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Abstract: We argue that the moduli space for the Bagger-Lambert A4 theory at level k

is (R8 × R
8)/D2k, where D2k is the dihedral group of order 4k. We conjecture that the

theory describes two M2-branes on a Z2k “M-fold”, in which a geometrical action of Z2k

is combined with an action on the branes. For k = 1, this arises as the strong coupling

limit of two D2-branes on an O2− orientifold, whose worldvolume theory is the maximally

supersymmetric SO(4) gauge theory. Finally, in an appropriate large-k limit we show that

one recovers compactified M-theory and the M2-branes reduce to D2-branes.
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1. Introduction

A new class of conformal invariant, maximally supersymmetric field theories in 2+1 dimen-

sions has been found recently [1, 2]. These theories are based on “3-algebras” and include a

non-dynamical gauge field with a Chern-Simons-like interaction. They have several striking

properties including the absence of continuous marginal deformations. The motivation for

studying these theories was to find a Lagrangian description of the conformally invariant

fixed point of maximally supersymmetric Yang-Mills theories in 2+ 1 dimensions, which is

believed to describe the worldvolume dynamics of coincident membranes in M-theory.

While the 3-algebra theories share many features with the expected M2-brane theories,

they also give rise to some puzzles. One is that only a single 3-algebra, denoted A4, is

presently known, so an explicit theory exists for at best a small fixed number of membranes.

It was proposed in Ref. [3] that this number is 3, which suggests the surprising possibility

that the IR theory on 2 D2-branes is trivial. Also somewhat puzzling was how parity could

be preserved when the gauge field has Chern-Simons interactions.

Some of these puzzles have been resolved in recent days [4, 5, 6]. For the A4 3-

algebra, all these papers (as well as Ref. [7]) found that the theory could be recast as an
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SU(2)×SU(2) gauge theory. In Ref. [4] it was further shown that giving one of the scalars

a vev reduces the 3-algebra action to a strongly coupled supersymmetric SU(2) Yang-Mills

action by a novel Higgs mechanism. This renders one combination of the two Chern-Simons

fields massive and the other one dynamical in consequence. In Refs. [5, 6] it was shown

that the theory is parity-invariant if parity is taken to exchange the two SU(2)’s.

However, new puzzles emerged. Ref. [6] studied the moduli space of the theory and

found that it does not appear to match expectations for either two or three M2-branes.

Additionally the spectrum of chiral primary operators had some “missing” operators that

should have been present for a multiple M2-brane interpretation to be correct. In this work

it was also noted that the level k of the SU(2)× SU(2) is a free discrete parameter which,

at large values, causes the theory to become weakly coupled – but a finite set of M2-branes

should not have any weakly coupled limit. Also, although Ref. [4] found a result suggestive

of compactification, it was not clear why going to the Coulomb branch should be related

to a circle-compactified background.

In the present work we resolve some of the above puzzles. We conjecture that the

Bagger-Lambert A4 theory at level k = 1 describes the worldvolume dynamics of two

M2-branes on the Z2 orbifold, defined by the uplift to M-theory of two D2-branes on

an O2− orientifold. Equivalently, the level-one A4 theory is the infrared fixed point of

the SO(4) maximally supersymmetric Yang-Mills theory in 2+1 dimensions. With this

interpretation, we argue that the spectrum of chiral operators is as expected. For general

k, we argue that the moduli space is (R8 × R
8)/D2k, where D2k is the dihedral group of

order 4k. We conjecture that this corresponds to two M2-branes on a Z2k “M-fold”, in

which a geometrical action of Z2k is combined with an action on the branes. Finally, we

show that taking a large-k limit at a point on moduli space where the branes are separated

from the orbifold point, one recovers the worldvolume theory of D2-branes, as expected,

since the orbifold locally becomes a cylinder.

