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Abstract. We consider the effects of quark masses to the perturbative thrust ine+e� annihilation.
In particular we show that perturbative power corrections resulting from non-zero quark masses
considerably alters the size of the non-perturbative power corrections and consequently, significantly
changes the fitted value ofαs.
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One of the cleanest signatures of perturbative QCD comes from jet cross sections ine+e�

annihilation. In such processes, it is possible to define infra-red safe event shape vari-
ables which can be calculated order by order in perturbative QCD and compared subse-
quently with experiment. However, in order to carry out these comparisons, a method has
to be evolved to parametrize non-perturbative effects which though expected to be small
at presentQ2 values at LEP, actually turn out to be substantial (� 25%) even atQ� mZ.
One of the reasons for this is that these non-perturbative effects are actually suppressed
by Q rather thanQ2. In addition, it is also possible that these power corrections could be
comparable toO(α 2

s ) at present LEP energies.
In order to address these issues the Milan group of Dokshitzeret al [1] drawing on the

earlier work of Webber [2], Korchemsky and Sterman [3] and others, presented a system-
atic approach for handling power corrections using perturbation theory. Very briefly, they
studied the consequences of assuming thatαs has a low energy effective form which does
not grow at low scales but has an infra-red regular form. The moments ofα s are integrated
only over the infra-red region. Various non-perturbative parameters are then parametrized
and the form and magnitude of power corrections are determined.

However, before one uses the approach of the Milan group in order to get a handle on
power corrections and subsequently determineαs by a fit to the data, it is important to
isolate power corrections coming from a purely perturbative region. The Milan approach
neglects the masses of all the quarks but instead uses a gluon mass as a ‘trigger’ to differ-
entiate the perturbative from the non-perturbative region. We find however that the masses
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of the quarks, particularly thec and theb quarks, even at present LEP energies, can con-
tribute significantly (of the order of about 25%). In fact, if we go beyond the top quark
threshold (which is expected, perhaps in the future NLC) the perturbative contribution to
power contributions due the top quark mass is even larger. We will have more to say on
this later in the paper.

In this paper, we consider the example of one such event shape variable – the thrust –
and show the significance of the effect of quark masses which need to be folded in before
estimating the non-perturbative contribution to power corrections. We present explicit ex-
pressions toO(αs) of quark mass corrections expanded toO(m). We also show the effect
of keeping the full mass contribution toO(αs) which unfortunately does not have a simple
analytic form like the former and needs to be calculated numerically. Using these expres-
sions we then fold in the power corrections of the Milan type and use this full expression
to estimate bothα0 andαs and compare it with estimates that exist in the literature without
taking quark masses into account.

The first paper which calculated the effect of quark masses toO(αs) was published
about 16 years ago by one of the authors [4]. For completeness, in what follows, we quote
those results from that paper which we need for our analysis here. The thrust, as defined
traditionally, is given by

T = 2
max∑i2h(pi � n̂)

∑i jpi j
; (1)

where the denominator runs over all observed particles and the numerator runs over all par-
ticles in a hemisphere. ˆn is a unit vector chosen in a direction that maximizes the numerator
and defines the jet axis.

While this definition is appropriate for all massless particles, to include mass effects in
the definition of the thrust, we modify the above definition slightly and write

T = 2
max∑i2h(pi � n̂)

W
; (2)

whereW2= s. Of course the denominator equals∑i jpi jwhen all the particles are massless.
This normalization with the total energy is also what is used by the Milan group in their
analysis though in their case the massive gluon eventually decays into massless quarks and
gluons.

For a three-particle final state, the thrust, as we define it, is given by

T = max
h
(x2

1�ξ )1=2;(x2
2�ξ )1=2;x3

i
; (3)

wherexi = 2Ei=W, Ei being the energy of theith particle in the final state in the c.m.
frame andξ = 4m2=W2, m being the mass of the quarks. Note that in the two-jet limit
T = T0 �

p
1�ξ .

