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1. Introduction

The c = 1 string (an excellent review is Ref.[1]) is a perturbatively consistent string

theory in two spacetime dimensions. One of its attractive features is that it is

solvable: from the powerful techniques of Matrix Quantum Mechanics (MQM), cor-

relation functions of the momentum modes (“tachyons”) can be determined to all

orders in the string coupling (inverse cosmological constant). This holds true even

in the Euclidean theory at finite radius R. Another feature is that its generalisation

to the type 0 noncritical string, has similar properties in perturbation theory but is

believed to also be non-perturbatively well-defined.

This makes the c = 1 string and its cousins a good laboratory to study var-

ious open questions in string theory. Two such questions that we would like to

understand better in the noncritical context are the properties of string-scale black

holes, and the nature of various dualities, including open-closed string duality[2][3][4].

Much work has been done on the former (some interesting recent studies can be

found in Refs.[5][6][7]), while the latter question has also yielded some important

illuminations[8][9][10][11][12][13][14].

It is known[15][16] that basic properties of black holes in noncritical string the-

ory are controlled by condensates of winding tachyons in the Euclidean-continued

background. These are thermal tachyons: strings winding around the compact time

direction. It would therefore be useful to know the correlators of winding modes

in Euclidean noncritical string theory to all orders in the string coupling (and even

nonperturbatively in the stable type-0 case) as a function of µ and R, where µ−1 is

the inverse string coupling and R is the radius of the Euclidean direction (inverse

temperature). From the matrix model point of view, winding modes are related to

the nonsinglet sector of the model, in which the eigenvalue fermions are no longer free

but mutually coupled[17][18]. Computing correlators in this way is a harder task[19]

and has raised some new puzzles involving leg factors which we will discuss in a later

section. But one way to find the desired correlators is to assume that T-duality holds

and perform it on the momentum correlators. This provides one of our motivations

to study momentum correlators in the Euclidean theory in more explicit detail than

has already been done.

As mentioned above, momentum correlators in the Euclidean c = 1 string are

known in principle. They are summarised in the Toda hierarchy or W∞ symmetries[20],
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or Hirota bilinear equations, or Normal Matrix Model (NMM)[21], all of which are

supposed to be mutually equivalent. For the special case of self-dual radius R = 1

of the Euclidean time direction, they are encoded in a Kontsevich-Penner matrix

model[22][23] (see also [24][25]). We will summarise some relevant information about

these solutions below. But while all these formal solutions allow us to extract the

perturbation series for any specific correlator after a sufficient amount of work, we

do not have many explicit answers in terms of special functions depending on the

radius R and inverse string coupling µ.

At finite radius, correlators have been computed mostly at tree-level (corre-

sponding to the dispersionless limit of the Toda hierarchy) or to a few low orders

in perturbation theory. For example, while the 2n-point function of n unit winding

modes and n anti-winding modes is known as a function of n and R at tree level

[26][16], an explicit expression for the same correlator to all orders in perturbation

theory does not seem to exist in the literature1. To be more specific, denote by Tq

the tachyons of momentum q = n/R, and by Tq the tachyons of n units of winding,

where q = nR is the value of pL = −pR in vertex operator language. An explicit form

is known for 〈(T−1/R)n(T1/R)n〉 at tree level. The T-dual of this expression was used

in Ref.[16] to extract the critical behaviour of the Sine-Liouville theory defined by

perturbing the original c = 1 string with T−R +TR and then tuning the cosmological

constant µ to zero. In particular, Ref.[16] showed that a sensible theory exists after

this tuning, but only when the radius of the Euclidean direction lies in the range

1 < R < 2.

One would like to know the structure of this correlator to all string loop orders.

Accordingly, in what follows we will study 〈(T−1/R)n(T1/R)n〉 in detail, and one of

our main results will be a simple formula for this correlator as a function of µ and R

for every n. We expect this to lead to a better understanding of the exponentiated

correlator 〈exp(T−1/R + T1/R)〉, which in turn is T-dual to the vortex condensate

〈exp(T−R + TR)〉 that relates directly to Euclidean 2d black holes.

Another motivation for our work is to understand T-duality of the c = 1 matrix

quantum mechanics. This is established at the level of spectrum of states, since

the partition function without perturbations is known to be T-dual[29]. Also, a

1A differential equation for these correlators was written down in[16] together with an iterative

solution to a few orders. Related work on Euclidean correlators can be found in Refs.[27],[28].
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formal argument has been given[16] that the winding correlators, like the momentum

correlators, are given by a Toda hierarchy2. However, to our knowledge, beyond this

result and a computation in [19], there has been no direct comparison of correlators in

the momentum and winding sectors3. A convincing test of T-duality would consist

of computing pure-momentum correlators in terms of free fermion eigenvalues, T-

dualising the answers and comparing them with pure-winding correlators computed

from the nonsinglet Hamiltonian. Ideally this should even be done beyond tree

level. Although we will not be able to carry out such a test here, we have tried to

systematise one side of the duality in a way that can be eventually compared with

the other side when nonsinglet computations become more practicable.

In particular, the most direct way to check T-duality comes from comparing

two-point functions. Accordingly we work out all two-point functions of momentum

modes. In Ref.[19], the two-point function of unit-momentum modes was computed

and an attempt made to match the leading result with a computation in the first

nonsinglet sector of the matrix model, namely the adjoint sector. The compari-

son revealed the presence of unexplained normalisation factors. It was pointed out

in Ref.[19] that if one could compute two-point functions of more general winding

modes, namely 〈T−nRTnR〉, one might be able to shed some light on these normalisa-

tion factors. With this motivation we have performed this computation and obtained

a simple explicit result, again as a function of µ and R and for all n. In a later section

we discuss the relation to the non-singlet sectors.

Our initial computations have been performed using both the MQM and a model

of constant matrices called the Normal Matrix Model (NMM)[21], with perfect agree-

ment between the answers. In the former case we used the known infinite-radius

correlators in the physical MQM (real and noncompact time)[31], and a formula

which converts these to the correlators for Euclidean compact time[32]. In the lat-

ter case, we will describe how one performs computations after reducing the NMM

to eigenvalues. One surprise emerging from comparison of the two approaches is

that the NMM successfully computes correlators even when the matrices are of finite

2For a discussion of T-duality in type 0A,B matrix models, see Ref.[30].
3In addition to pure momentum or pure winding correlators, one would also like to know the

correlators for a mixture of momentum and winding modes. In this case one has no choice but to

tackle the difficult nonsinglet sector problem. The system is not expected to be integrable and the

correlation functions are not known so far.
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rank N , a stronger property than was claimed in Ref.[21], who did however suggest

that the model contains some information even at finite N . We find that it actually

contains complete information at finite N in the following sense: given a correla-

tor, there is a minimum value Nmin such that this correlator when computed in the

NMM gives the correct result, to all orders in 1/µ2, for all N > Nmin. This makes

the NMM a potentially powerful combinatoric tool. We then go on to demonstrate

its power by deriving a combinatoric formula for the general correlation function

〈(T−1/R)n(T1/R)n〉 for any n.

We start in Section 2 by describing the two relevant matrix models, Matrix

Quantum Mechanics and Normal Matrix Model. The former is too well-known to

need a detailed discussion and we skip directly to the calculational techniques and

answers. For the latter, we review the model in some detail, with special attention to

the role of the matrix rank N . In Section 3 we work out some relevant correlators as a

function of µ and R from MQM. In Section 4 we reproduce these correlators from the

NMM, where we note the phenomenon that for a fixed correlator, the NMM at any N

greater than a minimum value gives the complete answer. After a discussion of why

this works, we use this property to derive a combinatoric formula for correlators of

any number of unit momentum modes. In Section 5 we discuss applications of these

results to some physically interesting problems, and conclude in Section 6. Several

calculational details are presented in the appendices.

2. Matrix Quantum Mechanics and Normal Matrix Model

2.1 Matrix Quantum Mechanics

Matrix Quantum Mechanics is a model of a single N ×N hermitian time-dependent

matrix M(t). In the absence of perturbations, the partition function of the model is

given by:

Z(N)
MQM =

∫

[dM ] exp

[

−N

∫

dt tr
(

(DtM)2 + M2
)

]

(2.1)

where DtM ≡ Ṁ + i[At, M ] is the covariant derivative with respect to the time

component of a gauge field.

The gauge field acts as a Lagrange multiplier and projects the model to the singlet

sector, which is a system of N non-interacting non-relativistic fermions moving in

an inverted harmonic oscillator potential. In the double-scaling limit, the fermi sea
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is filled nearly to the top and the number of fermions is taken to infinity. The

scaled distance to the top of the potential, µ, is kept finite and corresponds to the

cosmological constant. This model provides a description of 2D string theory, with

µ−1 playing the role of the string coupling gs.