We will work with the formulation of the A4 theory in Ref. [6]. The fields consist of

two SU(2) gauge fields, having Chern-Simons actions with opposite signs, and a set of 8

scalar fields XI , I = 1, 2, · · · , 8 along with 8 fermions. All the matter fields transform as

bi-fundamentals of SU(2) × SU(2). The action is:

L = tr(−(DµXI)†DµXI + iΨ̄†ΓµDµΨ)

+tr(−2

3
ifΨ̄†ΓIJ(XIXJ†Ψ + XJΨ†XI + ΨXI†XJ) − 8

3
f2X [IXJ†XK]XK†XJXI†)

+
1

2f
ǫµνλtr(Aµ∂νAλ +

2

3
iAµAνAλ) − 1

2f
ǫµνλ tr(Âµ∂νÂλ +

2

3
iÂµÂνÂλ) . (1.1)

Here,

DµXI = ∂µXI + iAµXI − iXIÂµ , (1.2)
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which is covariant under the action of the gauge transformations

XI → UXIV −1, Aµ → UAµU−1 + i∂µUU−1, Âµ → V ÂµV −1 + i∂µV V −1 . (1.3)

In the above, f = 2π/k where k is the (integer) level of the two Chern-Simons actions1.

The supersymmetries under which the above action is invariant can be found in Ref. [6].

Since our proposal involves orbifold 2-planes, let us briefly review some relevant facts.

There are three types of orientifold 2-planes in type IIA string theory [8], denoted O2−,

Õ2
+

and O2+, that give rise to gauge groups SO(2N), SO(2N + 1), Sp(N) respectively

when N D2-branes are brought near them. All correspond to an inversion of 7 spatial

directions transverse to the orientifold plane, and all can be uplifted to M-theory. The

uplifted orientifold planes are really M-theory orbifolds rather than orientifolds, in the

sense that they do not reverse the orientation of membranes or of the 3-form CMNP .2 This

is because in IIA string theory, the Z2 action reverses the BMN field, but preserves the RR

3-form CMNP . This implies an action on the M-circle as a reflection. After uplifting, the

end result is that it preserves the 3-form of M-theory but reflects eight spatial directions

including the M-circle. Due to their origin as orientifold planes, the M2-orbifold planes

carry an M2-brane charge, which is − 1
16 for the O2− case.

We can directly define the O2− plane in M-theory as the orbifold R8/Z2, where the

action of Z2 is diag (−1,−1,−1,−1) on the four complex coordinates of R8. With this Z2

action the supersymmetry near the plane is half-maximal and has 16 components just like

the supersymmetry on M2 branes. This will turn out to be the case we understand best.

For k > 1, the Z2 subgroup of D2 associated with the inversion of the R
8 is replaced with

Z2k in the definition of the moduli space. This suggests that the level k M-fold combines a

geometrical action of Z2k with an action on the branes. While we will not be able to present

a precise action of Z2k satisfying all the requirements, we will discuss some possibilities in a

subsequent section. Unlike k = 1, the general case is not likely to descend in a simple way

to a type IIA orientifold since a Z2k action with k > 1 will presumably mix the M-circle

with another circle.3

In the rest of this note, we present evidence for our conjecture that the theory whose

Lagrangian is given in Eq. (1.1) describes two M2-branes at a Z2k orbifold (with the action

of Z2k on the brane worldvolume fields appropriately defined).

1The quantization of the Chern-Simons coefficient for a non-simply-connected gauge group, G, is a little

subtle. See Appendix A for details.
2In contrast, orientifold 4-planes in type IIA lift to orientifold 5-planes in M-theory [9, 10].
3By compactifying a direction transverse to R8 one can relate it to a type IIA orbifold, however in this

case it becomes an orbifold 1-plane and carries the charge of fundamental strings rather than D2-branes.
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When the original version of this paper was nearly complete, the paper [11] appeared,

which has substantial overlap with our work. The original versions of our paper and of [11]

differed in a few significant respects, but most of these differences have now been resolved

in the revised versions. We thank David Tong and Neil Lambert for correspondence on

these issues. Another very recent paper discussing multiple M2-branes is Ref. [12].

