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ABSTRACT

We study BPS-saturated classical solutions for the world-sheet theory of a D-string

in the presence of a point charge. These solutions are interpreted as describing planar

3-string junctions, which arise because the original D-string is deformed by the presence

of the inserted charge. We compute the angles of the junctions and show that the vector

sum of string tensions is zero, confirming a conjecture of Schwarz that such configurations

are BPS states.
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D-branes[1] are those extended objects on which an open string can end. More pre-

cisely, a single D-brane is a state defined by having both ends of an open string end on

it. If a single end of an open string ends on a D-brane (and the other end goes to infinity

or terminates on a different brane) then in principle we face a problem with charge con-

servation: the charge of the open string appears to be lost. The resolution to this[2,3],

which brought about an important conceptual advance in the understanding of branes in

general, is that the world-volume theory of D-branes has certain couplings which render

this termination consistent.

As a result, the 2-form charge carried by the open string gets converted into the

gauge charge of the particle represented by its endpoint. This charge can be measured

by enclosing the endpoint by a (p − 1)-sphere within the p-brane. This has an important

consequence when p = 1[4,5]. In this case there is a discontinuity in the charge measured

on the 1-brane (D-string), so that it is not possible for both ends of the D-string to

remain D-strings. If we denote a fundamental string (F-string) as a (1, 0) string, and a

D-string as a (0, 1) string, then when these two meet, the third “outgoing” string must be

a (1, 1) string. In general, 3-string junctions exist where three open string carrying charges

(pi, qi), i = 1, 2, 3 meet at a point, and charge conservation requires
∑

i pi =
∑

i qi = 0.

(We assume that the three strings are all oriented the same way with respect to the

junction.)

(p   , q    )

(p   , q    )

(p   , q    )22

3 3

11

Fig.1: A 3-string junction.

It was conjectured in Ref.[5] that such 3-string junctions correspond to BPS saturated

states in the theory, whenever the configuration consists of straight strings going off to

infinity from the junction along definite angles. The angles are such that the vector sum

of string tensions is zero. These 3-string junctions recently played an important role in
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Ref.[6] where they were needed to explain the origin of exceptional symmetries in F-theory,

following the proposal of Ref.[7].

In what follows, we provide evidence for the existence of BPS saturated 3-string junc-

tions having precisely the properties described above. Instead of looking for them as

solutions of the classical supergravity field equations, as suggested in Ref.[5], we will find

them by examining worldsheet properties of the D-string.

The worldsheet field theory for a single D-string is given, in the linearized approxi-

mation, by a 2d supersymmetric U(1) gauge theory. The bosonic fields are the gauge field

and 8 scalars representing collective coordinates for the transverse motion of the D-string.

Let us now consider a simple case where a point charge of unit magnitude is inserted onto

a single D-string. This is a special case of the situation studied in Ref.[8], where point

charges are inserted onto general D p-branes. We take the D-string to be oriented along

the x1 axis. Note that at present, the RR scalar φ̃ is not excited.

In the presence of this charge, Gauss’ law in one space dimension states that

F+

01 − F−

01 = g (1)

where g is the strength of the point charge, equal to the type IIB string coupling. This

requires the scalar potential to be piecewise linear, with a fixed discontinuity in its slope.

A simple solution of this equation is

A0 = −gx1, x1 > 0

= 0, x1 < 0
(2)

This solution by itself is not BPS saturated but, as in Ref.[8], it can be made BPS by simul-

taneously exciting one of the transverse coordinates, say x9, represented by the worldsheet

field X9(x0, x1). Thus we choose

X9(x1) = A0(x
1) (3)

with A0 given by the above equation.

Because of well-known properties of low-dimensional electrodynamics, the solution

is linearly increasing away from the charge, in sharp contrast to the case for p-branes

with p ≥ 3. Indeed, the linear variation of X9 as a function of x1 suggests the followng

interpretation: inserting the point charge at the origin of the D-string causes one half

of the string to rigidly bend. The point charge itself, as in Ref.[8], is associated to the
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endpoint of an F-string coming in perpendicular to the original D-string (in contrast to the

cases discussed in Ref.[8], our solution has no “spike” representing the F-string. However,

a consistent interpretation certainly requires the F-string to be present, as it is the one

which carries the inserted charge).

The resulting configuration is as in Fig 2, with the angle α determined by

tanα =
1

g
(4)

The string that goes out from the junction towards the top left is neither an F-string

nor a D-string, but must be thought of as a (1, 1) or (−1,−1) string depending on the

orientation.

D-string

F-string

α

(1,0)

(0,1)

(1,1) string x

x

1

9

Fig.2: F-string ending on a D-string, with φ̃ = 0.