The physical modes of 2D string theory can be constructed in terms of fermion

eigenvalues. In [31] this model was used to calculate correlation functions of c = 1

string theory at infinite radius. One starts by computing correlators of free-fermion

bilinears, which in turn can be used to extract correlators of the loop operators:

O(k, ℓ) =

∫

dt eikt tr e−ℓM(t) (2.2)

Extracting the leading behaviour of these loops for small ℓ, one has

O(k, ℓ) ∼ ℓ|k| Tk (2.3)

The Tk are identified with the c = 1 string theory tachyons. When compared with

the corresponding operators in Liouville theory, there is a change of normalisation:

Tk|MQM = Γ(|k|) Tk|Liouville (2.4)

However this fact will not be relevant for us, since in what follows we will always

work with the operators Tk in the MQM basis, i.e. the LHS of the above equation.

When the time direction is Euclidean and compact, we are in the finite tem-

perature theory. Starting from the infinite-radius correlator, one can show[32] that

correlators in the Euclidean theory at finite radius are obtained as:

〈Tq1
Tq2

· · ·Tqn
〉R =

1
2R

∂µ

sin
(

1
2R

∂µ

)〈Tq1
Tq2

· · ·Tqn
〉∞ (2.5)

In addition one must replace the momentum-conserving δ-function as:

δ
(

∑

i

qi

)

→ R δ∑
i qi,0 (2.6)

The above prescriptions follow from the fact that the compact radial direction

introduces an additional factor in the loop momentum integrals of the infinite-radius

calculation, and this factor can now be taken out of the integrals whence it becomes

a differential operator acting on the infinite-radius answer4.
4It is also possible to calculate correlators directly at finite radius using the “reflection coefficient”

formalism of Ref.[20]. Though we will not use this here, it would be interesting to know if our explicit

results follow as easily in that approach.
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In the finite-temperature theory, the above modes can be thought of as carrying

“momentum” in the time direction. In this situation one also expects to find winding

modes corresponding to the thermal scalars of finite-temperature string theory. Many

physical properties of string theory are encoded in these degrees of freedom, which

are therefore quite important to study. To find them in the matrix model we must

go beyond the singlet sector, in which the gauge field is topologically trivial and can

be gauged away. Consider the gauge-invariant Wilson-Polyakov loop variable:

WR = trR P exp(i

∮

Atdt) (2.7)

where the trace is performed in the representation R of SU(N). When R is the

fundamental representation, this is to be associated with a unit winding mode:

WR=N ∼ TR (2.8)

Similarly the trace in the anti-fundamental will be T−R. One can also have loops

where the trace continues to be in the fundamental but the contour winds multiple

times over the Euclidean time direction. Computation of the correlation functions

of all these Wilson-Polyakov loops is done by observing that in their presence, the

matrix model receives contributions from definite non-singlet sectors. In these sectors

it reduces to eigenvalue fermions but now with mutual interactions. For example,

the two-point function of unit winding modes can be identified as follows:

〈T−RTR〉
∣

∣

∣

Liouville theory

∼ 〈WN̄WN 〉
∣

∣

∣

MQM

∼ 〈Wadjoint〉
∣

∣

∣

MQM

(2.9)

Thus computing the partition function of MQM in the adjoint sector determines

the two-point function of winding modes. Since in principle this is an independent

computation from that of the momentum tachyon correlators, it can actually be used

to check T-duality of the c = 1 string. We will return to this issue in a subsequent

section.

2.2 Normal Matrix Model

The Normal Matrix Model (NMM)[21] is a relatively simple model of a complex

matrix Z and its Hermitian adjoint, with the constraint that the two commute (hence

Z is said to be “normal”). The potential is polynomial with an additional logarithmic
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piece. The matrix Z is constant rather than time-dependent, so in this sense it is

more similar to the c < 1 string backgrounds which do not have a time direction5.

The NMM is proposed to describe the correlators of the c = 1 string to all orders

in perturbation theory, as follows. Let us introduce its partition function:

Z(N)
NMM(ν, t, t) =

∫

[dZdZ†] e
tr

(

−ν(ZZ†)R+(Rν−N+ R−1
2 ) log ZZ†−ν

∑∞
k=1(tkZk+tkZ†k

)
)

(2.10)

Here R, ν are some (in general, complex) parameters, which will correspond to the

compactification radius of Euclidean time and the cosmological constant respectively.

The parameters tk, tk are couplings to the gauge-invariant operators trZk, trZ†k
and

Z, Z† are N × N matrices satisfying:

[Z, Z†] = 0 (2.11)

The operators trZk, trZ†k
are identified with the tachyons Tk/R, T−k/R of momentum

± k
R

respectively.

Since the matrix Z commutes with its adjoint, the two can be simultaneously

diagonalised. The diagonalising matrices drop out of the action leaving behind Van-

dermonde factors. It turns out that one gets a single power of the Vandermonde for

the eigenvalues z1, z2, . . . , zN of Z, together with its complex conjugate corresponding

to Z†. Thus, for example, the partition function at tk = tk = 0 is:

ZNMM =

∫ N
∏

i=1

d2zi

∏

i<j

|zi − zj |2 e−ν
∑N

i=1(ziz̄i)
R+(Rν−N+ R−1

2 )
∑N

i=1 log ziz̄i (2.12)

with an obvious generalisation to include the tachyon perturbations.

At tk = t̄k = 0, it can be shown (though not directly from the action) that the

NMM is invariant under the T-duality operation:

R → 1

R
, µ → µ R (2.13)

This invariance is broken by the presence of momentum modes. Indeed, after T-

duality, the tachyons T±k/R of the c = 1 string turn into winding modes of ±k units

of winding, or equivalently (in vertex-operator language) of left/right momentum

(pL, pR) = ±(kR,−kR). In what follows, these modes will be denoted TkR, T−kR.
5Perhaps this is the underlying reason why the NMM describes Euclidean c = 1 strings at an

arbitrary radius R, but does not have a simple R → ∞ limit where one might recover the Lorentzian

theory.
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In [21] two distinct equivalences between the NMM and the c = 1 string were

proposed. The first, referred to as “Model I”, requires us to take the large-N limit

of the NMM. The result in this case was that:

Zc=1(µ, t, t) = lim
N→∞

Z(N)
NMM(ν, t, t), (2.14)

after the analytic continuation ν = −iµ.

However, another equivalence, “Model II”, was proposed which did not involve

a large-N limit. It was argued that the c = 1 string theory can be obtained from the

NMM at finite N , provided ν is set to the special value N
R

(note that this corresponds

to an imaginary cosmological constant):

Zc=1

(

µ = iN
R

, t, t
)

= Z(N)
NMM

(

ν = N
R

, t, t
)

, (2.15)

In other words, the claim6 is that an NMM calculation for a fixed integer value of N

determines Zc=1 for a particular (imaginary) value of µ, namely

µ = i
N

R
(2.16)

If we T-dualise the above considerations so that t, t become couplings to winding

tachyons, this relation becomes

µ = iN (2.17)

The above results seem to indicate that for finite N we can only generate the answer

at a fixed µ, in which case we would never obtain the perturbative expansion in

powers of 1/µ2. However, below we will compute winding correlators using the

NMM, and will see that it turns out much more powerful than expected. It actually

does reproduce the entire perturbative correlators, as functions of µ and R, even at

finite values of N . Evidence for this fact, as well as an explanation of it, will be

provided in subsequent sections.

6The authors of Ref.[21] stated this a little differently: that one obtains c = 1 string amplitudes

as a function of µ by computing NMM correlators as a function of N and µ, and then continuing

N to the imaginary value −iµR. This procedure is less well-defined, as it requires us to make a

discrete parameter continuous.
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3. Correlators from Matrix Quantum Mechanics

3.1 Two-point functions

We start by presenting formulae for the two-point function 〈T−n/RTn/R〉 to all orders

in 1
µ2 , from the Matrix Quantum Mechanics (MQM) approach. We will derive these

formulae, valid at arbitary radius, starting from the infinite-radius formulae presented

in [31]. We start by quoting the closed-form expression for the infinite-radius two-

point function 〈T−qTq〉, or more precisely the first derivative of the two-point function

with respect to the cosmological constant, which is actually more convenient for our

purposes:

∂µ〈T−qTq〉∞ = (Γ(−q))2 Im eiπq/2

(

Γ
(

1
2
− iµ + q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ − q

)

)

, (3.1)

where q > 0. For clarity of presentation we will drop the leg-pole factors (Γ(−q))2

in what follows, keeping in mind that they can be restored whenever needed.