2. Moduli space

The moduli space for the A4 theory was studied in Refs. [3, 6]. Here we will revisit this

moduli space and argue that the complete moduli space at level k is actually (R8×R
8)/D2k

once the gauge fields are taken into account. Here, D2k is the dihedral group, Z2 ⋉ Z2k

where the product is semidirect.

We begin with the action in Eq. (1.1). As noted in [6], generic scalar configurations for

which the potential vanishes correspond (up to gauge transformations) to diagonal matrices

XI , which we will parameterize by

XI =
1√
2

(
zI 0

0 z̄I

)
. (2.1)

Within the space of these diagonal configurations, there is a residual O(2) gauge symmetry,

acting by simultaneous rotations on zI and by simultaneous complex conjugation. However,

to describe the complete moduli space it will be important for us to take into account the

gauge fields.

Generically, the diagonal configurations (2.1) break the gauge group down to U(1), and

the remaining components of the gauge field become massive by the Higgs mechanism. Also,

expanding the potential about such configurations shows that physical scalar fluctuations

which take us away from a diagonal configuration are all massive.

We now write the classical action describing the dynamics of the light fields on the

moduli space. To do this, it will be convenient to include both the preserved U(1) gauge

field and the gauge field associated with the U(1) that rotates zI . Together with the

diagonal configuration (2.1), we take

Aµ =

(
aµ 0

0 −aµ

)
, Âµ =

(
âµ 0

0 −âµ

)
(2.2)

with the normalization chosen so that aµ and âµ have gauge transformations

aµ → aµ − ∂µθ, âµ → âµ − ∂µθ̂ (2.3)

where θ and θ̂ have period 2π. This gives an action

S =

∫
d3x

(
−
∣∣∂µzI + i(aµ − âµ)zI

∣∣2 +
k

2π
ǫµνλ

(
aµ∂νaλ − âµ∂ν âλ

))
. (2.4)
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We further define

cµ = aµ + âµ, bµ = aµ − âµ (2.5)

so that cµ is the gauge field associated with the preserved U(1), and bµ is associated with

the U(1) that rotates zI .

The resulting action is

S =

∫
d3x

(
−
∣∣∂µzI + ibµzI

∣∣2 +
k

4π
ǫµνλbµfνλ

)
, (2.6)

where

fµν = ∂µcν − ∂νcµ . (2.7)

The gauge transformations are

zI → ei(θ−θ̂)zI bµ → bµ − ∂µθ + ∂µθ̂ cµ → cµ − ∂µθ − ∂µθ̂ . (2.8)

Note that the last term in the action is gauge invariant because of the Bianchi identity for

f .

To this action, we can add a Lagrange multiplier term

Sσ =

∫
d3x

1

8π
σ(x)ǫµνλ∂µfνλ (2.9)

and treat f as an independent variable. The integral over σ enforces the Bianchi identity.

To be precise, we need σ to be periodic with period 2π. To see this, note that for monopole

configurations we can have, 4

∫
d3x

1

2
ǫµνλ∂µfνλ =

∫

M
dF =

∫

∂M
F ∈ 4πZ . (2.10)

For this, it is essential to note that f is the sum of field strengths for two gauge fields

which are normalized conventionally (so the gauge transformation is the derivative of an

angle without any numerical factors). So rather than a standard delta function, we want

a periodic delta function that allows these monopole configurations. This is ensured by a

2π periodicity of σ.

