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1. Introduction

Recent developments have demonstrated the importance of a variety of extended dy-

namical objects, branes[1], in string theory. One context where (Dirichlet) branes arise

naturally is in the construction of orientifolds[2,3,4], where one can sometimes think of

them as twisted sector states. Another kind of object that occurs in orientifold construc-

tions is called the orientifold plane, the locus of fixed points of some discrete group.

Planes are usually assumed to be non-dynamical, as indeed they are at weak coupling.

But it has been shown in a few contexts[5,6] that at strong coupling they can behave like

dynamical objects. Another context where the distinction between branes and planes is

blurred is in F-theory compactifications at constant self-dual coupling[7,8,9]. Here, F-

theory branes move around in groups and can even produce exceptional symmetries, yet

these configurations are continuously connected within the constant-coupling moduli space

to the perturbative configurations of branes and planes.

An essential distinction between branes and planes is that the former carry Yang-Mills

gauge fields on their world-volume, and have moduli for their locations, while the latter

do not. Here we want to focus on a complementary feature in which some amount of

symmetry is maintained between the two types of objects. Besides Yang-Mills couplings,

branes also carry gravitational couplings localized on their world-volume. As we will see,

orientifold planes also carry such localized gravitational couplings, essentially because they

are loci of singular curvature. This fact neatly fits in with the various observations referred

to above regarding the strong-coupling behaviour of planes.

An interplay between gauge and gravitational couplings is a key feature in maintaining

consistency and anomaly-freedom in string compactifications. Hence exploring the appar-

ently distinct origins of the two in theories with branes and planes may tell us something

quite fundamental about the underlying theory.

Another, apparently unrelated, issue in orientifolds is that while branes always carry

integer charge with respect to some p-form gauge field, planes can carry fractional charge in

a very precise way. We will see that the presence of gravitational couplings on planes and

branes together conspires to explain this fact and render these fractional charges consistent

with Dirac quantization.

The appearance of fractional charges on planes can be argued for many low dimen-

sional compactifications of M-Theory and string theory[10]. The most straightforward way

to see this is by examining the orientifold of the type II string on Tn/Z2 where n is even
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for IIB and odd for IIA. There are always 16 D-branes in the vacuum and 2n orientifold

planes. Symmetry and charge conservation dictate that each plane carries 24−n units of

charge. This is fractional as soon as n is greater than 4.

Analogous situations occur in M-theory. In the T 5/Z2 orientifold, the fact that

twisted-sector states are outnumbered by the fixed planes was noted and studied in Ref.[11].

A careful analysis of this situation in Refs.[12,13] revealed that as in stringy orientifolds,

the planes carry fractional charge, and explained how this is in fact consistent.

The origin of fractional charge in this case is as follows. The T 5/Z2 compactification

has 32 fixed points. Anomaly cancellation requires 16 copies of N = 2 tensor multiplets

in six dimensions. Assuming each tensor multiplet comes from a space-filling 5-brane, this

would give rise to two interesting phenomena: (i) the C(3) ∧ I8 term from the D = 11

supergravity (C(3) being the three form of M-theory) cancels anomalies locally on the

brane by anomaly inflow, and (ii) a magnetic charge +1 appears on each of the 5-branes.

Therefore charge cancellation requires the planes to carry −1
2
C(3)-field magnetic charge

while the anomalies automatically cancel locally, on both branes and planes, by the inflow

term in the lagrangian.

Some more interesting cases arise in low-dimensional compactifications of string the-

ory and M-theory. For example, consider the type II theories on T 8/Z2 orbifolds and

orientifolds. Type IIB theory on the T 8/Z2 orientifold has 256 orientifold planes and 16

D1-branes. Charge cancellation would require orientifold planes to carry − 1
16

units of B̃µν

charge.

Type IIA on T 8/Z2 orbifold has 256 twisted sectors, but they do not contribute any

massless multiplets. The massless states in the twisted sector can only arise in the RR

sector since the left or right moving fermions in the NS sector give vacuum energy greater

than zero. But the RR ground state in this case does not survive GSO projection[14].

However, due to the existence of a Bµν tadpole in two dimensions[15] a consistent com-

pactification requires χ/24 one-branes (fundemental type IIA strings) to condense in the

vacuum, where χ is the Euler characteristic of the compact manifold. For T 8/Z2 the orb-

ifold Euler characteristic is 384, and thus tadpole cancellation requires 16 type IIA strings

in the vacuum. Then charge cancellation would require the fixed points to carry − 1
16 units

of Bµν charge.

This lifts to M-theory and F-theory on the same orbifold. In the M-theory case the

planes have − 1
16 units of 3-form charge while in F-theory there are really only 26 rather

2



than 28 fixed points (we count only fixed points on the base) and these carry −1
4 units of 4-

form charge. Indeed, this is in the class of Tn/Z2 orientifolds referred to above, with n = 6.

Note that the orbifold T 8/Z2 has terminal singularities, and hence requires irrelevant rather

than marginal operators in order to be blown up. String and M propagation on it, however,

appear to be smooth.

There is also a dual pair with chiral supersymmetry in 1 + 1 dimensions. Type IIB

on the T 8/Z2 orbifold is chiral and has potential gravitational anomalies. The 256 twisted

sectors carry a total gravitational anomaly of 64
3

(in the units of Pontryagin numbers)

and this is cancelled by the total anomaly of 256 chiral bosons from the fixed points,

which is −64
3 [16]. The same anomaly cancellation occurs for M-Theory on T 9/Z2 (which

is conjectured to be dual to IIB on T 8/Z2) with some crucial differences. The fixed points,

512 in number, now give chiral fermions and their anomalies cancel the anomalies coming

from the untwisted sectors.

Another low-dimensional case is type IIA on the T 9/Z2 orientifold. This has the usual

16 D0-branes in the vacuum and 512 orientifold points. Charge cancellation would now

require the orientifold points to carry − 1
32 units of Aµ charge. We will make some new

observations about these low-dimensional cases later on.