Now we obtain the corresponding amplitudes at a finite radius R, using Eqs.(2.5)

and (2.6):

〈T−qTq〉R = R
1

2R

sin
(

1
2R

∂µ

) Im eiπq/2

(

Γ
(

1
2
− iµ + q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ − q

)

)

where the first factor of R comes from the replacement of the δ-function by a Kro-

necker δ as in Eq. (2.6). The differential operator in front is real and acts only on

functions of µ, so it can be moved inside and we thus need to evaluate

1

2 sin
(

1
2R

∂µ

)

(

Γ
(

1
2
− iµ + q

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ − q

)

)

This can be done very easily by expanding the operator as follows

1

2 sin
(

1
2R

∂µ

) = −i
∞
∑

j=0

ei(j+ 1
2)

1
R

∂µ

Using this we get the required expression as

−i
∞
∑

j=0

(

Γ
(

1
2
− iµ + q + j

R
+ 1

2R

)

Γ
(

1
2
− iµ + j

R
+ 1

2R

) − Γ
(

1
2
− iµ + j

R
+ 1

2R

)

Γ
(

1
2
− iµ − q + j

R
+ 1

2R

)

)

(3.2)
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Next, we choose q = n/R. We see that the jth term from the first sum cancels the

(j + n)th term from the second sum. So only the j = 0, 1, . . . , n − 1 terms from the

second sum remain. Defining r = n − j, the above expression becomes7:

〈T−n/RTn/R〉 = Re eiπn/2R

n
∑

r=1

Γ
(

1
2
− iµ + (r − 1

2
) 1

R

)

Γ
(

1
2
− iµ + (r − n − 1

2
) 1

R

) (3.3)

In order to obtain the expansion of this expression in powers of 1/µ2, we can

rewrite it in terms of the special functions:

F±(a, b; µ) ≡ Γ(1
2
− iµ + a)

Γ(1
2
− iµ + b)

± Γ(1
2
− iµ − b)

Γ(1
2
− iµ − a)

(3.4)

defined in Eq.(B.2) of Ref.[31]. We have:

〈T−n/RTn/R〉 = Re eiπn/2R

n/2
∑

r=1

F+
(

(r − 1
2
) 1

R
, (r − n − 1

2
) 1

R
; µ
)

, n even (3.5)

= Re eiπn/2R

(

1
2
F+
(

n
2R

,− n
2R

; µ
)

+

(n−1)/2
∑

r=1

F+
(

(r − 1
2
) 1

R
, (r − n − 1

2
) 1

R
; µ
)

)

, n odd

Next we use the asymptotics for large µ:

F+(a, b; µ) = e−iπ(a−b)/2 µa−b f(a, b; µ) (3.6)

where f(a, b; µ) is a power series in 1
µ2 with real coefficients and starting with a

constant term:

f(a, b; µ) = 2 − 1
12

(a − b)(a − b − 1)
(

3(a + b)2 − (a − b) − 1
) 1

µ2
+ O

(

1

µ4

)

(3.7)

It follows that, for even n:

〈T−n/RTn/R〉 = Re µn/R

n/2
∑

r=1

f
(

(r − 1
2
) 1

R
, (r − n − 1

2
) 1

R
; µ
)

= µn/R

n/2
∑

r=1

f
(

(r − 1
2
) 1

R
, (r − n − 1

2
) 1

R
; µ
)

=

∣

∣

∣

∣

∣

n
∑

r=1

Γ(1
2
− iµ + (r − 1

2
) 1

R
)

Γ(1
2
− iµ + (r − n − 1

2
) 1

R
)

∣

∣

∣

∣

∣

(3.8)

7Here and in what follows, we drop the R subscript in the correlators wherever it is obvious that

they are at finite R.
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The first step above follows because the function f is real. The final equality is

true for all n, and not just even values. This then is the complete answer for the

perturbative expansion of two-point functions of momentum correlators at arbitrary

radius.

Specialising to n = 1, we find the following expression, which will be useful later

on:

〈T−1/RT1/R〉 =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 1

2R

)

∣

∣

∣

∣

∣

(3.9)

After a T-duality

R → 1/R, µ → µR (3.10)

we get the unit-winding two-point function

〈T−RTR〉 =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµR + R

2

)

Γ
(

1
2
− iµR − R

2

)

∣

∣

∣

∣

∣

(3.11)

This expression was recently derived by Maldacena[19]. We should note that the

above answer has to be multiplied by the leg pole factor
(

Γ(−R)
)2

, which we dropped

after Eq. (3.1).

3.2 Four-point functions

In this section we turn to the computation of higher point functions. In particular,

we extend the results for the four-point function from MQM to finite R and then

specialise to the case of unit winding modes. In this case we will be able to find an

explicit all-orders result after summing an infinite series.

Upto leg pole factors (which can be unambiguously restored when needed) the

connected four-point function at infinite radius is[31]:

∂µ〈(T−qTq)
2〉conn

∞ = Im eiπq

[

F+(2q, 0; µ) −F+(q,−q; µ) +
∞
∑

n=1

(−1)n

n!
2

(

Γ(−q + n)

Γ(−q)

)2

×
(

Γ
(

2q − n + 1
2
− iµ

)

Γ
(

1
2
− iµ

) − Γ
(

q − n + 1
2
− iµ

)

Γ
(

−q + 1
2
− iµ

)

)]

, (3.12)

where q > 0 and the function F+ is defined in Eq. (3.4).
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Substituting Eq. (3.4) in Eq. (3.12) we have

∂µ〈(T−qTq)
2〉conn

∞ = Im eiπq

[

Γ
(

1
2
− iµ + 2q

)

Γ
(

1
2
− iµ

) +
Γ
(

1
2
− iµ

)

Γ
(

1
2
− iµ − 2q

) − 2
Γ
(

1
2
− iµ + q

)

Γ
(

1
2
− iµ − q

)

+2
∞
∑

n=1

(−1)n

n!

(

Γ(−q + n)

Γ(−q)

)2
(

Γ
(

1
2
− iµ + 2q − n

)

Γ
(

1
2
− iµ

) − Γ
(

1
2
− iµ + q − n

)

Γ
(

1
2
− iµ − q

)

)]

(3.13)

The connected finite-R amplitude is, therefore

〈(T−qTq)
2〉conn

R = R
1

2R
∂µ

sin
(

1
2R

∂µ

)〈(T−qTq)
2〉conn

∞

We use the expansion Eq. (3.2) of the differential operator and set q = 1/R to get

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

−Γ
(

1
2
− iµ + 3

2R

)

Γ
(

1
2
− iµ − 1

2R

) +
Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 3

2R

)

−2
∞
∑

n=1

(−1)n

n!

(

Γ(− 1
R

+ n)

Γ(− 1
R
)

)2
Γ
(

1
2
− iµ + 3

2R
− n

)

Γ
(

1
2
− iµ − 1

2R

)

)

(3.14)

It is convenient to add and subtract a term corresponding to n = 0 in the summation.

This extends the sum from 0 to ∞, while the subtracted term changes the sign of

the first term above, after which the first two terms combine into an F+. Thus we

get:

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

F+( 3
2R

,− 1
2R

; µ)

−2
∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R

+ n)

Γ(− 1
R
)

)2
Γ
(

1
2
− iµ + 3

2R
− n

)

Γ
(

1
2
− iµ − 1

2R

)

)

(3.15)

The sum is now easy to evaluate using the integral representations for the three Γ-

functions in the numerator that depend on n (see Appendix B). This finally leads

to:

〈(T−1/RT1/R)2〉conn = Re eiπ/R

(

F+( 3
2R

,− 1
2R

; µ) − 2
(

1
2
F+( 1

2R
,− 1

2R
; µ)
)2
)

=

∣

∣

∣

∣

F+( 3
2R

,− 1
2R

; µ) − 2
(

1
2
F+( 1

2R
,− 1

2R
; µ)
)2
∣

∣

∣

∣

(3.16)

One can verify that the two terms above are, respectively, the full (connected plus

disconnected) correlator, and its disconnected part.
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4. Correlators in the finite-N Normal Matrix Model

Having obtained explicit expressions for all two-point and a particular four-point

function from the MQM, as a function of the cosmological constant µ and radius R,

we now attempt to recover the same results from the NMM. This first of all provides

a test of the NMM and its effectiveness. But once we explore the systematics it will

become clear that we can compute much more. In fact, we will obtain a complete

combinatorial formula for the 2n-point functions of unit-momentum correlators. Via

T-duality, this determines the corresponding winding correlators. We expect this

to be useful in determining the full vortex condensate to all orders in perturbation

theory.

As mentioned before, in the process of studying the NMM we will encounter a

rather surprising result: for the purpose of computing correlators, one can actually

take N to be a small finite value and yet obtain the correct answer as a function of

µ. The finite value of N will be determined by the operators whose correlators we

are calculating. For this purpose it is convenient to classify tachyon correlators into

sectors labelled by an integer, the total positive momentum P flowing through that

correlator, measured in units of 1/R. For example in 〈T−k1/RT−k2/RTm1/RTm2/R〉,
where k1, k2, m1, m2 are all positive, the total positive momentum is P = m1 +m2 =

k1 + k2. This number will determine the minimum value of N required in the NMM

to compute these correlators. In what follows we will first consider all correlators in

the sectors P = 1 and P = 2. In the former case there is only a single two-point

function, while in the latter case we have two, three and four-point functions. After

presenting some examples we will discuss why the theory works in this way.

4.1 Two-point functions: examples

Example: n = 1

We begin by computing the two point function of the unit momentum operator.

Since total momentum is conserved, this operator is paired with the one of negative

unit momentum. So we will calculate the two point function 〈T−1/RT1/R〉 of unit

momentum operators.