Starting from the combined action

S =

∫
d3x

(
−
∣∣∂µzI + ibµzI

∣∣2 +
k

4π
ǫµνλbµfνλ +

1

8π
σǫµνλ∂µfνλ

)
, (2.11)

the equation of motion for f gives

bµ =
1

2k
∂µσ . (2.12)

4In this theory, the minimum monopole charge is double the one implied by the Dirac quantization

condition. We justify this in Appendix B.
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Using this, the full action reduces to

S = −
∣∣∂µzI +

i

2k
zI∂µσ

∣∣2 . (2.13)

The gauge invariance transformation on b translates to a gauge invariance transformation

on σ

zI → eiα(x)zI σ → σ − 2kα(x) . (2.14)

We can now fix our gauge to set σ = 0. After doing this, we still have residual gauge

transformations

α(x) =
πn

k
, (2.15)

which leave σ = 0. The moduli space is therefore characterized by a set of eight complex

numbers zI , with gauge transformations that take

zI → eπin/kzI (2.16)

and

zI → z̄I . (2.17)

Here, the Z2 action and the Z2k action don’t commute with each other for k > 1, and the

combined group is the dihedral group D2k. We conclude that the moduli space for level k

is

(R8 × R
8)/D2k . (2.18)

For k = 1, this is just

(R8 × R
8)/(Z2 × Z2) , (2.19)

the moduli space of the superconformal theory that describes the infrared physics of max-

imally SUSY SO(4) Yang-Mills theory in 2+1 dimensions [8]. In contrast, the supercon-

formal theory arising from SU(3) gauge theory should have moduli space5

(R8 × R
8)/S3 . (2.20)

For higher k, we conjecture that this theory describes the low-energy physics of two M2-

branes in M-theory with a generalized orbifold action on R
8. We expect that the geometrical

action is R
8/Z2k. However, the orbifold group must also act on the M2-brane fields, since

the moduli space is not just (R8/Z2k)
2/Z2.

The orbifold in question should preserve 16 supersymmetries and maximal SO(8) R-

symmetry for all k and have the desired action Eq. (2.16) on moduli space. However,

5In general, the moduli space for gauge group G with rank n and Weyl group W is R
8n/W.
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except for k = 1, 2 there appears to be no known orbifold with this property.6 The most

supersymmetric singularities of the form R
8/Z2k in M-theory are [13, 14]:

(z1, z2, z3, z4) → (ωz1, ω−1z2, ωz3, ω−1z4) (2.21)

where ω2k = 1. Perhaps surprisingly, this action preserves as many as 12 supersymmetries,

or N = 6 in 3 dimensions, and also gives rise to an R-symmetry SU(4) × U(1) [13, 14].

Even more intriguing, there are two exceptions to this rule – the cases with k = 1, 2. The

former obviously preserves N = 8, while the latter has also been claimed to do the same

[13]. Though for general k this orbifold does not appear to meet all the requirements, it is

possible that it actually preserves more supersymmetry and R-symmetry than is apparent

for reasons that we do not yet understand.7

For the present, since we do not have a precise formulation of the theory whose moduli

space we have found, we simply think of it as the theory of 2 M2-branes on an “M-fold,”

and consider the A4 theory at level k to give a precise definition of the Z2k “M-fold”.

3. Chiral primary operators

In Ref. [6], it was pointed out that it is impossible to construct operators in the A4 theory

which lie in tensor representations of SO(8) with an odd number of indices. This presented

a puzzle for the interpretation of the A4 theory as the worldvolume theory of a stack of

M2-branes, since such theories are believed (at least for three or more M2-branes) to have

a spectrum of chiral operators that includes these odd-indexed representations. We will

now see that with our proposed interpretation, this is no longer a problem.

To see this most explicitly, let us focus on the case k = 1 and consider the UV gauge

theory from which the superconformal field theory flows. For the SU(3) theory (or SU(N)

with N > 2), the scalar fields are seven Hermitian matrices, and we can construct operators

STr(Xi1 · · ·Xin) − SO(7) traces (3.1)

that should become a subset of the chiral primary operators in the infrared limit (the

others are generated by the SO(8) rotations that are not manifest in the UV).8 On the

other hand, in the SO(4) gauge theory, the scalars are antisymmetric matrices, so the

6We thank Nima Arkani-Hamed, Neil Lambert and David Tong for their comments on this issue.
7This could be an M-theory analogue of the mechanism in Ref. [15] where a geometrical or supergravity

analysis yields misleadingly low amounts of supersymmetry but additional stringy modes enhance the

supersymmetry. In our system, the fact that Z2k acts on the M2-branes may also be relevant.
8Other trace structures give additional operators. For SU(2), such operators with an odd number of

SO(7) indices do vanish identically, but for this case, the moduli space is only eight dimensional.
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operators (3.1) vanish identically for odd numbers of indices. This strongly suggests that

the chiral primary operators with odd numbers of SO(8) indices will not be present in the

infrared theory either, so there is no conflict with identifying the IR limit of the SO(4)

theory with the k = 1 A4 theory.