There is an interesting relationship between Bianchi identities and flux quantization

that we will exploit in this paper. The Bianchi identity of a p-form potential (in type IIA or

IIB strings or in M-theory) in d uncompactified dimensions is related to charge quantization

of the field in d − 4 uncompactified dimensions. As an example, the Bianchi identity of

the C(3) field of M theory on S1/Z2 is related to the flux quantization of G(4) = dC(3) for

M theory on T 5/Z2[13].After compactification on a circle this descends to an analogous

relation for type IIA on S1/Z2 and T 5/Z2. Other examples include the flux quantization

of G(5) = dC(4) for type IIB compactified on T 6/Z2 orientifold (C(4) is the self-dual RR

four-form potential of type IIB). This is related to the Bianchi identity of type IIB on the

T 2/Z2 orientifold. Similarly flux quantization for IIA on T 7/Z2, IIB on T 8/Z2 and IIA on

T 9/Z2 is related to Bianchi identities on T 3/Z2, T
4/Z2 and T 5/Z2 respectively.

This paper is organized as follows. In Section 2 we argue that orientifold planes carry

gravitational WZ terms, and discuss how Bianchi identities get modified in the presence of

planes and branes. In Section 3 we show that the modified Bianchi identities indeed lead

to consistent behaviour of branes when transported around planes even if the latter carry

fractional charge, so that Dirac quantization is always satisfied. In Section 4 we discuss

Wess-Zumino terms of R4 type that are supported on planes as well as branes. In Section
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5 we focus on the special case of the T 6/Z2 orientifold, where 3-branes condense in the

vacuum. Gravitational couplings in 3+1 dimensional supersymmetric gauge theories have

received some attention recently[17,18,19]. We interpret our results in the context of N=4

compactifications. Finally in Section 6 we comment on low-dimensional cases.

2. Orientifolds and Fractional Charges

Orientifolds are constructed by gauging the world sheet parity transformation along

with some target space discrete symmetry of type II string theory. This gauging gives

non-vanishing disc tadpoles. That means orientifold planes are charged with respect to

the field whose disc tadpole is non-vanishing. These charges can be cancelled by inserting

an appropriate number of space-filling D-branes. In the simplest case, the Z2 orientifolds,

we need 16 D-branes to cancel the charge carried by orientifold planes.

These orientifolds can also be understood via T-duality. Consider type IIB string

theory in ten dimensions. Orientifolding this theory in ten dimensions gives the type I

string. All other Z2 orientifolds in lower dimensions can then be understood by T-dualizing

type I string theory after toroidal compactification. In ten dimensions, the orientifold 9-

plane carries charge −16 with respect to the 10-form potential. This is cancelled by

condensing 16 D-9 branes in the vacuum, which gives the well known SO(32) gauge group

of type I string theory. The orientifold 9-plane splits into two orientifold 8-planes after

compactification and T-duality on a circle. These orientifold 8-planes carry charge −8 each

with respect to 9-form potential. Thus again we need 16 D-8 branes to cancel the charge

on the orientifold planes.

A special vacuum is the one for which the D-8 branes cancel the orientifold charge

locally. In this case the 16 D-8 branes are placed on the two orientifold planes in bunches of

8 each. As we compactify further and T-dualize along the compact directions, the number

of orientifold planes keep doubling with each action of T-duality, whereas the total charge

carried by all the orientifold planes remains equal to −16 which is equally distributed

among them. Thus for compactifications on higher-dimensional tori, orientifold planes

carry fractional charge, and special vacua with local charge cancellation do not exist unless

the compactification tori are squashed to merge orientifold planes. (It is intriguing that

this occurs just at the value of uncompactified dimension (6) below which the m(atrix)

theory proposal[20] starts to become problematic[21].)

4



The first instance where fractional charges on the orientifold planes occur is the T 5/Z2

orientifold compactification of type IIA string theory. Using the relation of M-theory and

type IIA string theory, the same conclusion can be reached for the T 5/Z2 orientifold of

M-theory. In both cases, the orientifold planes carry half-integral magnetic charge with

respect to the three form field C(3). This phenomenon was explained by Witten[13], who

showed that the fluxes of the four form field strength G(4) = dC(3) are quantized in half-

integral units. Whenever the G flux through a four-cycle M of an eleven-dimensional

manifold Y is half integral, the first Pontryagin class p1(Y ) of Y restricted to M is an

integer divisible by two but not by four. The flux which is integrally quantized belongs to

G(4) − (p1(Y )/4).

Since orientifolds produce vacuum charges which are canceled by branes, the space-

time action for the orientifolds can be written as

Iorient = Ibulk +
16
∑

i=1

I
(i)
DBI , (2.1)

where the first term on the right hand side is the bulk space-time action of type IIA(IIB)

string theory, subject to the orientifold projection, and the second term is the sum over

Dirac-Born-Infeld actions for the 16 space-filling D-branes coupled to type IIA(IIB) po-

tentials.

The first term, the bulk string theory action, is written in ten dimensions, whereas the

space-filling D-brane actions fill the space transverse to Tn/Z2. The sum is taken over 16

points on Tn/Z2 where these D-branes are localised, hence in fact the second term on the

RHS of (2.1) is accompanied by n dimensional δ-functions specifying locations of D-branes

on Tn/Z2. We will always consider curved non-compact space, i.e., both orientifold planes

and the D-brane world volumes are curved.

As mentioned above, in curved space the D-brane world-volume has additional cou-

plings. These are Wess-Zumino terms which are wedge products of the p-form field with

powers of the curvature two-form R. In particular, on the worldvolume of a D-5-brane in

curved space, there is an additional Wess-Zumino term coupling the RR two-form B to the

first Pontryagin class p1(R)[22]. One can see this by a simple anomaly inflow argument[23].