Now, for this simple case, we can see that the force-balance property holds. The three

strings, labelled by their (p, q) charges, have tensions given by[9]

Tp,q =

√

p2 +
q2

g2
T1,0 (5)

From Eqs.(4) and (5) it follows that

T1,1 cos α = T1,0

T1,1 sin α = T0,1 =
1

g
T1,0

(6)
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Thus, examination of the U(1) gauge theory on the world-sheet of a D-string has

yielded rather nontrivial information. Linear growth of the scalar potential in 1d translates,

by the BPS condition, into a linearly rising deformation of the D-string on which the point

charge is inserted. The angle is determined by the point charge, and satisfies the zero-sum

condition on the tensions viewed as vectors.

More general 3-string junctions follow from the one considered above by application

of S-duality transformations. However, so far we have dealt only with the case where

the Ramond-Ramond scalar φ̃ is not excited on the D-string worldsheet. If we make an

S-duality, in general a nonzero RR scalar background will be turned on. Therefore, we

should start by considering the F-D junction (an F-string ending on a D-string), as above,

but in the presence of an arbitrary RR scalar background. Then S-duality can be used to

generate all the other cases. (It was emphasized in Ref.[6] that the most general 3-string

junctions are the ones obtained by S-duality on the F-D junction, at least if one restricts

attention to stable and not just marginally stable states.)

For nonzero φ̃, the D-string acquires a Chern-Simons coupling
∫

φ̃ ∧ F on its

worldsheet[10]. This shifts the canonical momentum conjugate to A1, and hence changes

the quantization law by the replacement

F01 → F01 + gφ̃ (7)

in Eq.(1) above. As a result, the classical solution Eq.(2) for the scalar potential is replaced

by:

A0 = (φ̃ − 1) gx1, x1 > 0

= φ̃ gx1, x1 < 0
(8)

We maintain the BPS nature of the solution by imposing Eq.(3).

The interpretation of this solution is as follows. The original D-string running along

x1 has been completely deformed, on both sides of the inserted charge. The inserted charge

is, as before, associated with an F-string running along the X9 axis. We have thus obtained

the most general F-D junction, and this time (because the RR scalar is turned on) the F

and D strings are not perpendicular. Thus the physical configuration, for φ̃ 6= 0, is shown

in Fig.3. From Eqs.(8) and (3), the angles α and β are given by

tanα =
1

g(1 − φ̃)

tan β = −
1

gφ̃

(9)
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F-string

α

(1,0)

(1,1) string x

x

1

9

β

D-string

(0,1)

Fig.3: F-D junction for φ̃ 6= 0.

The tension formula Eq.(5) is modified[9], in the presence of φ̃, to:

Tp,q =

√

(p − qφ̃)2 +
q2

g2
T1,0 (10)

It is now again a straightforward matter to check that the force balance conditions hold:

T1,1 cos α = T1,0 + T0,1 cos β

T1,1 sin α = T0,1 sinβ
(11)

With these, we can make an SL(2,Z) transformation to the general case. Under a

transformation with the matrix

(
p q

r s

)
with ps − qr = 1, the F-string is mapped to a

(p, r) string, and the D-string to a (q, s) string. The condition ps− qr = 1 is precisely the

one proposed in Ref.[6] to characterize the allowed 3-string junctions.

The final configuration after the SL(2,Z) transformation is similar to that in Fig.3,

with the above replacements for the string charges, and with angles given by

tanα =
1

g
(
(p − rφ̃)((p + q) − (r + s)φ̃) + r2

g2 + rs
g2

)

tan β = −
1

g
(
(p − rφ̃)(sφ̃− q) − rs

g2

)
(12)

Thus we have found the most general BPS saturated, stable 3-string junction starting from

very simple considerations. The tensions and angles of the junction satisfy the condition,
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which is intuitively rather obvious, that the vector sum of the tensions sums to zero. The

stable junctions are those obtained by SL(2,Z) transformation of the F-D junction. To get

all such stable junctions, we needed the F-D junction in the presence of an arbitrary RR

scalar background.

To understand better the nature and role of 3-string junctions is an important prob-

lem. They are known to arise from M-theory by starting with a 2-brane in a “pants”

configuration and wrapping each of the outgoing tubes on a different cycle of some 2-

torus[5]. One may hope to get some insight by studying the 2-brane worldvolume along

the lines of Ref.[8] and the present paper.

The 3-string junction could also be studied in the full Born-Infeld theory[8,11,12,13]

rather than the linearized Maxwell case as we have done. The proposal of Ref.[5] to look

for them as solutions of supergravity equations, remains to be carried out. It would be

interesting to see if 3-string junctions can be recovered in the matrix approach to string

theory[14]. Finally, it remains to investigate the proposal[6] that multi-pronged strings

could play a fundamental role in nonperturbative string field theory.
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