Generally, we expect that superconformal field theories that have the same moduli

space should also have the same spectrum of chiral operators [16], so perhaps the discussion

in this section is somewhat redundant. However, it is interesting to understand explicitly

why the odd-indexed representations do not show up in the SO(4) case.

4. Points on the moduli space

In this section, we discuss more explicitly the connection between points on the moduli

space of the A4 theory and configurations of M2-branes on an orbifold. We begin with the

simplest case k = 1. Here, the conjecture is that the moduli space should coincide with the

moduli space of two M2-branes on a Z2 orbifold. This arises in the strong coupling limit

of type IIA string theory from a configuration of two D2-branes on an O2− orientifold.

To understand the properties of such an orbifold, let us begin by considering D2-branes

at an O2− orientifold. The low-energy worldvolume theory for these is SO(4) maximally

supersymmetric gauge theory. The scalars in this theory are antisymmetric 4× 4 matrices,

and configurations for which the scalar potential vanishes are gauge equivalent to

Xi =




0 ai 0 0

−ai 0 0 0

0 0 0 bi

0 0 −bi 0




. (4.1)

Residual gauge transformations preserving this form allow us to make the identifications

(ai, bi) ≡ (bi, ai) ≡ (−ai,−bi) ≡ (−bi,−ai) , (4.2)

so the set of scalar field vevs with vanishing potential may be described by the space

(R7 × R
7)/(Z2 × Z2).

The full moduli space of the IR limit of the SO(4) gauge theory is (R8×R8)/(Z2×Z2),

which we can describe by two vectors in R
8, subject to the identifications

(AI , BI) ≡ (BI , AI) ≡ (−AI ,−BI) ≡ (−BI ,−AI) . (4.3)

We can interpret A and B as the locations of the two M2-branes. However, note that

(AI , BI) and (AI ,−BI) are inequivalent, so the moduli space is not just a product of two
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R
8/Z2’s divided by the symmetric group, as one might naively expect. In this characteri-

zation, a special role is played by configurations (AI , AI) where the branes are coincident.

These are invariant under the transformations

(AI , BI) ≡ (BI , AI) (4.4)

and so lie at special points of the moduli space.

Now, going back to the A4 theory for k = 1, we had derived the moduli space as the

space of complex vectors zI up to gauge transformations

zI → −zI zI → z̄I . (4.5)

The first of these has no nontrivial fixed points, while the second has a fixed point for real

vectors. Thus, for our choice of gauge, it is natural to make the associations

Re(zI) = AI + BI

Im(zI) = AI − BI (4.6)

so that the fixed points of complex conjugation (equivalently, the special points on the

moduli space preserving SU(2)) are identified with coincident branes. It may seem puzzling

at first that there seem to be more configurations than those with zI real that preserve

SU(2) symmetry, namely any set of zI which lie in a line on the complex plane. However,

for these configurations, we do not have a free abelian gauge field that can be dualized to

a scalar, so these are all gauge-equivalent to the configurations with zI real.

So far the discussion has dealt with k = 1. It would be nice to carry out a similar

analysis for higher k, in particular to find the precise relation between our coordinates zI

on the moduli space and the positions of the branes.