Now consider the orientifold of type IIB string theory in ten dimensions. In this case

we have an orientifold 9-plane accompanied by 16 D-9-branes, leading to type I string
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theory. The modified Bianchi identity for the three-form field strength due to the anomaly

cancellation condition in the type I string is

dH =
1

2
[p1(R) − p1(F )]. (2.2)

where p1(R) is the first Pontryagin class of the spin manifold Y and is defined as 1
8π2 tr(R∧

R) and similarly p1(F ) = 1
8π2 tr(F ∧ F ). For a spin manifold, p1 is divisible by 2, hence

λ ≡ p1

2
defines an integer cohomology class. Let us try to understand this equation from

the orientifold point of view. The D9-brane worldvolume action is given by

SD9 = SDBI + SWZ , (2.3)

where SBI is the usual Dirac-Born-Infeld action and SWZ is the contribution of the Wess-

Zumino terms. We will not write all these terms explicitly. The relevant Wess-Zumino

terms[23] are1

∫

∗B ∧
1

16π2
tr(F ∧ F ) and

1

24

∫

∗B ∧
1

16π2
tr(R ∧R). (2.4)

where ∗B is the Poincare dual of the RR two form B.

We also have the space-time action of type IIB string theory. The term relevant for

our purpose is

SIIB ∼
1

2

∫

H2 + · · · , (2.5)

where, H is the field strength of the RR sector two-form field B. The equation of motion

for ∗B would then be given by

dH =
1

16π2
(−trF ∧ F +

2

3
trR ∧R) (2.6)

1 By the anomaly inflow argument, the WZ term that actually occurs on the brane world

volume is proportional to
∫

Bp

C ∧ trn exp(
F

2π
)

√

Â(R)

where Â(R) = 1 − p1
24

+
7p2

1−4p2

5760
+ ... and pi are the Pontryagin numbers. For our case it suffices

to take C = ∗B.
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where the RHS is the contribution coming only from 16 D-9-branes. Since orientifold

planes are not dynamical they do not couple to F but since we are considering both D-

branes as well as orientifold planes in curved space, planes can couple to R. We claim that

orientifold planes contribute a further

1

3

tr(R ∧R)

16π2
=
p1

6
(2.7)

to the RHS of the above equation.

One way to see this is the following. In case of D-branes both the terms in (2.4)

occur at the disc order with three insertions. For the orientifold plane also these terms

should contribute at the same order, except that now the disc is replaced by RP 2. The

first term in Eq.(2.4) requires two open-string insertions, whereas the second term has all

three closed-string insertions. Since RP 2 has no boundary and open string vertices are

inserted on boundaries, RP 2 does not contribute to the first term, which is equivalent

to the statement that the orientifold planes have no open-string dynamics or they do not

couple to Yang-Mills fields. Closed-string vertex insertions are in the bulk of the worldsheet

and hence are allowed on RP 2. Thus the three point vertex on RP 2, i.e., the orientifold

plane, contributes a term proportional to the second term in Eq.(2.4). Both the disc and

RP 2 are tree-level diagrams, and at tree level only D-branes and orientifold planes can

contribute these terms. Since we already know the modified Bianchi identity as well as the

contribution of D-branes, the term Eq.(2.7) has to come from the orientifold plane. We

will see that this interpretation makes sense when we consider other cases, particularly the

8-dimensional example.

Though the number of orientifold planes multiplies on compactification followed by T-

duality, the total contribution of orientifold planes towards the appropriate Bianchi identity

remains the same. In other words, if C(n) is an RR n-form, then the 1
3C

(n) ∧ tr(R∧R)
16π2 term

residing on the orientifold planes is equally distributed among all the orientifold planes

and the total contribution of orientifold planes to the Bianchi identity for C(n) is equal to

Eq.(2.7). In the case of D-5-branes, Ref.[22] could not fix the sign of the Wess-Zumino term

containing the Pontryagin class. Relating this term to the Bianchi identity, it is easy to see

that there is a relative minus sign between the two terms occuring in (2.4). Incorporating

this contribution of orientifold planes gives us the correct Bianchi identity

dH =
1

16π2
(−trF ∧ F + trR ∧R). (2.8)
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Another related way of seeing this is the following. In ten dimensions, the 3-form field

strength in the type-I string has a kinetic term

SI =
1

2

∫

H ∧ ∗H (2.9)

where

H = dB + ω3L − ω3Y . (2.10)

Here, dω3L ≡ 1
16π2 trR ∧ R and similarly for dω3Y with R replaced by F. This leads to a

cross term
∫

∗dB ∧ (ω3L − ω3Y ) (2.11)

Now let B(6) be the dual of B defined by ∗dB = dB(6). Then the above coupling becomes

the WZ term
1

16π2

∫

B(6) ∧ (tr(F ∧ F ) − tr(R ∧R)) (2.12)

where B(6) is a (dual) RR potential in type I.

From the coefficient of the term above, it is evident that the curvature terms have the

right coefficient to arise from 24 9-branes. But in reality there are only 16 9-branes, which

contribute 2/3 of the desired factor, and the remaining 1/3 is ascribed to the planes as in

Eq.(2.7).

Consider now compactification of type I theory on a circle followed by T-duality. This

gives us type I′ theory which can also be obtained from type IIA theory on an S1/Z2

orientifold. As mentioned earlier, T-duality doubles the number of orientifold planes. In

this case we get two orientifold planes and (2.7) is distributed equally between them. The

vacuum with local charge cancellation is the one where eight D8 branes are located on one

orientifold plane and eight on the other. Let us focus only on one of the orientifold planes.