We first calculate the partition function of NMM at N = 1:

ZN=1
NMM (t = 0) =

∫

dzdz̄ e−ν(zz̄)R+(Rν−1+ R−1
2 ) log zz̄ (4.1)
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Setting z =
√

m eiθ, dzdz̄ → dm dθ, we have:

ZN=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0

dm dθ e−νmR+(Rν−1+ R−1
2 ) log m

= 2π

∫ ∞

0

dm m(Rν−1+ R−1
2 )e−νmR

=
2π

R
ν−(ν+ 1

2
− 1

2R)Γ
(

ν + 1
2
− 1

2R

)

(4.2)

As a function of ν, this is not the correct partition function of the c = 1 string, but

it reduces to the correct partition function if in the above expression we set ν = 1
R

and compare this with Zc=1(
i
R
, t = 0, t = 0). This fact is a direct consequence of the

claim in Ref.[21], see Eq. (2.15). It is also worth noting that the partition function

at N = 1 is not invariant under T-duality. In fact, T-duality in the NMM partition

function is recovered only in the limit N → ∞. This makes it clear that the correct

partition function, as a function of µ and R, can never be recovered at finite N .

For correlators, things are quite different, as we will now see. For the two-point

function, we find:

∂−1∂1ZN=1
NMM(t = 0) =

∫ ∞

0

∫ 2π

0

dm dθ m e−νmR+(Rν−1+ R−1
2 ) log m

=
2π

R
ν−(ν+ 1

2
+ 1

2R)Γ
(

ν + 1
2

+ 1
2R

)

(4.3)

From Eq. (4.2) and Eq. (4.3) we have:

∂−1∂1 lnZN=1
NMM(t = 0) = ν− 1

R

Γ
(

ν + 1
2

+ 1
2R

)

Γ
(

ν + 1
2
− 1

2R

) (4.4)

Finally, we have to analytically continue ν = −iµ. The result is complex, but can

easily be seen to have the form of an overall phase times a real power series in 1/µ2.

Dropping the phase is then equivalent to taking the modulus of the above expression.

This gives:

〈T−1/RT1/R〉N=1
NMM = µ− 1

R

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 1

2R

)

∣

∣

∣

∣

∣

(4.5)

which agrees with Eq. (3.9) upto the prefactor, µ−1/R, which indicates that the

“tachyons” of the NMM are normalised differently from those of MQM. Indeed we

will argue later that the relationship is:

Tn/R|NMM = µ−n/2R Tn/R|MQM (4.6)

– 15 –



We have discovered the surprising result that the exact two-point correlator of

unit momentum tachyons is correctly calculated (as a function of µ and R) using only

the 1 × 1 Normal Matrix Model! According to Eq. (2.15), we should have expected

the result to be correct only for µ = i/R. We will see that a similar feature holds for

all two-point correlators, though the minimum required value of N depends on the

correlator under consideration. Later we will extend this observation to higher-point

correlators.

Example: n = 2

We consider another example, the correlator 〈T−2/RT2/R〉. In this case, according

to the prediction in Eq. (2.15), we can perform a calculation at N = 1 and the result

so obtained will be valid at the special value of the cosmological constant ν = 1.

However, we now face a puzzle. In the NMM at N = 1, one cannot distinguish the

four correlators:

〈T−2/R T2/R〉, 〈T−2/R T1/R T1/R〉, 〈T−1/R T−1/R T2/R〉, 〈T−1/R T−1/R T1/R T1/R〉
(4.7)

because all of these are represented by the same NMM correlator 〈z2z̄2〉. Therefore,

assuming Eq. (2.15) continues to hold, either it has to be the case that all four

correlators become the same at ν = 1
R
, or else at best we can only hope to obtain

some linear combination of them.

The calculation is straightforward and upon continuing to ν = −iµ and taking

the modulus, we find:

〈T−2/RT2/R〉N=1
NMM = µ−2/R

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 3

2R

)

Γ
(

1
2
− iµ − 1

2R

)

∣

∣

∣

∣

∣

(4.8)

This can be compared with the known result from Eq. (3.8). Specialising to the

present case, and changing to the NMM normalisation via Eq. (4.6) gives us:

〈T−2/RT2/R〉 =

∣

∣

∣

∣

Γ(1
2
− iµ + 1

2R
)

Γ(1
2
− iµ − 3

2R
)

+
Γ(1

2
− iµ + 3

2R
)

Γ(1
2
− iµ − 1

2R
)

∣

∣

∣

∣

(4.9)

Comparing Eqs.(4.8),(4.9), we see that the NMM result for this correlator at N = 1

is not correct. This is not a surprise. But now we see that it is incorrect even at

the special value µ = i/R, which appears to contradict Eq. (2.15). As we will see,

this is due to the fact that the same NMM correlator can describe different tachyon
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correlation functions for low N . Indeed, one can check that the answer we have

obtained at N = 1 in Eq. (4.8) is actually a linear combination of the correlators in

Eq. (4.7) as calculated from matrix quantum mechanics.

Let us continue by evaluating the NMM correlator at N = 2. In this case

the operator we are dealing with is T2/R ∼ trZ2 which is linearly independent of

(T1/R)2 ∼ (trZ)2 once Z is a 2 × 2 matrix, so there is no longer a risk of mixing for

the operators in Eq. (4.7). The computation is given in an Appendix, and leads to

the answer Eq. (A.5), which after changing to the NMM normalisation is:

〈T−2/RT2/R〉N=2
NMM =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 3

2R

)

Γ
(

1
2
− iµ − 1

2R

) +
Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 3

2R

)

∣

∣

∣

∣

∣

(4.10)

Following Eq. (2.15) we would expect that this should give the correct answer for

µ = 2i/R. But now there is a surprise, since in fact it agrees perfectly with the MQM

result Eq. (4.9) for all values of µ. Thus for the purposes of calculating 〈T−2/RT2/R〉
in c = 1 string theory, to all orders in the string coupling, a 2 × 2 matrix model is

sufficient.

To summarise, we have found evidence that an NMM calculation of tachyon

correlators at finite N (where the minimum required value of N depends on the

correlator in question) gives the correct tachyon correlators for the c = 1 string, to all

orders in perturbation theory. Below we will collect more evidence for this property,

which appears to go far beyond the result of Ref.[21] as stated in Eq. (2.15) above.

4.2 Two-point functions: general case

Let us now consider the general case 〈T−n/RTn/R〉. and try to derive this result from

the NMM. We will find that for this correlator, the NMM with N = n is sufficient

to give the correct result. Indeed, when we compute in the N ×N NMM starting at

N = 1 and increasing N in integer steps, we obtain the right c = 1 string correlator

(as a function of µ) as long as N ≥ n, though not for N < n. Thus the NMM

calculation “stabilises” at a certain minimum value of N .

Since we will be computing normalised correlators, we start by computing the
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(unperturbed) partition function at a general value of N . This is given by

ZN
NMM(t = 0) =

∫ ∞

0

N
∏

r=1

dmr

∫ 2π

0

N
∏

r=1

dθr (4.11)

×
N
∏

j<k

(

mj + mk −
√

mjmk(e
iθjk + e−iθjk)

)

e−ν(
∑N

r=1 mR
r )+(Rν−N+ R−1

2 )(
∑N

r=1 log mr)

The next step is to perform the integration over the θ’s. In general this will be quite

tedious, because one has to pick out terms which are independent of θ by expanding

out the Vandermonde factor. However, we notice that since the above expression

is invariant under permutations of m’s, we can determine all terms surviving the θ

integrals if we know just one of them, by permuting the m’s among themselves.

The first such term is just the product of the first term from each of the Van-

dermonde factors, which is mN−1
1 mN−2

2 · · ·mN−1. Thus we have, after evaluating the

θ integrals

ZN
NMM(t = 0) = (2π)NN !

∫ ∞

0

N
∏

r=1

dmr

N−1
∏

j=1

mN−j
j (4.12)

× e−ν(
∑N

r=1 mR
r )+(Rν−N+ R−1

2 )(
∑N

r=1 log mr)

= (2π)NN !
N
∏

r=1

ν−(ν+ 1
2
−(r− 1

2)
1
R)Γ

(

ν + 1
2
−
(

r − 1
2

)

1
R

)

¿From now on we will restrict to the case N = n.

The next step is to compute the two point function and then normalise by the

above partition function. We have:

∂−n∂nZN=n
NMM(t = 0) =

∫ n
∏

r=1

d2zr

n
∏

j<k

|zj − zk|2
(

n
∑

l=1

zn
l

)(

n
∑

l=1

z̄n
l

)

×e−ν(
∑n

r=1(zr z̄r)R)+(Rν−n+ R−1
2 )(

∑n
r=1 log zr z̄r)

=

∫ ∞

0

n
∏

r=1

dmr

∫ 2π

0

n
∏

r=1

dθr

n
∏

j<k

(

mj + mk −
√

mjmk(e
iθjk + e−iθjk)

)

×
(

n
∑

r=1

(√
mr

)n
einθr

)(

n
∑

r=1

(√
mr

)n
e−inθr

)

×e−ν(
∑n

r=1 mR
r )+(Rν−n+ R−1

2 )(
∑n

r=1 log mr) (4.13)

In this case also we can avoid tedious calculation by applying the permutation

trick. The contribution to the first term from the Vandermonde is same as be-

fore, and the contribution from trZn trZ†n is
∑n

r=1 mn
r . The net contribution is then
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(
∑n

r=1 mn
r )mn−1

1 mn−2
2 · · ·mn−1. Proceeding as before we have after the θ integrals

∂−n∂nZN=n
NMM(t = 0) = (2π)nn!