For k > 1, we can also offer a rather heuristic geometrical explanation for the origin

of D2k as follows (we expect this explanation could be made more precise with a better

understanding of the “M-fold”). Suppose we bring two M2-branes to a Z2k orbifold. It

is plausible that the result is, to start with, a theory on 2k copies of the original branes,

namely an SU(2)2k quiver gauge theory. The quiver diagram is a 2k-gon with the gauge

fields at the vertices. The form of the action Eq. (1.1) is consistent with the presence

of 2k SU(2)’s, except that at the origin of moduli space the orbifold plane causes k of

these SU(2)’s to get identified with each other, so that their action is k times the action

of a single (level-1) SU(2) Chern-Simons gauge field. Likewise, the other k SU(2)’s get

identified and their action is k times that of another level-1 SU(2) Chern-Simons gauge

field, appearing in the action with a negative sign. Given the quiver interpretation, the

associated symmetry group should be the set of all discrete transformations that map the
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quiver to itself. This includes cyclic rotations as well as reflections along any axis joining

opposite vertices. By definition, this is the group of symmetries of a 2k-gon, namely D2k.

5. Large k and compactification

In this section, we will see that the findings in Ref. [4] fit very naturally with our inter-

pretation. In that paper it was found that expanding the A4 action about a special point

on the moduli space where SU(2) gauge symmetry is preserved gives an action which is

at leading order the maximally supersymmetric U(2) Yang-Mills theory. The extra U(1)

comes from dualizing the scalar field that corresponds to multiplying all vevs by a constant.

This is not really a free scalar but is approximately free at large distances from the orbifold,

corresponding to the fact that the theory on two M2-branes effectively has a centre-of-mass

mode when the branes are far away from the orbifold plane.

The procedure of [4] gives the Yang-Mills action plus an infinite series of higher dimen-

sion operators. While the latter can be decoupled in the limit gY M → ∞, the Yang-Mills

action simultaneously becomes strongly coupled in this limit. So there is no limit where one

really has finitely coupled D2-branes. However, the the analysis of [4] was for level k = 1.

Repeating it for general k, we find the following. By rescaling X →
√

kX,Ψ →
√

kΨ, we

easily see that the action Eq. (1.1) acquires an overall multiplicative factor of k. Denoting

this scaled action for the level-k theory as L(k), we have

L(k) = kL(k=1) . (5.1)

Now in Ref. [4] the action L(k=1) was examined in the presence of a large vev 〈Xφ(8)〉 = v

(there, this vev was called R and later gY M ). It was shown (see Eq.(3.23) of that reference)

that

L(k=1) =
1

v2
L0 +

1

v3
L1 + O

(
1

v4

)
(5.2)

where L0 is the action for an N = 8 SU(2) Yang-Mills theory.

For the Lagrangian L(k), we must define the Yang-Mills coupling by

g2
Y M =

v2

k
. (5.3)

Taking the limit k → ∞, v → ∞ with gY M fixed, we see that the Yang-Mills part of the

action has a finite coupling gY M . However, successive terms scale to zero in this limit.

Therefore in the limit we obtain precisely the D2-brane worldvolume theory with a tunable

finite gauge coupling gY M , and no higher dimension operators.

With our interpretation of the theory, this observation is exactly what we would expect.

We have argued that points on the moduli space preserving SU(2) correspond to taking
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two coincident M2-branes away from an orbifold fixed point. While a precise definition of

the orbifold action is lacking, for this discussion it is sufficient to assume it leads to an

opening angle that shrinks like 1/k as is the case for standard orbifolds. Now, in the limit

where k → ∞, the opening angle of the orbifold goes to zero, so at some point sufficiently

far out on the moduli space, the local geometry approaches that of a cylinder R
7 × S1.

The scaling limit below Eq. (5.3) precisely takes the two M2-branes out into this cylindrical

space, where they should behave like two D2-branes in type IIA string theory. So we expect

a finitely coupled U(2) Yang-Mills theory – and that is exactly what we find.

6. Discussion

In this paper, we have found that the moduli space for the Bagger-Lambert A4 theory at

level k is (R8 × R
8)/D2k, where D2k is the dihedral group of order 4k. Our interpretation

is that the theory describes M2-branes on a Z2k “M-fold,” a generalization of the Z2 case

defined by the uplift of the O2− orientifold in string theory.

