A are

summed over.

Using the forms (A.16) and (A.20), the metric (A.18) becomes

Tr (dAdAT ) = − 4
∑

i<j

∑

A=1,3

(

δOA
ij

)2
(λi + λj)

2

+ 4
∑

i<j

∑

A=0,2

(−1)A/2+1
(

δOA
ij

)2
(λi − λj)

2 +
m
∑

i=1

dλ2
i (A.21)

Consequently, the measure is

√
g = (∆−)2(∆+)2, (A.22)

as written in (A.2).

Consider now the gauge group SO(2m + 1). The analysis goes through in much

the same way as for the SO(2m) case, replacing

δO → δO +
m
∑

i=1

∑

B=0,1

δOB
i τB ⊗ ei,2k+1, (A.23)

where τ 0 ≡
(

1

0

)

, τ 1 ≡
(

0

1

)

. Similarly, Λ is just extended with another row and

column of zeros, since there are still only m eigenvalues. With these modifications,

the metric (A.21) gets an additional contribution,

Tr (dAdAT ) → Tr (dAdAT ) +
∑

i,B

λ2
i (δO

B
i )2. (A.24)

The measure (A.22) changes accordingly,

√
g → √

g
m
∏

i=1

λ2
i = (∆−)2(∆+)2(∆0)

2, (A.25)

consistent with (A.2).

Note that the symplectic and orthogonal gauge groups share the following two

features. The independent set of eigenvalues can always be chosen to be non-negative.

In addition, absorbing a factor of ∆ into the wave function makes the eigenvalues

λi repel not only each other, but also their images −λi. This is consistent with the

orientifold interpretation, as explained in section 4.

References

[1] H. Lin, O. Lunin and J. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,”

JHEP 0410 (2004) 025 [arXiv:hep-th/0409174].

– 22 –



[2] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant gravitons from

dual N = 4 SYM theory,” Adv. Theor. Math. Phys. 5 (2002) 809

[arXiv:hep-th/0111222].

[3] D. Berenstein, “A toy model for the AdS/CFT correspondence,” JHEP 0407 (2004)

018 [arXiv:hep-th/0403110].

[4] M. M. Caldarelli and P. J. Silva, “Giant gravitons in AdS/CFT. I: Matrix model and

back reaction,” JHEP 0408 (2004) 029 [arXiv:hep-th/0406096].

[5] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999)

1113] [arXiv:hep-th/9711200].

[6] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2

(1998) 253 [arXiv:hep-th/9802150].

[7] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from

non-critical string theory,” Phys. Lett. B 428 (1998) 105 [arXiv:hep-th/9802109].

[8] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,”

JHEP 03 (2003) 013 [arXiv:hep-th/0212208].

[9] A. A. Tseytlin, “Spinning strings and AdS/CFT duality,” [arXiv:hep-th/0311139].

[10] N. Beisert, “The dilatation operator of N = 4 super Yang-Mills theory and

integrability,” Phys. Rept. 405 (2005) 1-202 [arXiv:hep-th/0407277].

[11] P. Horava and P. G. Shepard, “Topology changing transitions in bubbling

geometries,” JHEP 0502 (2005) 063 [arXiv:hep-th/0502127].

[12] G. Mandal, “Fermions from half-BPS supergravity,” [arXiv:hep-th/0502104].

[13] L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V. S. Rychkov,

“Minisuperspace quantization of ‘bubbling AdS’ and free fermion droplets,”

[arXiv:hep-th/0505079].

[14] A. Dhar, “Bosonization of non-relativstic fermions in 2-dimensions and collective

field theory,” [arXiv:hep-th/0505084].

[15] J. Polchinski, “String theory. Vols. 1,2,”

[16] C. V. Johnson, “D-branes,”

[17] E. Witten, “Baryons and branes in anti-deSitter space,” JHEP 9807 (1998) 006

[arXiv:hep-th/9805112].

[18] H. Verlinde, “Holography and compactification,” Nucl. Phys. B 580 (2000) 264

[arXiv:hep-th/9906182].

– 23 –



[19] A. Bilal, “2-D Gravity from matrix models: An introductory review, and

particularities of antisymmetric matrix models”, in the Proceedings of the 14th Johns

Hopkins Workshop on Current Problems in Particle Theory, Debrecen, Hungary,

1990, eds. G. Domokos, Z. Horvath, S. Kovesi-Domokos, World Scientific 1991.

[20] K. Dasgupta and S. Mukhi, “Orbifolds of M-theory,” Nucl. Phys. B 465 (1996) 399

[arXiv:hep-th/9512196].

[21] E. Witten, “Five-branes and M-theory on an orbifold,” Nucl. Phys. B 463, 383

(1996) [arXiv:hep-th/9512219].

[22] K. Hori, “Consistency condition for fivebrane in M-theory on R5/Z2 orbifold,” Nucl.

Phys. B 539 (1999) 35 [arXiv:hep-th/9805141].

[23] E. G. Gimon, “On the M-theory interpretation of orientifold planes,”

[arXiv:hep-th/9806226].

[24] C. h. Ahn, H. Kim and H. S. Yang, “SO(2N) (0, 2) SCFT and M theory on

AdS7 × RP 4,” Phys. Rev. D 59 (1999) 106002 [arXiv:hep-th/9808182].

[25] D. Bak, S. Siwach and H. U. Yee, “1/2 BPS geometries of M2 giant gravitons,”

[arXiv:hep-th/0504098].

[26] J. T. Liu, D. Vaman and W. Y. Wen, “Bubbling 1/4 BPS solutions in type IIB and

supergravity reductions on Sn × Sn,” [arXiv:hep-th/0412043].

[27] C. Vafa, “Evidence for F-Theory,” Nucl. Phys. B 469 (1996) 403

[arXiv:hep-th/9602022].

[28] D. R. Morrison and C. Vafa, “Compactifications of F-Theory on Calabi–Yau

Threefolds - I,” Nucl. Phys. B 473 (1996) 74 [arXiv:hep-th/9602114].

[29] D. R. Morrison and C. Vafa, “Compactifications of F-Theory on Calabi–Yau

Threefolds - II,” Nucl. Phys. B 476 (1996) 437 [arXiv:hep-th/9603161].

[30] A. Sen, “F-theory and Orientifolds,” Nucl. Phys. B 475 (1996) 562

[arXiv:hep-th/9605150].

[31] K. Dasgupta and S. Mukhi, “F-theory at constant coupling,” Phys. Lett. B 385, 125

(1996) [arXiv:hep-th/9606044].

[32] M. R. Gaberdiel and B. Zwiebach, “Exceptional groups from open strings,” Nucl.

Phys. B 518, 151 (1998) [arXiv:hep-th/9709013].

[33] A. Fayyazuddin and M. Spalinski, “Large N superconformal gauge theories and

supergravity orientifolds,” Nucl. Phys. B 535, 219 (1998) [arXiv:hep-th/9805096].

[34] O. Aharony, A. Fayyazuddin and J. M. Maldacena, “The large N limit of N = 2, 1

field theories from three-branes in F-theory,” JHEP 9807, 013 (1998)

[arXiv:hep-th/9806159].

– 24 –


