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ABSTRACT
We study supersymmetric compactifications of type II strings on eightfolds to two
dimensions. It is demonstrated that the type IIB string on an eightfold is free of gravita-
tional anomalies. T-duality requires that this theory when further compactified on a circle
must have a vacuum momentum; this is explicitly shown to be present and to have the
right value. A subtlety in the relation of IIB compactifications and M-theory orientifolds

to two dimensions is pointed out.
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1. Introduction

Compactifications of string theory to 2 spacetime dimensions are interesting for var-
ious reasons, one of which is the relationship to M and F theory in 3 and 4 dimensions
respectively (this holds for the type ITA string). Certain consistency conditions arise when
we require the compactification to satisfy the equations of motion[l][P]. The type IIB
string on an 8-fold leads to chiral theories in two dimensions. Since type ITA and IIB are
T-dual to each other after compactification on a circle, there are various interconnections

between the above properties. This will be the subject of the present paper.

2. Type IIA on eightfolds

Compactification of the type ITA string on an 8-fold is potentially destabilised by a
term of the form [ B A Iy which arises at 1-loop level[§]. Here B is the 2-form gauge field,
and Iy is a linear combination of the Pontryagin classes p, and p?, whose integral on an
eightfold gives the Euler characteristic x. (A similar term [ C A Ig arises in M-theory[d],
where this time C' is the M-theory 3-form field.) A naive compactification of type ITA on
an eightfold thus gives a tadpole term [ B in two dimensions (and analogously, M-theory
gives a tadpole f C' in three dimensions), proportional to the value of .

It was observed in Ref.[l] that for M-theory compactifications, this tadpole also re-
ceives contributions from the classical term [ C'AdC A dC if we allow a background value
of the 3-form field on the eightfold. This contribution is proportional to [ dC A dC' over
the eightfold. Clearly the analogous result holds also for type ITA compactifications. We
will discuss signs and factors presently.

Finally, in Ref.[fJ] it was noted that the presence of branes in the vacuum, filling
spacetime, contributes to the tadpole as well. (Thus we need 1-branes for ITA and 2-
branes for M-theory). Each brane modifies the tadpole by an integer value.

Combining the above results, the condition for a consistent type IIA compactification
on an eightfold are:

X 1

where n is the number of branesﬁl.
To check the signs and factors in this expression, let us compare type IIA on K3 x K3

with the heterotic string on 7% x K3. These two theories are dual to each other, from

1 Note that we differ from Ref. [ in the sign of the second term above. We are grateful to E.

Witten, K. Becker and M. Becker for correspondence on this point.
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six-dimensional string-string duality. For the heterotic string on K3, we have a condition
relating the instanton number of the background gauge fields on K3 and the number of M-
theory 5-branes in the vacuum, which can arise if we view the heterotic string as M-theory
on S'/Z,[[]. This condition may be written[d]:

24 /trF/\F—n:0 (2)

1672

where the second term is integrated over K3. n is the number of M-theory 5-branes, but
in the present context they are wrapped on T* to become 1-branes. Clearly the number
of 1-branes is bounded above by 24. Moreover, the sign of the second term (the instanton
number) is such that instantons, rather than anti-instantons, contribute a negative integer
to the equation.

Equation ([) integrated over K3 x K3 gives precisely this result, since the Euler of
K3 x K3 is (24)2, while the second term gives rise (generically) to U(1) gauge fields on
one K3 and their Pontryagin class is then integrated over the second K3. Note that this

term is integer in Eq.([l)) as long as [%] is an integral cohomology class, which (as shown

in Ref.[[) is true whenever 3 is integral. Finally, the last term is the number of IIA
1-branes, which are M-theory 2-branes wrapped on the 11th dimension. So the last terms
are electric-magnetic dual between the two theories, as expected.

This confirms Eq.([ll), and shows that the number of branes in the vacuum is bounded
above by the Euler characteristic of the eightfold (this would not have been true if the
second term had the opposite sign).