The total orientifold action (modulo projection) in the vicinity of one orientifold plane is

Sorient = SIIA + SD8. (2.13)

The relevant terms in this action are:

Sorient ∼
1

2

∫

G2 +

∫

∗C(5) ∧
tr(F ∧ F )

16π2
δ(x9) − 8

∫

1

24
∗C(5) ∧

tr(R ∧R)

16π2
δ(x9), (2.14)

where x9 is the compact circle coordinate, the orientifold plane that we are concentrating

on is localised at x9 = 0, ∗C(5) is the 5-form dual to the RR three-form potential C(3) in
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type IIA string theory. The field strength G(4) = dC(3) + . . . where extra terms have to be

introduced to “solve” the Bianchi identity as we discuss below. The gauge field strength

F takes values in the group SO(16) whereas the curvature (R) terms all add up, so that

the WZ term of a single D8-brane is multiplied by 8. Lastly the δ function tells us that

the branes are orthogonal to x9.

The equation of motion for the field ∗C(5) is given by

dG(4) =
1

16π2
(
1

3
trR ∧R − trF ∧ F )δ(x9) (2.15)

where the RHS is a contribution coming entirely from the branes. We have argued that the

R∧R contribution from the orientifold planes is equally distributed among the planes. In

the present case, a single orientifold plane contributes 1
6

tr(R∧R)
16π2 δ(x9) = p1

12
δ(x9). Adding

this contribution to the Bianchi identity of G we get

dG(4) =
1

16π2
(
1

2
trR ∧R− trF ∧ F )δ(x9). (2.16)

This is the analogue, for type IIA string theory on S1/Z2, of an equation derived in the

second paper of Ref.[24] in the context of the strong coupling limit of this theory, namely

M-theory on S1/Z2. That equation was used in Ref.[13] to show that G(4) can have half

integral fluxes in M-theory.

Despite the similarity in the final equation, there is an important difference between

the derivation of our result and that in Ref.[24]. In the latter case, there are really no

branes, just fixed planes, since there are no moduli to break E8 × E8. For string theory

orientifolds below 10 dimensions, perturbatively there are always branes and planes, and

they can be separated from each other. Hence it is essential to understand the contribution

of each one separately, to obtain the correct Bianchi identity in the special charge-cancelling

configuration as we have just done. An essential role was played here by the gravitational

coupling on the fixed planes.

Now we turn to the T 2 compactification of type I string theory. This is equivalent,

by T-duality, to the T 2/Z2 orientifold of type IIB strings. This model has been studied in

great detail by Sen[5]. Here we have four orientifold planes which carry seven-brane charge

−4. This charge can be canceled by putting four seven branes on the top of each orientifold

plane. From what we have said earlier every orientifold plane in this case will contribute

a factor 1
12

tr(R∧R)
16π2 δ(x8)δ(x9) = p1

24δ(x
8)δ(x9). This is consistent with results of [5]: when

seven branes are taken away from the orientifold plane, the plane splits into two seven
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branes which are mutually non-local and also non-local with respect to the original seven

branes. The curvature term that we expect from the orientifold plane is exactly twice as

much as that contributed by a single D-brane. We therefore see that each orientifold plane

in this case can split into two 7-branes which share the curvature terms. Once we take this

into account the Bianchi identity becomes

dG(5) =
1

16π2
(
1

4
trR ∧R − trF ∧ F )δ(x8)δ(x9), (2.17)

where G(5) = dC(4) + . . . and C(4) is the self-dual RR four-form in type IIB string theory.

Although the 24 7-branes of F-theory that emerge from the nonperturbative analysis carry

different (p, q) charges, hence are related to each other by SL(2, Z) S-duality, they all must

carry the same worldvolume term contributing to the above Bianchi identity since C(4)

is SL(2, Z)-invariant. This is a nice confirmation that in this situation, planes really can

turn into branes.

Compactifying further on K3, one finds a 4-dimensional theory that is dual to F-

theory on K3 × K3. The 24 7-branes wrapped over K3 become 24 anti-3-branes, which

give rise to −24 units of tadpole in the 4-form potential because of the WZ term. This is

cancelled by condensing 24 fundamental 3-branes in the 4d vacuum, as predicted in [15].

So we apparently have 24 anti-3-branes and 24 3-branes, though the anti-branes (which

are “embedded” in the 7-branes) arise from the WZ coupling and do not break extra

supersymmetry.

As is clear from the above discussion, this trend continues as we compactify type I

string theory down to lower dimensions. The Bianchi identities for seven, six and five

dimensional compactifications are

d∗G(6) =
1

16π2
(
1

8
trR ∧R− trF ∧ F )δ(x7)δ(x8)δ(x9)

d∗G(7) =
1

16π2
(

1

16
trR ∧R− trF ∧ F )δ(x6)δ(x7)δ(x8)δ(x9)

d∗G(8) =
1

16π2
(

1

32
trR ∧R− trF ∧ F )δ(x5)δ(x6)δ(x7)δ(x8)δ(x9).

(2.18)

We will have more to say about these Bianchi identities and their relation to fractional

charges in the next section.

The 7-dimensional case also shows some interesting features. In this case there are 8

orientifold 6-planes, along with 16 6-branes. The planes carry -2 units of magnetic charge

with respect to the RR 1-form. The WZ term involving the RR 3-form C(3) is shared
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equally between the branes and planes in this case. This suggests that there may be a

situation in which the orientifold planes can behave as (single) branes, and indeed there

is. Compactify the 7-dimensional theory on K3 to 3 spacetime dimensions. This is dual

to M-theory on K3 × K3, for which again it is known[15] that the vacuum contains 24

condensed 2-branes. These are precisely there to cancel the 2-branes sitting “inside” the

16 6-branes and the 8 6-planes.

It is intriguing that apparently static objects like orientifold planes actually contain

so much dynamics.

3. M-Theory on S1/Z2 and type IIB on T 2/Z2

In the previous section we saw how the Bianchi identity is modified in the neighbour-

hood of an orientifold plane. It follows from these modified Bianchi identities that the

charges associated with RR p-form potentials can be fractional. Orientifold planes are

charged with respect to these p-form RR potentials, and the charge fractionalization due

to modified Bianchi identities is closely related to the fractional charges on the orientifold

planes. In this section we will show how these fractional charges are consistent with the

Dirac quantization condition in string theory and M-theory.