We feel compelled to mention that the superconformal theories defined as the IR fixed

point of U(2), SO(4), SU(3), SO(5), and G2 all have moduli spaces of the form

(R8 × R
8)/W (6.1)

where W is respectively D1, D2, D3, D4, and D6. Within our interpretation, only the

identification of the level k = 1 theory with D2 seems natural, however, it may be that

the level k = 2 and k = 3 cases happen to coincide with the infrared limit of SO(5) and

G2 maximally supersymmetric gauge theory respectively.9 This must be true unless there

exist pairs of distinct SO(8) superconformal field theories with the same moduli space.

The discussion in the limit of large-order Z2k orbifolds bears a strong resemblance to

the deconstruction approach to M5-branes discussed in Ref. [17]. In section IIIB of that

paper, a limit is taken where the order of the orbifold grows large and simultaneously the

D-branes are moved far away from the orbifold so that effectively they end up propagating

on a cylinder. It would be interesting to explore whether the corresponding limit in our

paper is related to deconstruction and M5-branes.

Appendix A. Chern-Simons Level Quantization

The purpose of this appendix is to review the quantization of the Chern-Simons level

for the non-simply connected gauge groups, SO(n). None of the results are original but,
9As we mentioned in Section 2, there is a plausible maximally supersymmetric orbifold [13] for precisely

k = 2, suggesting a distinctive role for this case along with k = 1. The k = 2 orbifold is related to the

strong coupling limit of D2-branes at an O2+ orientifold. A more detailed discussion of this case may be

found in [11].
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particularly for the spin Chern-Simons case, they are not as well-known as they should be.

We would like to thank Dan Freed for guiding us through the computation below.

As shown by Dijkgraaf and Witten [18], the level of a Chern-Simons theory with gauge

group, G, is specified by an element a ∈ H4(BG). If H4(BG) is one-dimensional, then a

is an integer multiple of the generator, and the choice of Chern-Simons action comes down

to specifying that integer. When G is not simply connected, it is convenient to write the

normalization of the Chern-Simons action for G relative to that of the Chern-Simons action

for the simply connected covering group, G̃. That is, the homomorphism G̃ → G induces a

map H4(BG) → H4(BG̃), and we might wish to note that the generator of H4(BG) maps

to some multiple of the generator of H4(BG̃).

On a spin-manifold (which we certainly have, in our case, as we are interested in

supersymmetric theories), one can define a refined version of Chern-Simons theory, called

spin Chern-Simons [19]. The precise definition of the action is slightly more subtle (it

involves the choice of a spin structure on the 3-manifold), but the variation of the action,

as one varies the gauge connection is the same as for conventional Chern-Simons. The only

difference, from our perspective, is that the quantization condition on the level is somewhat

relaxed.

The level for spin Chern-Simons is specified by an element, a ∈ E4(BG), of what Dan

Freed calls [20] E-cohomology, which combines information from the integer cohomology

with some mod-2 information. In particular, for any space, X, there is a long exact sequence

· · · → Hn(X) → En(X) → Hn−2(X, Z/2)
β◦Sq2

−−−−→ Hn+1(X) → En+1(X) → . . . (A.1)

where the connecting homomorphism is the integer Bockstein, composed with the second

Steenrod square.

Let’s apply this to the classifying spaces for G = SO(n), G̃ = Spin(n). For n ≥ 5,

n = 3, H4(BSO(n)) = Z, with generator p1. H4(BSO(4)) = Z ⊕ Z, with generators p1

and e. H2(BSO(n), Z/2) = Z/2, with generator w2. The above long exact sequence gives

rise to short exact sequences

0 → H4(BSpin(n))
≃−→ E4(BSpin(n)) → 0

α ↑ γ ↑
0 → H4(BSO(n))

β−→ E4(BSO(n)) → H2(BSO(n), Z/2) → 0

(A.2)