∫ ∞

0

n
∏

r=1

dmr

(

n
∑

r=1

mn
r

)

n−1
∏

j=1

mn−j
j

×e−ν(
∑n

r=1 mR
r )+(Rν−n+ R−1

2 )(
∑n

r=1 log mr)

= (2π)nn!

n
∑

j=1

[

ν−(ν+ 1
2
−(j−n− 1

2)
1
R)Γ

(

ν +
1

2
−
(

j − n − 1

2

)

1

R

)

×
n
∏

r=1
r 6=j

ν−(ν+ 1
2
−(r− 1

2)
1
R) Γ

(

ν +
1

2
−
(

r − 1

2

)

1

R

)]

(4.14)

From Eq. (4.12) and Eq. (4.14) we find (after changing variables j → n + 1 − r):

〈T−n/RTn/R〉N=n
NMM = ν−n/R

n
∑

r=1

Γ
(

1
2
− iµ + (r − 1

2
) 1

R

)

Γ
(

1
2
− iµ + (r − n − 1

2
) 1

R

) (4.15)

As before, we analytically continue ν = −iµ and take the modulus to get:

〈T−n/RTn/R〉N=n
NMM = µ−n/R

∣

∣

∣

∣

∣

n
∑

r=1

Γ
(

1
2
− iµ + (r − 1

2
) 1

R

)

Γ
(

1
2
− iµ + (r − n − 1

2
) 1

R

)

∣

∣

∣

∣

∣

(4.16)

After changing normalisation via Eq. (4.6), we see that this agrees perfectly with

Eq. (3.8).

The above calculation was performed with matrices of rank N = n. It can

easily be repeated for the other cases. When N is smaller than n, we find that the

answer, as a function of µ, is not equal to the correct two-point function, and does

not become the correct one even after choosing µ = in/R. As before, this is due

to “contamination” by correlators of higher point functions carrying the same total

momentum, because for N < n the corresponding correlators in the NMM are not

all linearly independent. For N > n, instead, we actually get the same final answer

as for N = n. The calculational procedure we described above seems to suggest that

extra terms arise for N > n, but actually they are cancelled by contributions from

the θ dependent terms in the Vandermonde factor. Thus when we take the ratio of

∂−n∂nZ and Z we end up with the RHS of Eq. (4.15). Therefore as long as we take

N ≥ n, we get the right answer (independent of N) for every N . This is what we

referred to as “stabilisation” above.

4.3 Four-point functions

Now we would like to compute the four-point function in the Normal Matrix Model.

For N = 1, the calculation has already been performed, since as we noted above, it
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is the same as the corresponding calculation for the two-point function in Eq. (4.8)

(more precisely the disconnected four-point function is the same as this two-point

function). As we explained there, the result so obtained is a linear combination of

the correct two, three and four-point functions of the c = 1 string, and to distinguish

them we need to go to a higher value of N . Accordingly we have computed the above

four-point function using the N = 2 NMM. The derivation can be found in Appendix

C, and the result is:

〈(T−1/RT1/R)2〉N=2
NMM = µ−2/R

∣

∣

∣

∣

F+( 3
2R

,− 1
2R

; µ) − 1
2

(

F+( 1
2R

,− 1
2R

; µ)
)2
∣

∣

∣

∣

(4.17)

Changing from MQM to NMM normalisation using Eq. (4.6), and inserting the usual

1/R factor, we see that Eq. (4.17) above is identical to Eq. (3.16).

For completeness, let us briefly consider the two three-point functions

〈T−2RTRTR〉N=2
NMM , 〈T2RT−RT−R〉N=2

NMM (4.18)

The two are actually equal to each other because of the symmetry X → −X, where

X is the Euclidean time direction. We have calculated these correlators both from

MQM and NMM (at N = 2) and the agreement is exactly as for the cases considered

above.

4.4 Why it works

As we reviewed in Section 2, the Normal Matrix Model determines every momentum

correlator by differentiation with respect to the momentum couplings t, t. However,

the correlators so obtained should only be correct in the limit N → ∞ (“Model

I”, Eq. (2.14)) or the special values N = νR (“Model II”, Eq. (2.15)). Now in the

previous subsections we have shown in several examples (including the infinite set of

two-point functions) that, given the total momentum P flowing in the correlator, the

NMM with matrices of any rank N ≥ P suffices to compute the correlator completely

as a function of µ and R. In view of this, the NMM appears to go beyond its expected

range of validity. Here we will give an explanation as to how this comes about.

The basic observation is that the phenomenon we are observing is not to be

viewed as an application of Model II, but rather of Model I. Indeed, using Model II

and a definite value of N , it is clear from Eq. (2.15) that the answers obtained are

correct only for a definite value of ν, namely ν = N/R. This relation between N and
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ν defines a line in (N, ν) space, and the points on this line where N takes integer

values are the ones where the procedure works. However, it is clear that in this way

one can never recover the full ν dependence at a fixed N .

In contrast, in Model I one is supposed to compute correlators at an arbitrarily

large value of N and in the limit N → ∞, the correct answers are obtained as a

function of ν. What we will now show is that, after computing a given correlator of

total momentum P in this way, and then dividing by the partition function, infinitely

many terms cancel out exactly in the ratio. The remaining terms, which actually

contribute to the correlator of interest, are the same as one would compute for a

finite value of N , namely N = P .

The argument goes as follows. From the derivation we have given in the previous

subsections and the appendices, any correlator is generated (after θi integrations)

by inserting an expression of the form
∏N

i=1 mαi

i into the mi integrals, where {αi}
correspond to ordered partitions of P . Therefore we should first of all choose N large

enough so that all such partitions can be realised and are distinguishable. This is

possible for N ≥ P . For N < P we will miss some partitions, and thus the answer

cannot be correct. But the case N > P realises the same partitions as the case N = P

and thus gives the same answer. This causes what we earlier called “stabilisation”,

which amounts to saying that the result for N = P is identical to the result for any

N > P , and therefore for N = ∞. Invoking the converse of stabilisation, we can

therefore start with the model defined at N = ∞ and “bring back” the value of N

to any finite value N ≥ P without changing the result. This explains why a finite-N

matrix model is sufficient to compute any momentum correlator.

4.5 Combinatorial result for 2n-point functions

We have shown that the NMM is an effective tool by re-computing known correlators.

Now that we understand how and why it works, we apply it to compute a new result:

the full (connected plus disconnected) 2n-point function 〈(T−1/RT1/R)n〉 for every n

and to all orders in perturbation theory. The result, derived in Appendix D, is the

following:

〈(T−1/RT1/R)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2

n
∏

i=1

Γ
(

1
2
− iµ + (ki − n + 1

2
) 1

R

)

Γ
(

1
2
− iµ − (i − 1

2
) 1

R

)

∣

∣

∣

∣

∣

∣

(4.19)
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with C({ki}) defined as:

C({ki}) =
∑

P

(−1)P
n
∏

i=1

(

n −∑i−1
j=1(kj − Pj)

ki − Pi

)

(4.20)

Here, {ki} are strictly ordered partitions of n(n + 1)/2, namely:

k1 > k2 > · · · > kn,
n
∑

i=1

ki =
n(n + 1)

2
(4.21)

and P denote permutations of the n numbers n − 1, n − 2, · · · , 0.

Let us examine this result more closely. In principle, for every n the answer is

a sum of terms, each one being the ratio of n Γ-functions divided by n Γ-functions.

However in practice, some of the numerator and denominator terms can cancel out.

We can see this more explicitly if we list the first few special cases, of which the first

two have already been noted above:

〈T−1/RT1/R〉 =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 1

2R

)

∣

∣

∣

∣

∣

〈(T−1/RT1/R)2〉 =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 3

2R

)

Γ
(

1
2
− iµ − 1

2R

) +
Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 3

2R

)

∣

∣

∣

∣

∣

(4.22)

〈(T−1/RT1/R)3〉 =

∣

∣

∣

∣

Γ(1
2
− iµ + 5

2R
)

Γ(1
2
− iµ − 1

2R
)

+ 4
Γ(1

2
− iµ + 3

2R
)

Γ(1
2
− iµ − 3

2R
)

+
Γ(1

2
− iµ + 1

2R
)

Γ(1
2
− iµ − 5

2R
)

∣

∣

∣

∣

The pattern emerging so far is misleadingly simple, as we see with the next example,

the 8-point function:

〈(T−1/RT1/R)4〉 =

∣

∣

∣

∣

∣

Γ(1
2
− iµ + 7

2R
)

Γ(1
2
− iµ − 1

2R
)

+ 9
Γ(1

2
− iµ + 5

2R
)

Γ(1
2
− iµ − 3

2R
)

+ 9
Γ(1

2
− iµ + 3

2R
)

Γ(1
2
− iµ − 5

2R
)

+
Γ(1

2
− iµ + 1

2R
)

Γ(1
2
− iµ − 7

2R
)

+ 4
Γ(1

2
− iµ + 1

2R
)

Γ(1
2
− iµ − 1

2R
)

Γ(1
2
− iµ + 3

2R
)

Γ(1
2
− iµ − 3

2R
)

∣

∣

∣

∣

∣

(4.23)

We see that as the number of operators in the correlator grows, one gets products of

more and more Γ-functions in the numerator and denominator. In this example we

also see clearly that the coefficients are perfect squares.