To illustrate this we will first consider M-theory compactified on S1/Z2[24]. The Z2

action here is an orientifold action which takes C → −C and leaves other fields invariant.

This theory has to satisfy ten dimensional anomaly cancellation conditions at the orien-

tifold points of S1/Z2. The anomaly can be canceled by putting 8 space filling nine branes

at each end of the world. This gives rise to the E8 × E8 heterotic string theory with each

end of the world contributing one E8 gauge symmetry. In the M-theory picture, these

branes have no moduli and therefore they are stuck at the two ends – indeed, they are

more like static planes than dynamical branes, although one of our conclusions has been

that there is not so much of a distinction between the two objects.

We have already used the well-known result that the three form field strength H in

the heterotic string theory satisfies the modified Bianchi identity

dH =
1

16π2
(trR ∧R− trF ∧ F ) (3.1)

where F is the gauge field strength taking values in E8 × E8 gauge group. This equation

takes quite a different form in M-theory. If we are close to one of the orientifold points

on the circle, only one of the two E8 gauge symmetries is visible. At the same time only
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half of the Pontryagin class of the curvature contributes. Thus from this point of view,

the Bianchi identity is

dH =
1

16π2
(
1

2
trR ∧R − trF1 ∧ F1), (3.2)

where the subscript 1 stands for one of the E8 groups. When we lift this equation to

M-theory, the three-form field strength H goes over to the four-form field strength G(4) to

give

dG(4) =
1

16π2
(
1

2
trR ∧R− trF1 ∧ F1)δ(x

10), (3.3)

where x10 = 0 is the location of the orientifold plane. Witten[13] observed that since

R ∧R is quantized in integers, the magnetic charge of the four-form field strength G(4) is

quantized in half-integers.

The existence of such half-integral charge and its consistency with Dirac quantization

can be established by studying the world-volume theory of a membrane[13]. To do this let

us first wrap the world-volume of the membrane on a closed three cycle T of the eleven (or

ten) dimensional manifold. What we want to find out is what happens to the membrane

path integral when we take it around a circle. The WZ coupling of the membrane world

volume theory to C(3) is given by

exp(i

∫

T

C(3)) (3.4)

which when transported along the circle gives

exp(i

∫

T×S1

G(4)). (3.5)

There is another factor which contributes to the phase of the membrane path integral.

This is related to the parity anomaly in the path integral over world-volume fermions,

from which it follows that the interaction
∫

C(3) on the brane world-volume is modified as

C(3) → C(3) +
1

2
tr(ω3,L + ω3,N ) (3.6)

where ω3,L and ω3,N are the Chern-Simons 3-forms associated respectively to the tangent

and normal bundles to the brane world-volume.

Thus the extra phase on transporting the membrane world-volume over a circle is

proportional to the first Pontryagin class of the normal bundle to T ×S1 (since the tangent

bundle is trivial):

exp(2πi[
1

2

∫

trF ∧ F

16π2
]) = exp(iπ

p1(N)

2
) (3.7)
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where dω3,N = 1
16π2 trF ∧ F = p1(N)

2 .

Thus the total phase, which must be equal to 1, is given by[13]

(−1)

∫

T×S1

p1(N)
2 exp(i

∫

T×S1

G(4)). (3.8)

It follows that G(4)/2π has a half-integral period precisely on those cycles on which the

integral of p1(N)/2 is odd. Therefore, what is really observable is not the periods ofG(4)/2π

which are half-integral but G(4)/2π − p1(N)/4 which is always integral. In general, what

appears in this condition is the full Pontryagin class p1 of the tangent bundle of the ambient

spacetime. Thus we see that the Dirac quantization condition is obeyed by G(4)/2π−p1/4

charges.

As mentioned in the previous section, orientifold planes in the T 5/Z2 compactification

of M-theory or of type IIA string theory have half-integral magnetic charge with respect

to G(4). If we can find a four cycle in T 5/Z2 where tr(R∧R)
16π2 = p1

2 integrates to an odd

integer, this would give us half integral charge. (In this case it is the Pontryagin class of

the tangent, rather than normal, bundle to the 4-manifold that contributes.) The four

cycle which encloses an orientifold fixed point in T 5/Z2 has this desired property. Though

this cycle, S4/Z2, is non-orientable, its Stiefel-Whitney class w4, which is equivalent to

R ∧R mod 2 in the orientable case, is unity[13].

Consider now the T 6/Z2 compactification of type IIB string theory. The modified

Bianchi identity (2.17) in type IIB compactified on T 2/Z2 orientifold tells us that self-dual

five-form charges are quantized as n − 1/4, where n is an integer. The solution of the

Bianchi identity Eq.(2.17) relevant for this case can be written

G(5) = dC(4) +

(

1

4
ω3,L − ω3,Y

)

δ(x8)δ(x9) (3.9)

or, alternatively, as

G(5) = dC(4) +
1

16π2

(

1

4
trR ∧R − trF ∧ F

)

×
1

2

(

ǫ(x8)δ(x9) − ǫ(x9)δ(x8)
)

(3.10)

where ǫ(x) is the step function.