For n ≥ 5, the map α is multiplication by 2 (p1 for a Spin(n) bundle is always even),

as is the map β. Hence the map γ is an isomorphism. Thus, for SO(n), n ≥ 5, the

Chern-Simons coefficient k must be even, while the spin Chern-Simons coefficient can be

any integer.
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For n = 3 the map α is multiplication by 4 (see, e.g., equation (4.11) of [18]). β is still

multiplication by 2, hence γ is multiplication by 2. Thus, for ordinary SO(3) Chern-Simons,

k ∈ 4Z, whereas for SO(3) spin Chern-Simons, k ∈ 2Z.

For SO(4), the case of actual interest in this paper, the map α =
(

1 1
1 −1

)
has index-

2. The map β also has index-2. Hence γ is an isomorphism. Thus, for ordinary SO(4)

Chern Simons, the two SU(2) levels satisfy kL,R ∈ Z, with kL − kR ∈ 2Z. For SO(4) spin

Chern-Simons, kL,R can be any integers.

As it turns, for the Bagger-Lambert A4, we are interested in kL = k, kR = −k, so

the carry-away from this analysis is that any integer value of k is allowed, and there is no

distinction between the ordinary and spin Chern-Simons cases.

Appendix B. Monopole Charge Quantization

In this appendix, we briefly explain why the quantization (2.10) of the monopole charge in

this theory is such that the minimum charge is twice the one implied by Dirac’s quantization

condition. It is well known that for ’t Hooft-Polyakov monopoles, the minimum charge

is actually twice the Dirac value [21]. In that case, all fields transform in the adjoint

representation of the gauge group SU(2), so effectively the gauge group is SO(3).

In the theory we are considering, the gauge field cµ corresponding to the unbroken U(1)

at generic points on the moduli space sits inside the diagonal SO(3) ∈ (SU(2)×SU(2))/Z2 ,

and all the matter fields transform in the adjoint of this SO(3), so the situation sounds

similar to the ’t Hooft-Polyakov case. However, while monopole configurations in the ’t

Hooft-Polyakov case are classified by π2(SO(3)/SO(2)),10 monopole configurations in the

BL theory should be classified by elements of π2(SO(4)/SO(2)). The embedding of the

diagonal SO(3) in SO(4) induces a natural map

π2(SO(3)/SO(2)) → π2(SO(4)/SO(2)) ∼ Z → Z (B.1)

but it is not obvious that this is an isomorphism. In particular, if the generator of

π2(SO(3)/SO(2)) mapped to the square of the generator of π2(SO(4)/SO(2)), the BL

theory would contain monopoles with the minimal Dirac charge. It turns out that there

can be no such configurations, since the map (B.1) is onto, as we will now show using the

following theorem [22].

Theorem: If p : Y → B is a fibration and if y0 ∈ Y , b0 = p(y0), and F = p−1(b0),

then taking y0 as the base point of Y and of F and b0 as the base point of B, we have the

10In general, monopole solutions are classified by π2(G/H) where G is the gauge group and H is the

unbroken subgroup.
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exact sequence:

· · · → πn(F ) → πn(Y ) → πn(B) → πn−1(F ) → ...

For our purposes, we take

Y = SO(4)/SO(2) = (SU(2) × SU(2))/U(1)

F = SO(3)/SO(2) = SU(2)/U(1)

B = SU(2) .

We can represent Y by pairs (U, V ) of SU(2) matrices where

(U, V ) ≃ (Ueiθσ3 , V eiθσ3) .

Take the fibration map p to be (U, V ) → UV −1. We can take y0 = (1, 1) so that F is the

subgroup of Y such that U = V , which is SU(2)/U(1) = SO(3)/SO(2). Now, a particular

part of the exact sequence is

· · · → π2(SO(3)/SO(2))
a−→ π2(SO(4)/SO(2)) → π2(SU(2)) → . . .

Since π2(SU(2)) = 0, exactness implies that the map a is onto, as we wanted to show.
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