Note that the second term of Eq.([[) takes values congruent to 1 mod integers if [4<]

is a half-integral cohomology class. In this case, 57 must also be congruent to i mod

integers.

3. Analogous issues for type IIB

On compactifying type IIB on a circle, it becomes equivalent to ITA on a circle under
T-duality. Thus it must possess the dimensional reductions of both the classical term
[ BAdC AdC and the one-loop term [ B A Ig. After reducing on a circle, the B-field
of type ITA becomes a 1-form A which measures the winding charge with respect to that

circle. Under T-duality this, in turn, becomes the Kaluza-Klein 1-form arising by reduction

2 An independent check of the sign in Eq.([]) can be made by examining Eq.(4.4) of Ref.[f].

This gives the same result.



of the 10D metric of IIB on the circle. Thus we must look for terms in type IIB which
reduce to [ AN dC AN dC and A A Ig in 9 dimensions.

To find the first of these is reasonably straightforward, except for a familiar subtlety:
for nonzero values of the self-dual 4-form D, the type IIB string does not have a covariant
action. Yet we need precisely terms depending on D™, since that field reduces to the 3-form
C in 9d. One way out is to make use of the so-called non-self-dual (NSD) [§] action for
type IIB in 10d. In this formulation, one starts by “forgetting” the self-duality condition
on D. An action can then be written down, with the property that its equations of motion
reduce to the correct ones after imposition of the self-duality constraint by hand.

In this formalism the D field has a kinetic term [ dD A xdD. This term involves the
metric via the operation of taking the Poincare dual. However, “morally speaking” it is
topological, since the 5-form dD is eventually set equal to its dual. Thus on compactifica-
tion to 9d, it can give rise to a topological term. The D field reduces to a 3-form in 9d,
while one of the index contractions requires the metric component g,10 which is just the
KK gauge field A,. (we label the dimensions (z',2?,...21%) where z! is the time). As a
result, one gets the desired term [ A A dC A dC in 9d.

The one-loop term is far more subtle. It is known that in 10 dimensions there is no
one-loop correction in type IIB analogous to the term [ B A Ig in type IIA. Moreover, one
can easily convince oneself directly that there is no purely gravitational term that one can
write down in 10d which reduces to [ A A Ig in 9d with A being the KK gauge field. In
fact, we will argue that no modification is required in 10d to the type IIB action, but as
soon as one compactifies on a circle, however large, there is a radius-dependent term of

the desired form in 9d. We will return to this point below.

4. Type IIB on eightfolds: the anomaly

Consider the supersymmetric compactifion of type IIB on an eightfold. We will con-
sider manifolds of holonomy spin(7), SU(4) and subgroups of SU(4). Joyce eightfolds[J] of
spin(7) holonomy lead to (0,2) spacetime supersymmetry in 2 dimensions, while Calabi-
Yau eightfolds of SU(4) holonomy give (0,4) supersymmetry. Other interesting cases are
K3 x K3 leading to (0, 8) supersymmetry, and T®/Z, (an orbifold which cannot be blown
up to a smooth manifold, but gives consistent string compactifications all the same) where
the supersymmetry is (0,16). In each case, the supersymmetry is counted in terms of

one-component Majorana-Weyl spinors.



The number of scalars from a CY eightfold in 2 dimensions is counted as follows: the
10d metric gasn gives rise to hi; + 2h3; non-chiral scalars, while the two 2-form fields
By and B MmN produce 2k non-chiral scalars. Two more come from the 10 dimensional
scalars of type IIB. Finally, the self-dual 4-form D7, pg leads to (by ) = hgy+2hg; scalars
of + chirality and (b)) = 2 + h3, + 2h3; scalars of — chirality.