Ideally one would like to know the connected part of the 2n-point function.

In principle this can of course be obtained by repeated application of Eq. (4.19),

but one would like a more explicit and useful expression. However, for the most

likely application, to the vortex condensate, we will not really need to make the
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distinction between connected and disconnected correlators. The vortex condensate

corresponds to the partition function of a perturbed theory, and to find the connected

component of that it suffices to take a logarithm. We will discuss this issue further

in the following section.

5. Applications

5.1 T-duality at c = 1

In this subsection we discuss how our results can be applied to check T-duality of

the c = 1 matrix model. As we have seen, in the Euclidean (finite-temperature)

MQM, the momentum and winding modes with respect to the time direction are

independently defined. The former arise from macroscopic loops defined in terms of

fermion bilinears, while the latter are Wilson-Polyakov loops in the thermal direction,

which project the theory onto nonsinglet sectors. From the continuum description

we expect that there should be T-duality between these two sets of observables.

Indeed, in Ref.[16] it has been formally argued that, like the momentum-perturbed

matrix model, the winding-perturbed MQM also corresponds to the τ -function of a

Toda hierarchy. To understand T-duality better, one would like to compare explicit

correlation functions computed from the momentum and winding sides.

An attempt to directly check T-duality was made by Maldacena in [19], where

the following two quantities were compared: (i) the two-point function of unit-

momentum tachyons, after T-duality, and (ii) the partition function of MQM in

the adjoint sector. From Eq. (3.11) we see that (i) is equal to:

〈T−RTR〉 =

∣

∣

∣

∣

∣

Γ
(

1
2
− iµR + R

2

)

Γ
(

1
2
− iµR − R

2

)

∣

∣

∣

∣

∣

(5.1)

However, at this point we recall that leg-pole factors of Γ(−|q|) were dropped after

Eq. (3.1). Restoring them and taking the large-µ asymptotics of this correlator, we

find8:

〈T−RTR〉 =
(

Γ(−R)
)2

(µR)R

(

1 +
1

24

(

R − 1

R

)

µ−2 + O
(

µ−4
)

)

(5.2)

On the other hand, (ii) is obtained by solving MQM in the adjoint sector. In the large

N limit, Maldacena obtained the leading (tree level) contribution to the partition

8The factor RR was not written in Ref.[19].

– 23 –



function in this sector as:

Zadj

Zsing
= 〈Wadj〉 =

1

4 sin2 πR
µR =

1

4π2

(

Γ(R + 1)Γ(−R)
)2

µR (5.3)

The power of µ agrees with that in the leading term of Eq. (5.2). The remaining dis-

crepancy can be assigned to the normalisation of the fundamental Wilson-Polyakov

loop (or equivalently to the normalisation of the original momentum modes), and we

see that Eqs.(5.3) and (5.2) agree to leading order if we change the normalisation of

this loop variable to:

WN → 1

2π

R
R
2

Γ(R + 1)
WN (5.4)

This is a relatively simple change of normalisation9, and appears to specify the basis

in which T-duality holds in MQM.

It is not entirely surprising that one needs to change normalisation of the matrix

model observables in order to implement T-duality. Indeed, this duality is most man-

ifest in the worldsheet or Liouville approach, in which the momentum and winding

vertex operators come with a natural normalisation and are related to each other

by the simple change (XL, XR) → (XL,−XR). On the matrix model side, momen-

tum operators in the MQM are related to the corresponding Liouville operators by a

change of normalisation, Eq. (2.4). So one should expect that winding operators in

MQM are also related to Liouville winding operators by a change of normalisation.

This is not to say we understand the nature of these normalisation factors in

general. In fact, as stressed in Ref.[19], we need more examples in order to check

the consistency of this picture. As an example, if one could compute the genus-1

correction to the adjoint sector partition function, this could be compared with the

genus-1 term in Eq. (5.2). Similarly, if one could compute the leading term for those

higher representations that correspond to 2n-point functions of the winding tachyon,

then one could match this with the asymptotics of the latter, which can be read off

from our results in Section 4.5.

There will also be representations corresponding to the correlators of multiply

wound tachyons TnR. These correlators can be found by T-dualising the relevant

momentum correlators, for example the two-point functions are found by T-dualising

9Notice that the normalisation factor becomes trivial at the special radius R = 1.
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Eq. (3.8), leading to:

〈T−nRTnR〉 =
(

Γ(−nR)
)2

∣

∣

∣

∣

∣

n
∑

r=1

Γ(1
2
− iµR + (r − 1

2
)R)

Γ(1
2
− iµR + (r − n − 1

2
)R)

∣

∣

∣

∣

∣

(5.5)

= n(µR)nR
(

Γ(−nR)
)2

(

1 − nR(nR − 1)
(

(n2 − 1)R2 − nR − 1
)

24R2
µ−2 + O

(

µ−4
)

)

In the matrix model, this should correspond to the fundamental Wilson-Polyakov

loop with a contour that winds n times over the time direction. In principle we are

allowed an independent choice of normalisation for each winding number. In fact

the momentum and winding modes have corresponding freedoms in normalisation,

and the only thing relevant for T-duality is the relative normalisation between them.

So when we consider the nonsinglet sector related to multiply wound loops, and the

corresponding tachyons of n units of momentum, the leading-order comparison will

be used to fix the normalisation and the loop corrections will constitute a genuine

check of T-duality.

To summarise, we have not been able to address the problem of T-duality but

only set up one side of it. Namely, we have exhibited the all-orders finite-radius

correlators computed from the momentum side, after performing a T-duality trans-

formation. This constitutes a prediction to be checked once it is properly understood

how to perform nonsinglet computations for different representations and to higher

orders in string perturbation theory.

There is one more intriguing point that we would like to mention. The correlators

we have computed take very special values at the selfdual radius R = 1, the point

of enhanced SU(2) symmetry. In particular, all loop corrections to the two-point

function of unit momentum tachyons vanish, as can be seen from Eq. (3.11). Thus

the tree level answer is exact10. By T-duality the same property should hold for

the two-point function of unit winding modes. It is plausible that one could extract

this simple property just from the structure of the nonsinglet Hamiltonian – in this

case it is the adjoint Hamiltonian that was studied in Ref.[19], specialised to R = 1.

Similarly, at R = 1 the other two-point functions have perturbation series that

terminate at a finite number of loops, as one can easily check from Eq. (5.5). So,

for consistency this must also be a property of the antisymmetric-antisymmetric
10This was already known long ago, for example as the puncture equation in the Kontsevich-

Penner model[22].
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representations referred to above. It may be simpler to derive this kind of general

result in the nonsinglet sector than to actually compute coefficients with precision.

5.2 Vortex condensate and black holes

It is believed that the Euclidean 2D black hole background, defined in the continuum

by an SL(2, R/U(1) CFT, is equivalent to the c = 1 matrix model perturbed by

fundamental Wilson-Polyakov loops:

SMQM → SMQM + λWN + λ̄WN̄ (5.6)

The basis for this belief is the FZZ conjecture[15], which relates the black hole back-

ground to Sine-Liouville theory11. Via the equivalence in Eq. (2.8), the latter is the

same as the perturbed background above.

To be precise, the FZZ conjecture is not really an either/or statement wherein

one uses either the black hole background or the Sine-Liouville perturbation. It has

increasingly become clear that the backgrounds that one might call “black hole” or

“Sine-Liouville” are the same, and both perturbations are turned on simultaneously.

Depending on the value of the worldsheet coupling, one or the other of these per-

turbations is more dominant, but for example the exact correlation functions have

poles corresponding to both perturbations12. In the present work we will not focus

on these details, but will be content to treat the black hole story as a motivation to

understand the vortex condensate:

〈eλWN+λ̄WN̄ 〉
∣

∣

∣

MQM
(5.7)

One way to compute this condensate would be to sum over an infinite set of nonsinglet

sectors in the MQM with some definite weights. However, as we have seen, the

technology to do this seems rather limited at present. An alternative is to assume

T-duality to compute the correlator:

〈eλ TR+λ̄T−R〉 =
∞
∑

n=0

∞
∑

m=0

λn

n!

λ̄m

m!
〈(TR)n(T−R)m〉 =

∞
∑

n=0

|λ|2n

(n!)2
〈(TRT−R)n〉 (5.8)

11This conjecture has been proved by Hori and Kapustin[33] in the N = 2 supersymmetric case.

As Maldacena has argued[19], suitably orbifolding both sides of their argument leads to a proof for

the bosonic case.
12See for example Ref.[6]. We are grateful to Ari Pakman for explaining this to us.
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where the last equality follows from conservation of winding number.

Now from the computation in Appendix D, we have the following result after

T-duality:

〈(T−RTR)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2

n
∏

i=1

Γ
(

1
2
− iµR − (i + ki − 1

2
)R
)

Γ
(

1
2
− iµR − (i − 1

2
)R
)

∣

∣

∣

∣

∣

∣

(5.9)

where {ki} are strictly ordered partitions of n(n + 1)/2, and C({ki}) are the combi-

natorial coefficients given in Eq. (D.9).