The average value of the thrust is defined by

hTi=

�R
T dσ

dT dT
�

�R dσ
dT dT

� : (4)

The numerator of the above is given up toO(αs) and toO(ξ ) by (σ0 = (4πα2=s)e2
i is the

total cross section fore+e�! qiq̄i) [4]
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where Li2(x) is the dilogarithm function. In theξ ! 0 limit this gives, for the average
thrust,

hTi= 1+
4αs

3π

�
1
36

+
π2

6
� ln23+

3
8

ln3�2Li2

�
2
3

��
; (6)

which works out to, for the perturbative thrust in the massless limit,

h1�Ti= 1:05
αs

π
; (7)

as quoted in numerous places in the literature.
Several points here are worthy of note. The leading term in theO(m) expansion above

is ξ 1=2. Thus the leading mass correction goes as 1=Q. To the best of our knowledge,
this fact was noticed for the first time in [4] and subsequently in [2] and [1] who have
traced it to appear from the soft phase space boundary. We would like to stress that this
1=Q behavior is a pure perturbative higher-twist effect to the thrust and not related to any
non-perturbative contribution. Thus, it seems clear, that the coefficient of 1=Q in the full
expression for the thrust would include contributions both from the perturbative as well as
the non-perturbative sectors. This aspect will become more quantitative, when we do our
fits later.

The second point to note is a calculational one. Since, in the two-jet limit, the thrust
is equal toT0 =

p
1�ξ , in order to make the virtual contributions vanish we need to

calculate, not as in the usual caseh1�Ti, but hT0�Ti. It is then a trivial matter to add a
termh1�T0i to obtainh1�Ti to compare with experiment.

In order to compare with experiment, however, and to redo the fits forα s andα0 we
have used not only theO(m) contribution above but also the full massive contribution to
O(αs) albeit evaluated numerically. In addition we have also compared theO(α 2

s )massless
corrections to theO(αs) massive correction to try and estimate how much of the 1=Q
corrections can be mimicked by higher orders in the coupling constant.

Figure 1 showsh1� Ti as a function of the center of mass energy computed with
αs(mZ) = 0:12. As one sees from the curve the contribution of the second-order terms
are large over the entire energy region (� 55% atQ = 12 GeV going down to 33% at
200 GeV). On the other hand, the effect of quark masses, evaluated only to first-order in
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Figure 1. Effect of mass correction and higher order in the mean thrust value. The
solid and the dashed lines are respectively the first- and second-order calculations of
h1�Ti without mass corrections. The dashed–dotted and dotted lines are respectively
the complete and approximate (O(m)) first-order calculations with quark mass effects.

αs, is even larger at low center of mass energy (� 76% atQ= 12 GeV). This is clearly a
1=Q power law effect and hence dies off faster, becoming 2.5% atQ�mZ and negligible at
200 GeV. It is clear from the figure that one needs to take the full massive correction rather
than theO(m) contribution, because it accounts only 60% (30%) of the mass correction at
20 GeV (12 GeV).

In order to compare the theoretical predictions with the measurements done at different
center of mass energies [5] at PETRA, PEP, TRISTAN, SLC and LEP, we add the non-
perturbative contributiona la the Milan group [1] to the perturbative contribution. In this
paper, we use only theO(αs) calculation ofh1�Ti and a more detailed comparison with a
O(α2

s ) calculation is under preparation [6]. We will have more to say on this later. The non-
perturbative contribution, as is well known, is given by an additive contributionh1�Ti pow:

h1�Tipow = 2
4CF

π2 M
µI

Q

�
α0(µI)�αs(Q)�β0

α2
s (Q)
2π

�
ln

Q
µI
+

K
β0

+1

��

(8)

whereµI is an infra-red matching scale (taken as 2 GeV),K = (67=18�π 2=6) �CA�5Nf=9
andM is the Milan factor (determined to be 1.49) [7].

Figure 2 shows the experimental values ofh1�Ti together with the two fits which
use respectively the massless and the massive forms (both toO(αs) for the perturbative
contribution). These fits have been carried out with two free parametersα s(mZ) andα0.
Both massless and massive formulation of the perturbative component give reasonable fits
to the data withχ2 of 126.6 and 116.6 respectively for 53 degrees of freedom. However,
they do differ in the final values ofαs(mZ) andα0 as can be seen in table 1. In these fits
the scale parameter is chosen to be 1.0.