In contrast to the case of the S1/Z2 Bianchi, in this case neither of the solutions is

free of a δ-function. This is related to the fact that in the present case, spacetime does

not just acquire an end-of-the-world boundary but rather ends on submanifolds of (real)

codimension 2.
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The two solutions above differ by the addition to G(5) of the exact form

d

((

1

4
ω3,L − ω3,Y

)

×
1

2

(

ǫ(x8)δ(x9) − ǫ(x9)δ(x8)
)

)

(3.11)

The T 6/Z2 orientifold compactification is the place where we expect that the charge

carried by the orientifold planes is −1/4. To measure this charge, we consider a five

cycle, S5/Z2 which encloses the orientifold fixed point and integrate the self-dual five-

form dC(4) over this five cycle. As is clear from Eq.(2.17), in the absence of gauge fields

there is another contribution coming from the term 1
4

tr(R∧R)
16π2 δ(x5). Since we are only

interested in fractional charges we can safely ignore the gauge field contribution which

is always an integer. The charge of the orientifold plane, which is −1/4, is obtained by

integrating the five-form dC(4) over S5/Z2. What remains to be done, by analogy with

similar manipulations in Ref.[13], is to integrate 1
16π2 tr(R ∧R)δ(x5)/4 over S5/Z2.

At this point we give a more general argument which explains the existence of frac-

tional charge when we integrate the quantity

T ≡
1

2m

tr(R ∧R)

16π2
δ(xi)δ(xj)...δ(xp). (3.12)

over the manifold S4+q/Z2. Here m, i, j, ..., p are the relevant integers and q is the number

of delta functions. For the T 6/Z2 case m = 2, i = 5 and q = 1.

S4+q is defined by

S4+q : x2
1 + x2

2 + ...+ x2
4+q + x2

5+q = 1. (3.13)

And S4+q/Z2 is defined modding out with the antipodal map xi → −xi for all i. Now the

integration is simple to perform. The δ(xi), δ(xj), ... factors fix us at the locus xi = 0, xj =

0, ... This locus is a section of S4+q/Z2 which is nothing but S4/Z2 because there are q

delta functions. It is well known that S4/Z2 can be naturally embedded in S4+q/Z2. This

embedding corresponds to setting q coordinates of S4+q/Z2 to zero. Integrating out the

delta function precisely implements this action2. Therefore now we only have to integrate
1

2m

tr(R∧R)
16π2 over S4/Z2.

2 The simplest geometrical way to think of it is that the boundary of a ball in 3 dimensions is

S2, and its equator is S1. A Z2 modding will make the equator S1/Z2. So if there is a quantity

to be integrated over S2/Z2 with a delta-function along say the z direction, it will reduce to an

integral over S1/Z2. This also seems like S2/Z2 being represented as a “fibration” over S1/Z2

with a fibre S1. Since the Z2 action has done nothing to the fibre the integral of delta function

will be just 1.
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The quantity λ ≡ 1
16π2 tr(R∧R) is congruent modulo two to the Stiefel-Whitney class

w4. By a standard computation[25] one can show that

∫

S4/Z2

w4 = 1 mod 2. (3.14)

Together with the 1
2m factor, this would point to the existence of fractional fluxes for

the corresponding fields. For the T 6/Z2 example considered we see that the period of

the five-form G(5) is fractional precisely on those five-cycles on which the integral of
1
4

tr(R∧R)
16π2 δ(x5) contributes the compensating fraction, so that the total charge is effec-

tively integer and the Dirac quantization condition is then satisfied by the charges of the

field G(5) − 1
4

tr(R∧R)
16π2 δ(x).3 The crucial thing that has entered into the discussion is that

the object which we want to integrate has support only a S4/Z2 submanifold of S4+q/Z2.

It is interesting to consider whether other physical effects are related to the occurrence

of the fractional fluxes that we have been discussing. For example, fractional fluxes sim-

ilar to those discussed above would appear in other orientifolds based on higher discrete

groups than Z2 and correspondingly with lower supersymmetry. However, there do seem

to be some important distinctions between the situation discussed in the context of S1/Z2

orientifolds[24] and the more general cases considered here. In the former case, one can

3 In case of S5/Z2, there is another way to show how G(5) − 1
4

tr(R∧R)

16π2 δ(x) satisfies the Dirac

quantisation condition. To see this we use the fact that S5 is a generalized Hopf fibration over

CP 2 with S1 fibre. The antipodal map which takes S5 to S5/Z2 acts trivially on CP 2 but it

halves the volume of the fibre. Therefore, S5/Z2 is also an S1 fibration over CP 2. The difference

between these two bundles is that the Chern class of the latter is double of that of the former. To

evaluate 1
4

tr(R∧R)

16π2 δ(x5), one first integrates along the fibre to reduce the top form on S5/Z2 to the

top form on the base, i.e., CP 2. Integration along the fibre can be done if the cohomology classes

have compact support in the vertical direction[26]. Since the Chern class is doubled, integration

along the fibre gives

1

4

tr(R ∧ R)

16π2
|CP 2

∫

S1

δ(x5)dx5 =
1

2

tr(R ∧ R)

16π2
|CP 2 .

The RHS of the equation can be written in terms of the Pontryagin class of CP 2 as p1(R)/4.

Thus the integration along the fibre gives the top form on CP 2 which is one quarter of its first

Pontryagin class. Since the integral of p1(R) over CP 2 is equal to 3, integrating it on CP 2 one

obtains the contribution of the curvature terms, which is equal to 3/4.
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write the modified Bianchi identity at an orientifold plane as a completely nonsingular

boundary condition, while in the latter cases it needs to be expressed in a singular form.

Presumably related to this is the fact that the former case has wider applicability: besides

orientifold planes, fractional flux for a 4-form field strength can occur in M-theory compact-

ifications on any complex 4-fold with a 4-cycle whose first Pontryagin class is a multiple of

2 but not 4. It remains to be seen whether charges of the type 1
2n for field strengths G(n+3)

can be realized in smooth compactifications, but from the present considerations this does

not seem likely. In the same vein, p-branes for p ≥ 3 do not have anomalies with the right

discrete ambiguity Z2p−1 to play a role similar to the parity anomaly on the 2-brane. It

remains to understand what exactly happens to the parity anomaly on the 2-brane when

it is T-dualized to a higher brane. Comments in this direction appear in Refs.[27][28][29]

but a careful analysis remains to be carried out.