The above correlators contain both connected and disconnected contributions.

We can now pass to the generating function:

〈eλ TR+λ̄ T−R〉 =
∞
∑

n=0

|λ|2n

(n!)2

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n
∏

i=1

Γ
(

1
2
− iµR − (i + ki − 1

2
)R
)

Γ
(

1
2
− iµR − (i − 1

2
)R
)

∣

∣

∣

∣

∣

∣

(5.10)

This is the partition function in the presence of a vortex condensate, and its logarithm

is the free energy of the perturbed theory. So one does not need at any point to

compute individual connected correlators.

The above expression is completely explicit and does not require integrating any

equation or developing a recursion relation. We expect it will be useful to to extract

physical quantities of interest related to the Euclidean 2d black hole. This is beyond

the scope of the present work, however, and we hope to return to a more detailed

analysis of this formula in the future.

Again it is worth pointing out that at the selfdual radius R = 1 the vortex

condensate is known exactly, though deriving it from the above expression would

not be the easiest way. The puncture equation of Ref.[22] simply tells us that:

〈eλ TR+λ̄ T−R〉|R=1 = |e−iµλλ̄| (5.11)

and one can check easily that this agrees with the cases in Eq. (4.22) specialised to

R = 1.

The significance for the Euclidean 2d black hole of this simple result has not, to

our knowledge, been explored. While it is true that the black hole CFT corresponds

to a radius R = 3
2
, it is believed[16] to have a marginal deformation to other radii

at least in the range 1 < R < 2. So the physical consequences of the simple formula

above at R = 1 would be worth understanding better.
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6. Conclusions

In this work we have examined the familiar c = 1 bosonic noncritical string theory, or

rather its Euclidean (finite temperature) version, from the perspective of correlation

functions. Both old and new techniques were used to develop simple, elegant and

explicit formulae as functions of two variables: the cosmological constant µ and the

compactification radius or inverse temperature R. The key results are summarised

in Eqs.(3.8),(3.16),(4.19). In addition we have shown that the Normal Matrix Model

is a powerful computational tool.

An obvious extension of this work would be to the case of noncritical type 0

strings[34],[35]. In Ref.[36], explicit expressions are obtained for the partition func-

tions of type 0A and 0B strings in the presence of fluxes. These expressions are richer

than the corresponding ones for the bosonic noncritical string, both because of the

flux dependence and because they are nonperturbative in µ. Our work should gen-

eralise quite straightforwardly, particularly to the Euclidean type 0B case, and the

correlators so obtained will contain nonperturbative information about the theory.

A detailed investigation into the physical questions that motivated the present

exercise, namely a better understanding of the 2d black hole background as well as

of T-duality in the matrix model, is left for subsequent work. We also note that the

physical origin of the Normal Matrix Model has not yet been understood. As it is

clearly a correct and useful description of the c = 1 string, and moreover makes sense

only in the Euclidean context, it would be worth trying to put it on a similar footing

as MQM in terms of the dynamics of some appropriate (Euclidean) D-branes.
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A. Computation of two-point functions in the NMM

Here we present some of the details of how to compute two-point functions in the
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Normal Matrix Model. To start with, for the partition function we have

ZN=2
NMM (t = 0) =

∫

d2z1d
2z2 |z1 − z2|2

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+ R−1
2 )( log z1z̄1+ log z2z̄2) (A.1)

As before, we change variables zi =
√

mi e
iθi, d2zi → dmi dθi and we get

ZN=2
NMM(t = 0) =

∫ ∞

0

dm1dm2

∫ 2π

0

dθ1dθ2

(

m1 + m2 −
√

m1m2(e
iθ12 + e−iθ12)

)

×e−ν(mR
1 +mR

2 )+(Rν−2+ R−1
2 )( log m1+log m2)

= 4π2

∫ ∞

0

dm1dm2 (m1 + m2)(m1m2)
(Rν−2+ R−1

2 )e−ν(mR
1 +mR

2 )

= 8π2

R2 ν−(ν+ 1
2
− 1

2R)Γ
(

ν + 1
2
− 1

2R

)

× ν
−
(

ν+
1
2
−

3
2R

)

Γ
(

ν + 1
2
− 3

2R

)

, (A.2)

where θ12 ≡ θ1 − θ2. In a similar manner we have

∂−2∂2ZN=2
NMM(t = 0) =

∫

d2z1d
2z2 |z1 − z2|2(z2

1 + z2
2)(z̄

2
1 + z̄2

2)

×e−ν((z1z̄1)R+(z2z̄2)R)+(Rν−2+ R−1
2 )( log z1z̄1+ log z2z̄2)

=

∫ ∞

0

dm1dm2

∫ 2π

0

dθ1dθ2

(

m1 + m2 −
√

m1m2(e
iθ12 + e−iθ12)

)

×
(

m2
1 + m2

2 + m1m2e
2iθ12 + m1m2e

−2iθ12
)

e−ν(mR
1 +mR

2 )+(Rν−2+ R−1
2 )( log m1+ log m2)

= 4π2

∫ ∞

0

dm1dm2 (m1 + m2)(m
2
1 + m2

2)(m1m2)
(Rν−2+ R−1

2 )e−ν(mR
1 +mR

2 )

Evaluating the integrals on m1, m2 we get

∂−2∂2ZN=2
NMM (t = 0) = 8π2

R2 ν−(ν+ 1
2
+ 3

2R)Γ
(

ν + 1
2

+ 3
2R

)

× ν−(ν+ 1
2
− 3

2R)Γ
(

ν + 1
2
− 3

2R

)

+ 8π2

R2 ν−(ν+ 1
2
+ 1

2R)Γ
(

ν + 1
2

+ 1
2R

)

× ν−(ν+ 1
2
− 1

2R)Γ
(

ν + 1
2
− 1

2R

)

(A.3)

From Eq. (A.2) and Eq. (A.3) we have

〈T−2/RT2/R〉N=2
NMM = ν−2/R

(

Γ
(

ν + 1
2

+ 3
2R

)

Γ
(

ν + 1
2
− 1

2R

) +
Γ
(

ν + 1
2

+ 1
2R

)

Γ
(

ν + 1
2
− 3

2R

)

)

(A.4)

As before, to get the correct two point function we have to analytically continue

ν = −iµ and take the modulus of the above expression. This gives:

〈T−2/RT2/R〉N=2
NMM = µ−2/R

∣

∣

∣

∣

∣

Γ
(

1
2
− iµ + 3

2R

)

Γ
(

1
2
− iµ − 1

2R

) +
Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 3

2R

)

∣

∣

∣

∣

∣

(A.5)
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B. Evaluation of a summation in the MQM four-point func-

tion

In order to show the equivalence between Eqs. (3.15) and (3.16) we need to prove

the following identity:

∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R

+ n)

Γ(− 1
R
)

)2
Γ
(

1
2
− iµ + 3

2R
− n

)

Γ
(

1
2
− iµ − 1

2R

) =

(

Γ
(

1
2
− iµ + 1

2R

)

Γ
(

1
2
− iµ − 1

2R

)

)2

(B.1)

Let us start with the expression:

E =

∞
∑

n=0

(−1)n

n!

(

Γ(− 1
R

+ n)

Γ(− 1
R
)

)2

Γ
(

1
2
− iµ + 3

2R
− n

)

(B.2)

Using the integral representation of the Γ function we write this as:

E =
1

(

Γ(− 1
R
)
)2

∞
∑

n=0

(−1)n

n!

∫

d3t (t1t2)
− 1

R
+n−1t

−n+ 1
2
−iµ+ 3

2R
−1

3 e−t1−t2−t3 (B.3)

The sum over n can now be performed immediately and we have:

E =
1

(

Γ(− 1
R
)
)2

∫

d3t e
−

t1t2
t3 (t1t2)

− 1
R
−1 t

1
2
−iµ+ 3

2R
−1

3 e−t1−t2−t3

=
1

(

Γ(− 1
R
)
)2

∫

d3t e
−t1(1+

t2
t3

)
(t1t2)

− 1
R
−1 t

1
2
−iµ+ 3

2R
−1

3 e−t2−t3 (B.4)

Using the change of variables t1 → t1(1 + t2
t3

) and performing the integral on t1 we

get:

E =
1

Γ(− 1
R
)

∫

d2t t
− 1

R
−1

2 t
1
2
−iµ+ 3

2R
−1

3 t
− 1

R

3 (t2 + t3)
1
R e−t2−t3 (B.5)

We next introduce a parameter α which allows us to write the above equation as:

E =
1

Γ(− 1
R
)

(

− ∂

∂α

)
1
R
∫

d2t t
− 1

R
−1

2 t
1
2
−iµ+ 1

2R
−1

3 e−α(t2+t3)

∣

∣

∣

∣

α=1

(B.6)

Changing variables ti → αti we have:

E =
1

Γ(− 1
R
)

(

− ∂

∂α

)
1
R

α− 1
2
+iµ+ 1

2R

∣

∣

∣

α=1

∫

dt2 t
− 1

R
−1

2 e−t2

∫

dt3 t
1
2
−iµ+ 1

2R
−1

3 e−t3

= Γ(1
2
− iµ + 1

2R
)

(

− ∂

∂α

)
1
R

α− 1
2
+iµ+ 1

2R

∣

∣

∣

α=1
(B.7)

Using the relation:
(

− ∂

∂α

)m

αn
∣

∣

∣

α=1
=

Γ(−n + m)

Γ(−n)
(B.8)
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we finally have:

E =

(

Γ(1
2
− iµ + 1

2R
)
)2

Γ(1
2
− iµ − 1

2R
)

(B.9)

Using Eq. (B.2) and dividing both sides by Γ(1
2
− iµ − 1

2R
) we immediately get

Eq. (B.1).