Combining, we have n(¢+) = 3hy1 +2hs1 +2+b; and n(¢p~) = 3h11 + 2h3; +2+ bI.
With (0, N) supersymmetry, the supergravity multiplet is (g,.,$, Ny, N ™). Let us
assume that we have some number n, /N of chiral matter multiplets (N¢*, N¢™T) (thus,
n4 counts the number of individual scalars, which is more convenient), along with n? anti-
chiral scalars ¢, and n? anti-chiral Majorana-Weyl fermions 1~ which are supersymmetry
singlets.

Since one scalar goes into the gravity multiplet, we have ny = n(¢*) — 1, n® =

n(¢~) — 1. The difference is given by
ny—n? =by —bf =—7 (3)

where 7 is the signature of the eightfold.

The gravitational anomaly from the supergravity multiplet, combining contributions
from the gravitinos and the spin—% fermions, is N times the anomaly polynomial. Chiral
scalars contribute 1—12 in the same units, and Majorana-Weyl fermions ﬁ. Thus the total

anomaly is proportional to
TL_|_—TLQ_5+TL_|_—’I’L1£ (4)
12 24

The fermions are counted as follows: the spin—% particles in 2 dimensions come from

N +

the gravitinos in 10 dimensions, and their number is given by the Dirac index of the
internal manifold. An equal number of spin—% particles in two dimensions come from the
spin—% fermion in 10 dimensions. All these go into the supergravity multiplet. Additional
spin—% fermions arise from the 10d gravitinos, and their number is given in terms of the

Rarita-Schwinger index. Therefore
n? —ny =2 ind(Ps2) (5)

where the 2 on the RHS comes from the fact that there are 2 gravitinos in 10 dimensions.

In terms of Pontryagin classes, we have

37 , 31

— =P (6)

ind(D3/2> = ﬁom 180
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where

1
p1 = —§t7°R2
1 1
Py = _ZtTR4 + g(trRQ)2
Using the additional relations
N
2 8
N 1 7
ind = = (—p?—
m (D1/2) 5 1440(41?1 P2)
we find that
7
Py = 120N + ?X
4
p? = 480N + ?X

JFrom these relations, it follows that

The anomaly thus becomes

N_ T _8N-2/3
12 24

and the condition for anomaly cancellation reduces to

24N —37+x =0

(11)

(12)

This is actually an identity, as can be easily seen by replacing each term by its value

in terms of Pontryagin classes, using Eq.(§) and the Hirzebruch signature theorem

T Tps — pi)

:4_5(

(13)

Thus we have demonstrated explicitly that the type IIB string on any eightfold pre-

serving some supersymmetry is anomaly-free in 2d.
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5. Type IIA and IIB on eightfolds: the spectrum

We can easily write down the complete spectrum of type ITA and IIB on an eightfold.

For type IIA, the supersymmetry is labelled (& and the supermultiplets are the su-

> %)
pergravity multiplet (g,.,, ¢, & SVt 5 w zp+ N4p™). We assume a number (2n, /N) of
(non-chiral) matter multiplets (§¢*, £¢~, 2 ¢+ Nap=). Then it is easy to see that for a

CY
ny
2

where the last equality follows from the identity[P]:

= hi1 + ho1 + h31 = % — 8+ 2ho (14)

hi1 — ho1 + h31 = % -8 (15)

For type IIB, we need to use the index calculations of the previous section in addition
to the cohomology of the eightfold. We have seen at the beginning of the previous section

that ny and nf, the number of + and — chirality scalars are given by

ny = 3hi1 +2hs31 + 1 +bZ

(16)
n® = 3hyy + 2hay + 1+ bF
Following Eq.([[3), this can be rewritten
2x
= 4h — —8N
ny = 4hz1 + 3 (17)
TLQ_5 =4hy1 + X

Notice that, as x is divisible by 6 for manifolds of SU(4) holonomy, n, is divisible by 4,
which should be the case since 4 scalars fit into a supermultiplet. On the other hand, x
is not divisible by 4 except under more stringent conditions such as elliptic fibration[l], so
that n? is not necessarily divisible by 4.