In this section we have seen how the fractional charges on the orientifold planes, which

could potentially be inconsistent with the Dirac quantization condition, actually conspire to

give consistent results in the case of Tn/Z2 orientifolds with n ≥ 5. In subsequent sections

we examine other aspects of gravitational couplings and some details of low-dimensional

orientifolds.

4. R4 Wess-Zumino terms on high-dimensional branes and planes

We have seen that R2 couplings of Wess-Zumino type appear on orientifold planes

as well as branes. Here we will show that the same is true for R4 couplings, though for

obvious reasons these can only appear on p-branes and p-planes for p ≥ 7.

In 10 dimensions, the type I string has a term B ∧X8 which plays an essential role in

the Green-Schwarz anomaly cancellation mechanism. Here X8 is the 8-form

X8 =
1

(2π)4

(

1

48
trF 4 −

1

192
trF 2trR2 +

1

384
trR4 +

1

1536
(trR2)2

)

=
1

(2π)4

(

1

48
trF 4 −

1

192
trF 2trR2

)

+ X̃8

, (4.1)

where,

X̃8 =
1

128
(p1)

2 −
1

96
p2. (4.2)

The first Pontryagin class p1 was defined earlier, and the second Pontryagin class is given

by

p2 =
1

(2π)4

(

−
1

4
trR4 +

1

8
(trR2)2

)

(4.3)
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Let us first look at the terms which contain gauge fields. It is easy to see that these terms

can be obtained by expanding the Wess-Zumino terms on the D-branes. In case of multiple

coincident branes all we need to do is to define the trace in the fundamental representation

of the appropriate gauge group generated by coincident branes. In the case at hand, we

have 16 coincident D9-branes in the presence of an O9-plane, which leads to SO(32) gauge

symmetry. The terms involving gauge fields obtained from expanding the Wess-Zumino

term on the world volume correctly reproduce the F 4 and F 2R2 terms in X8. Hence, as

one would expect, there is no need to assign any gauge couplings to the orientifold plane.

Now we will address the analogous issue for the R4 terms. This time it will prove

necessary to assign specific couplings to the 09-plane, as was the case for R2 terms. As

before, we decompose this term into the contribution from the bulk, the branes and the

orientifold plane, all of which are of course coincident in 10 dimensions. No term of the

above form is present in type IIB in 10 dimensions. The contribution on a single 9-brane,

which we denote B ∧B8, is extracted from the anomaly inflow formula, which leads to

B8 =
1

320

(

1

8
(p1)

2 −
1

9
p2

)

(4.4)

This can be conveniently recast in terms of X̃8 and trR4, and we find

B8 =
1

16

(

4

3
X̃8 −

1

480

trR4

(2π)4

)

(4.5)

Since we require that the contribution from 16 branes plus that from the plane must provide

the total R4 term, we have 16B8 + P8 = X̃8, where B ∧ P8 is the plane contribution. P8

is found to be4

P8 = −
1

3
X̃8 +

1

480

trR4

(2π)4
. (4.6)

4 Note that the following equation differs from the expression that appeared in the original

version and the published form of this paper. This is due to an error of a factor of 2 in the

normalisation of Eq.(4.1) above. We were motivated to check and revise these expressions due

to the appearance of some recent preprints[30,31] (see also [32]), in which our proposal for R4

couplings on orientifold planes was checked by explicit computation of string amplitudes. The

computations confirmed that such couplings exist on O-planes as we had predicted, but showed an

error in our precise coefficients. The following equation, Eq.(4.6), now agrees with the conclusions

of these papers.
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This can be re-expressed in terms of Pontryagin classes as

P8 =
1

640
(p1)

2 −
7

1440
p2 (4.7)

One might think that Eqs.(4.5) and (4.6) together contradict the fact that a 7-plane

can split into a pair of 7-branes. However, the R4 terms on 7-branes and 7-planes are of

the form φ̃ ∧ B8 and φ̃ ∧ P8 respectively, where φ̃ is the RR scalar. When 7-planes split

into (p, q) 7-branes, since φ̃ is not SL(2, Z) invariant one cannot say what the (p, q) branes

should carry. In this respect the situation is similar to that for the 8-form charge carried

by 7-planes and 7-branes, which according to Ref.[5] does not split additively because of

the non-Abelian nature of the monodromy. This is in contrast to the R2 term, where the

RR potential C(4) that appears is SL(2, Z) invariant, and the term splits additively.

5. Gravitational couplings in 3 + 1 dimensional gauge theory

It has been observed that certain supersymmetric gauge theories in 3 + 1 dimensions

have partition functions which are modular under SL(2, Z) with nontrivial weight. The

resolution to this apparent failure of exact SL(2, Z) invariance, or modular anomaly, is

that these theories have specific couplings to gravity which produce (cancelling) modular

anomalies.

Here we will realize the relevant gauge theories on world-volumes of 3-branes, and will

investigate the relationship between the gravitational couplings required for consistency of

gauge theories and those generated by branes and planes on their world-volumes.

Consider N = 4 super-Yang-Mills in 3+1d. This is the world-volume field theory

of a 3-brane. It can be considered to be topologically twisted (namely, the physical and

twisted theories are equivalent), when written on flat spacetime or (after Euclideanization)

on hyper-Kähler 4-manifolds. As we have seen, the gravitational Wess-Zumino couplings

on the 3-brane world-volume are known to be

1

16π2

1

24
tr

(

C(0)R ∧R
)

(5.1)

where C(0) is the RR scalar of type IIB. However, this coupling is not SL(2, Z) invariant

or even covariant.

To discover the correct extension of the above coupling, we need to realize a known

vacuum of string theory in terms of condensed branes. The appropriate vacuum in this
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case is the orientifold of type IIB on T 6/Z2, which has already made an appearance above.