C. Four-point function in NMM

We now briefly describe the calculation of the connected four-point function of unit

momentum modes in the NMM. This is obtained by differentiating the free energy

F with respect to the couplings. We thus have:

〈(T−1/RT1/R)2〉 = ∂2
−1∂

2
1F

= 〈(T−1/RT1/R)2〉disconn − 2〈T−1/RT1/R〉2 (C.1)

where F = lnZNMM . The second term in the above equation can be calculated from

the NMM with N = 2 and is given by:

〈(T−1/RT1/R)2〉disconn = 〈(trZ†)2(trZ)2〉N=2
NMM

= ν−2/R

(

Γ
(

ν + 1
2

+ 3
2R

)

Γ
(

ν + 1
2
− 1

2R

) +
Γ
(

ν + 1
2

+ 1
2R

)

Γ
(

ν + 1
2
− 3

2R

)

)

The explicit calculation is very similar to the calculation of 〈T−2/RT2/R〉 from the

NMM. The disconnected piece is simply the square of the two-point function listed

in Eq. (4.4). Putting everything together the connected four-point function is given

by:

〈(T−1/RT1/R)2〉conn
NMM = ν−2/R

[

Γ
(

ν + 1
2

+ 3
2R

)

Γ
(

ν + 1
2
− 1

2R

) +
Γ
(

ν + 1
2

+ 1
2R

)

Γ
(

ν + 1
2
− 3

2R

)

−2

(

Γ(n + 1
2

+ 1
2R

)

Γ(n + 1
2

+ 1
2R

)

)2
]

(C.2)

Analytically continuing ν = −iµ and taking the modulus, and then using the

definition of F+ in Eq. (3.4), we finally get:

〈(T−1/RT1/R)2〉conn
NMM = (µ)−2/R

∣

∣

∣

∣

F+( 3
2R

,− 1
2R

; µ) − 1
2

(

F+( 1
2R

,− 1
2R

; µ)
)2
∣

∣

∣

∣

(C.3)
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D. 2n-point functions in NMM

Here we present the detailed calculation of the 2n-point functions from the NMM.

In what follows we will take the rank of the matrix, N , to be equal to n. We have:

(∂−1∂1)
nZN=n

NMM(t = 0) =

∫ n
∏

i=1

d2zi

n
∏

i<j

|zi − zj |2
(

n
∑

i=1

zi

)n( n
∑

i=1

z̄i

)n

×e−ν
∑n

r=1(zr z̄r)R+(Rν−n+ R−1
2 )

∑n
r=1 log zr z̄r (D.1)

We would now like to make the substitution zi =
√

mi e
iθi and perform the θ integrals.

The remaining integrand will then be a function of the mi and we will find that it has

the form
(

∑

{ki}
C({ki})2

∏

i m
ki

i + permutations
)

e−SNMM . Here {ki} are positive

integers corresponding to strictly ordered partitions of n(n + 1)/2, i.e.:

n
∑

i=1

ki = n(n+1)
2

, k1 > k2 > · · · > kn ≥ 0 (D.2)

The permutations referred to are of the mi. Because the mi are integration variables,

summing over permutations simply amounts to multiplying by a factor of n!. The

constant coefficients have been labelled C({ki})2 in anticipation of the fact that they

will turn out to be squares. After performing the integration over mi and dividing by

ZNMM we get the final answer as a sum of ratios of products of gamma functions, with

each term in the sum corresponding to a strictly ordered partition {ki} of n(n+1)/2.

We will first show that the coefficients are perfect squares C({ki})2. After that

we will turn to the calculation of the C({ki}). Consider the expression:

U =

(

n
∑

i=1

zi

)n n
∏

j<k

(zj − zk). (D.3)

The full integrand is then UŪ times the exponential factor. Because the action is

independent of the θ’s, the entire θ-dependence of the integrand is in UŪ . Note

that U has only positive powers of eiθi and Ū has only negative powers. Only the

θ-independent terms in the expansion of UŪ will survive the θ integrals.

It is easy to see that if we expand U , Ū then we get:

U =
∑

{αi}

C({ki})
n
∏

i=1

zki

i + permutations

Ū =
∑

{αi}

C({ki})
n
∏

i=1

z̄ki

i + permutations, (D.4)
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with {ki} defined as before. It is now clear that the coefficients of θ-independent

terms in T T̄ must be perfect squares, as the phase of a term in the first expression

of Eq. (D.4) can only be cancelled by the complex conjugate term from the second

expression, which has the same coefficient as the first term.

Let us now determine the coefficients C({αi}). First we note the following prop-

erty of the positive phase part of the Vandermonde:

n
∏

j<k

(zj − zk) =
∑

P

(−1)P
n
∏

j=1

z
Pj

j , (D.5)

where P is a particular permutation of the n integers (n − 1, n − 2, · · · , 0) and Pj

denotes the jth element of the permutation P13. The sign for the first permutation

is positive by construction. Any other permutation can be arrived at by a series

of interchanges zi ↔ zj . Each such interchange introduces a minus sign in the

Vandermonde. Thus even permutations have a positive sign, while odd permutations

have a negative sign, leading to Eq. (D.5). Expanding the first factor in Eq. (D.3)

in a multinomial series and using Eq. (D.5) we get:

U =





∑

{βi}

n
∏

i=1

(

n −∑i−1
j=1 βj

βi

)

zβi

i





(

∑

P

(−1)P
n
∏

j=1

z
Pj

j

)

=
∑

{βi}

∑

P

(−1)P
n
∏

i=1

(

n −∑i−1
j=1 βj

βi

)

zβi+Pi

i (D.6)

where {βi} are the unordered partitions of n.

Let us examine the possible values of the exponent ki = βi +Pi in the above. If

ki = kj for some i 6= j then the corresponding coefficient is zero. This can be traced

back to the fact that the expression Eq. (D.3) is odd under pairwise interchange of

the z’s. Therefore we can rewrite the above as:

U =
∑

ki 6=kj
∑

i ki=n(n+1)/2

∑

P

(−1)P
n
∏

i=1

(

n −∑i−1
j=1(kj − Pj)

ki − Pi

)

n
∏

i=1

zki

i (D.7)

Because the ki are all distinct, we can limit ourselves to strictly ordered sets satisfying

k1 > k2 > · · · kn. The other orderings are obtained by permuting these ones, or

13For example, Pj = n − j when P is the identity permutation.
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equivalently by permuting the zi’s. Thus we have:

U =
∑

k1>k2>···>kn
∑

i ki=n(n+1)/2

C({ki})
n
∏

i=1

zki

i + (permutations of zi) (D.8)

with

C({ki}) =
∑

P

(−1)P
n
∏

i=1

(

n −∑i−1
j=1(kj − Pj)

ki − Pi

)

(D.9)

Finally we combine U with Ū and integrate over the angles to get:

(∂−1∂1)
nZN=n

NMM = (2π)n

∫ n
∏

i=1

dmi

∑

{ki}

C({ki})2

n
∏

i=1

mki

i e
∑n

i=1(−νmR
i +(Rν−n+ R−1

2
) log mi)

+permutations (D.10)

= (2π)nn!
∑

{ki}

C({ki})2

n
∏

i=1

ν−( 1
2
+ν+(ki−n+ 1

2
) 1

R)Γ
(

1
2

+ ν + (ki − n + 1
2
) 1

R

)

Using the expression for the partition function ZNMM from Eq. (4.12) for N = n we

have:

(∂−1∂1)
nZN=n

NMM

ZN=n
NMM

= ν−n/R
∑

{ki}

C({ki})2
n
∏

i=1

Γ
(

1
2

+ ν + (ki − n + 1
2
) 1

R

)

Γ
(

1
2

+ ν − (i − 1
2
) 1

R

) (D.11)

The 2n-point function is given by analytically continuing ν = −iµ, changing to MQM

normalisation using Eq. (4.6) (which amounts to removing the power of ν in front),

and finally taking the modulus:

〈(T−1/RT1/R)n〉 =

∣

∣

∣

∣

∣

∣

∑

{ki}

C({ki})2
n
∏

i=1

Γ
(

1
2
− iµ + (ki − n + 1

2
) 1

R

)

Γ
(

1
2
− iµ − (i − 1

2
) 1

R

)

∣

∣

∣

∣

∣

∣

(D.12)

with C({ki}) given by Eq. (D.9).
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