Since, by virtue of supersymmetry, n also counts the number of + chirality fermions,
it only remains to count those of minus chirality, which of course follows from the index

theorem of the previous section. The result is
nlf = 4h21 (18>

Observe that the ITA and IIB spectra written above are invariant under mirror sym-
metry, which for eightfolds maps hp, to h4—, 4. This map preserves both x and hsy, which

are the only invariants that determine the spectrum.
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This completes the general analysis of the spectrum for type IIB on an eightfold. We
now describe a few examples, before turning to a discussion of the relationship with type

ITA after further compactification on a circle.

(i) Joyce Manifolds

This is the case of spin(7) holonomy, and (0, 2) spacetime supersymmetry in 2d. The
Joyce eightfolds[] are blown-up orbifolds of the eight torus, T%/T, where T" is a suitable
discrete group. It was shown by Joyce that there are essentially five types of singularity
in the space T®/T" which are to be blown up to construct the manifold.

The Joyce manifolds have x = 144 and 7 = 64, verifying Eq.([2) with N = 2. The

spectrum is
Ny =2+2by+bs—64, n® =242by+bs, nY¥ =2bs (19)

(ii) Borcea eightfolds
These are Calabi-Yau 4-folds of the form (K3 x K3)/Z, with SU(4) holonomy, and
lead to (0,4) supersymmetry for Type IIB compactifications[[[(]. These manifolds are

labelled by a set of integers (71, a1, d1; 72, as,d2). The Euler characteristic and signature

are
X = 6(ry — 10)(ry — 10) + 288
(20)
T =2(ry —10)(re — 10) + 128
verifying Eq.([[J) with N = 4. From the Hodge diamond one finds
1
h21 = 5(T1 + 7’2) — 6(CL1 —+ CLQ) — —(7‘17’2 — CL16L2) + 22 (21)

2

These data suffice to determine the spectrum. The mirror transformation acts, for these
manifolds, as r; — 20 — r; with a; unchanged, and it is evident that the above data are
invariant under this.
(iii) K3 x K3

This is the case of SU(2) x SU(2) holonomy and (0, 8) supersymmetry. The relevant

invariants are
X = 576, T = 256, ha1 =0 (22)

verifying Eq.([3) with N = 8. Thus we have
ny =320, n? =576, n¥=0 (23)
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This reproduces the result of Ref.[I] for K3 x K3.

(iv) T%/Z,
For this singular space, the holonomy is Zs and the supersymmetry is (0,16). The

topological invariants have to be computed in the orbifold sense, and one finds[[[J]:
X = 384, T = 256, ha1 =0 (24)

Thus the spectrum is

ny =128, n? =384, n¥=0 (25)

It has been noted in Ref.[I3] that this compactification is dual to the orientifold of M-
theory on T9/Zy (this and related cases have been studied in more detail in Ref.[[d]).

However, in the M-theory case one finds the spectrum in the form:
ny =128, n? =128 n¥ =512 (26)

which is equivalent to the previous expression only after bosonization of the 512 chiral
fermions.

The different forms of Eqgs.(B5) and (B) are not accidental, but closely related to the
geometry of the corresponding compactifying spaces. In the case of IIB on T®/Z, we have
28 = 256 fixed points, and a chiral boson is obtained as the twisted sector for each one. For
M-theory on T°/Z, there are instead 2% = 512 fixed points, and a chiral fermion arises as
the twisted sector for each one. Since M-theory does not possess a 1-brane, these twisted
sector multiplets must appear symmetrically at the fixed points.

It is amusing that M-theory seems to “know” about bosonization. This also has a

nontrivial consequence which we will point out in the following.