This vacuum has N = 4 spacetime supersymmetry, and it gauge sector is an N = 4 super-

Yang-Mills theory. In this way of describing the vacuum, there are 16 3-branes along with

64 orientifold planes. As far as world-volume gravitational couplings are concerned, we

have argued that the planes carry 1/2 the fraction carried by the branes, so that to find

the contribution on a single brane world-volume, we need to divide relevant terms in the

spacetime action by 24.

In Ref.[17] it is observed that the spacetime R2 coupling in 4d N = 4 compactifications

is, at tree level5, proportional to

tr
(

C(0)R ∧R+ e−φR ∧ ∗R
)

(5.2)

This is argued in Ref.[17] to be corrected by the replacement

C(0) → Re(
log η(τ)24

2πi
)

e−φ → Im(
log η(τ)24

2πi
)

(5.3)

where τ ≡ C(0) + ie−φ. In the limit of constant dilaton and axion, the action gets a

contribution depending only on the topological invariants χ (the Euler characteristic) and

σ (the signature) of the spacetime 4-manifold:

−(χ−
3

2
σ) log η12 − (χ+

3

2
σ) log η̄12 (5.4)

It follows that each brane carries 1
24 of this term. To leading order and considering

only the term involving σ, this precisely coincides with Eq.(5.1), given that σ = p1/3 where

p1 is the correctly normalized first Pontryagin class. The full gravitational coupling on the

brane, to second order in derivatives, is thus

−
1

4
(2χ− 3σ) log η −

1

4
(2χ+ 3σ) log η̄ (5.5)

One way to check that this is correct is to note than on hyper-Kähler manifolds, the

modular anomaly from this must cancel that coming from the gauge partition function,

for which we have the result[33]:

Zgauge(−
1

τ
) = τ

χ

2 Zgauge(τ) (5.6)

5 Our conventions differ slightly from those in Ref.[17], since we want to make the anomaly

term purely holomorphic rather than anti-holomorphic.

19



To check cancellation of the modular anomaly, we examine the SL(2, Z) transformation

law for Eqn.(5.5) after setting σ = −2
3
χ which is the case for hyper-Kähler manifolds.

Thus we need to know how the term in the functional integral

Zgrav = exp(−χ log η) = η−χ (5.7)

transforms. Using η(− 1
τ ) = τ

1
2 η(τ) we find that the gravitational contribution to the

modular anomaly is

Zgauge(−
1

τ
) = τ−

χ

2 Zgauge(τ) (5.8)

which exactly cancels the gauge contribution.

6. Some Issues Concerning Fractional Charge in Dimensions d < 3

Although not specifically related to gravitational couplings on branes and planes, there

is a curious situation in which gravitational anomalies turn into fractional charges on planes

upon compactification. We discuss this below and explain how chiral supersymmetry in

this problem cures an apparent paradox.

Consider the orientifold of type IIA on T 9/Z2. By T-duality, this vacuum, where all of

space is compactified, is realized with 16 0-branes located at points in the internal torus (of

course in such low dimensions the concept of moduli space is not strictly appropriate). The

29 = 512 orientifold points each carry a charge − 1
32 with respect to the RR 1-form. This

vacuum may be considered a limit of M-theory on T 9/Z2 to 2 spacetime dimensions, further

compactified on a circle, as the circle shrinks. However, in the M-theory case[11,14,16] one

expects 512 chiral fermions to appear in the twisted sector, located symmetrically at the

512 fixed points.

Thus it would appear that on compactification of the M-theory orientifold on a further

circle, 512 chiral fermions in 1+1 noncompact dimensions must suddenly turn into 16 D0-

branes, while the gravitational anomaly carried by each of the 29 fixed planes (which are

really fixed lines) turns into − 1
32 units of 1-form charge. The fermions in 1+ 1 dimensions

were forced to sit at the fixed points to bring about local gravitational-anomaly cancel-

lation, so it is hard to understand how they go over into 16 objects in 0 + 1 dimensions

which apparently cannot bring about local 1-form charge cancellation.

The resolution to this lies in the supersymmetry of this problem. In 1+1 dimensions,

the above orientifold of M-theory has (0, 16) chiral supersymmetry. The algebra is:

{Qi
−
, Qj

−
} = δijP− (6.1)
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The chiral fermions which appear as twisted sectors are singlets of supersymmetry, which

means they have + chirality in these conventions, and hence are annihilated by both sides

of the algebra by virtue of the Dirac equation P−ψ+ = 0.

On compactification to 0 + 1 dimensions, we end up with a supersymmetric quantum

mechanics that is also chiral, in the sense that now the supercharges Qi satisfy

{Qi, Qj} = δij(P − Z) (6.2)

where Z is a central charge. D 0-branes are BPS, which means they are annihilated by

the RHS of this algebra. Thus in fact the 0-branes propagating in the fully compactified

space are singlets of the residual supersymmetry, rather than multiplets with 32 states

(16 bosonic, 16 fermionic) as they are in higher dimensions. As a result, in type IIA on

T 9/Z2 the twisted sector of the orientifold can be thought of as being made up of 512

supersymmetry singlets, and local gravitational anomaly cancellation goes directly over

into local charge cancellation.

7. Discussion

We have seen that curved orientifold planes carry gravitational couplings of WZ type.

Quite plausibly they also carry other types of gravitational couplings such as R4 terms

(not of Wess-Zumino type) or their dimensional reductions. This would be interesting to

investigate, along with the possible appearance of similar terms on curved D-branes.

It has also been argued here that fractional fluxes can consistently be carried by orien-

tifold planes. The general conclusion from this discussion would be that such phenomena

as Dirac quantization can be modified by suitable (topological) gravitational couplings, as

first noted in Ref.[13].

While all this adds some insight into the fascinating interplay between gauge and

gravitational interactions in string and M-theory, a deeper understanding of this interplay

would be desirable. Also, it would be interesting to understand gravitational couplings in

N = 2 supersymmetric gauge theories[19] from the point of view of 3-branes in suitable

backgrounds.
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