6. T-duality and the vacuum momentum

Suppose we compactify type IIA and IIB on the same eightfold, and then further
on a circle to 0 + 1 dimensions. T-dualizing along the circle maps one theory to the
other. Now we have an apparent puzzle: type ITA has a 2-form tadpole in 2d, which will
become a 1-form tadpole in 1d, and this is proportional to the Euler characteristic x of
the eightfold. However, we have found no inconsistency for type IIB on the eightfold to

two dimensions, so the inconsistency required by T-duality must arise upon compactifying
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one further dimension. Moreover, it must take the form of a tadpole for the KK 1-form
A= g2

Recently it was pointed out[[J], in the particular case of K3 x K3 compactification,
that this can be understood in terms of the nonzero vacuum values of Ly and L arising
from free fields on a cylinder. Here we will prove that the correct vacuum momentum is
obtained in the general case, and will examine this point in a little more detail.

For 2d field theories on a cylinder, the generator of translations along the compact
direction is Ly — Lg. Thus, a nonzero value of this operator in the vacuum implies that,
from a 2d point of view, there is a nonzero momentum in the vacuum state. Under T-
duality, this will turn into a nonzero winding charge of the vacuum, precisely what we
would expect in a theory which has a 2-form tadpole in 2d. The tadpole must have the
precise value Y.

Given the spectrum of type IIB in 2d, we use the fact that a free periodic boson has

vacuum energy —2—14 while a free periodic fermion has energy i. Thus, associating Lg to

what we have earlier called 4 chirality, we have, for type IIB on an eightfold,

— 1
(LoJvae =0, (Lo)vac = 55 (n* —n?) (27)
where the first equation is a consequence of the chiral supersymmetry in 2d. From Egs.([[7])

and (L), it follows that

X

(LO - Z0)vac = ﬂ (28)

as desired.

Note that if the circle becomes large and we are effectively in two noncompact dimen-
sions, this effect goes away. The reason is that the operator Ly as conventionally defined
in conformal field theory has a zero-point contribution —2—14 for a free boson only if the
radius of the circle (the range of the o coordinate) is fixed to be 27, as is conventionally
done. For a circle of radius 27 R, the zero-point contribution is actually —ﬁ, so that
it goes away in the limit R — oo. This explains why there is no corresponding one-loop
term in the effective action of type IIB theory in 2 (or 6 or 10) dimensions, and yet the

prediction of T-duality with type ITA is satisfied.
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7. An M-theory subtlety

The example of IIB on T®/Z5, and its M-theory dual discussed in the previous section,
now poses a slight problem. We saw that M-theory produces the same spectrum but
in a fermionized form. From Eq.(Pf), the vacuum momentum for M-theory on T9/Z;

compactified on a further circle is actually — equal in magnitude but opposite in sign

X
24>
to that of type IIB on T®/Z5. The sign can be changed by redefining the coordinate 22 to
—22, but this choice of convention is no longer available once we have fixed the chirality
of the spacetime supersymmetry. In other words, type IIB on T®/Z, produces a theory
where the supersymmetry has + chirality and the vacuum momentum is positive, or else
by a change of convention, the supersymmetry has — chirality and the vacuum momentum
is negative. On the other hand, M-theory on T°/Z, gives a theory with supersymmetry of
+ chirality and negative vacuum momentum, or the other way around. This suggests that
the equivalence between the two theories is more subtle than was previously thought, as
long as the eightfold has nonzero y.

This may seem surprising given that the two theories are related by bosonization, but
the reason is that the fermion contribution to the zero-point values for Ly and L has
been calculated for periodic boundary conditions on the fermions around the circle. But
bosonization does not equate periodic bosons with periodic fermions.

One may expect a larger class of dualities between IIB on orbifolds of the form Mg/Z5
and M-theory on corresponding orientifolds (Mg x S1)/Z5. In these cases, the latter
theory will always have twice the number of fixed points as the former, since the extra
S1 contributes a pair of fixed points for each one of the original orbifold. Assuming a
symmetric distribution of twisted-sector states, it would seem that M-theory should always
give the fermionized form of the IIB compactification, as in the case we have discussed.

This would be interesting to confirm.
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