Some issues have to be kept in mind here. The effect due to masses comes from
two sources. The changed (new) definition of the thrust (eq. (2)) that we have used
here (by dividing by the total energy) gives a factorξ=2 independent ofα s in eq. (5).
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Figure 2. Results of the fit ofh1�Ti to the first-order calculations with and without
quark mass effects using eq. (2) as the definition of the thrust. The points indicate
measuredh1�Ti values from different experiments and the solid and dashed lines are
fits without and with mass corrections.

Table 1. Results of the fits of theh1�Ti distribution to perturbative and power law
terms when the quark mass effects in the perturbative term is ignored or included, using
the new definition of the thrust, eq. (2).

Fit type α0 αs(mZ)

Massless quarks 0:8980�0:0047 0:1547�0:0015

Massive quarks 0:8712�0:0051 0:1639�0:0014

Table 2. Results of the fits of theh1�Ti distribution to perturbative and power law
terms when the quark mass effects in the perturbative term is ignored or included, using
the standard definition of the thrust, eq. (1).

Fit type α0 αs(mZ)

Massless quarks 0:7267�0:0045 0:1487�0:0016

Massive quarks 0:6969�0:0049 0:1577�0:0015

However this is an artificial dependence ofξ introduced by our definition. We have there-
fore extracted this dependence (which amounts to about 4.9% at 12 GeV, 0.92% at 91.2
GeV and drops to 0.5% at 189 GeV) which is equivalent to using the old definition of the
thrust and this then gives the results shown in table 2. The remaining dependence onξ
which is multiplied byαs is then the genuine mass dependence of the thrust and which
appears asξ 1=2 as the leading term in eq. (5). (For completeness, the older definition of
thrust (eq. (1)) givesχ 2 as 133.4 and 123.2 for massless and massive quarks respectively,
for 53 degrees of freedom).
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Figure 3. Same as in figure 2 but with the old definition of the thrust, eq. (1).

Figure 2 shows the fit using the new definition of the thrust consistent with the values in
the first table. A similar fit using the old definition of the thrust (corresponding to eq. (1)
and table 2) would, as we have stated already, show only minor variations, that too at the
lowest energy (12 GeV) and this is shown in figure 3.

The errors quoted in table 1 are experimental errors obtained from the minimization
procedure. We can also estimate the theoretical uncertainties on these quantities by vary-
ing the scale parameter. If we vary the scale parameter between 0.5 and 2.0, we obtain
uncertainties inαs andα0 to be�0:010 and�0:12 respectively. The value ofα s(mZ),
obtained from the fits, when quark mass effects are included or ignored, differ by 0.009
which is much larger than the experimental uncertainty of about 0.001 on theα s value and
comparable in fact to the theoretical uncertainty.

It is thus clear from the preceding analysis that an estimate of the power corrections
due to the non-zero masses of the quarks is crucial in getting better and more realistic
estimates on the strong coupling constant and indeed, in general, on power corrections.
The next obvious step would be to calculate mass corrections toO(α 2

s ). Some results in
this direction have been obtained by Nason and Oleari [8] which could be used to carry
out a similar analysis to the one presented above. We are, at present, in the process of
extending our analysis to second order in the strong coupling using the results of [8].

We would now like to comment on our work as compared to similar work in the liter-
ature. Theαs estimation from event shape distributions is done mainly in the following
two ways: (1) some event shape distributions are fitted to second order or matched second
order with resummed NLL calculations; (2) fit the moments of a few event shape distribu-
tions to second order + power law corrections. In both these methods the QCD calculations
used are for massless quarks. In method (1) hadronization corrections are introduced using
different Monte Carlo models – JETSET, HERWIG, ARIADNE etc. There, in addition to
hadronization models, some quark mass effects go in through model parameters.

Unlike papers in the literature on this topic (some of which we have cited) we have given
an explicit analytic expression for the mass correction to the thrust. This expression explic-
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itly also demonstrates the typicalξ 1=2 behavior that is also predicted for power corrections
in the dispersive approach of Dokshitzeret al. This effect is, in fact, what is responsible
for the changing of the usualαs value from the value obtained from the massless case and
gives a sizable effect at low energies.

In various projected Linear Collider scenarios (like, for example, the NLC) energies
upwards of 500 GeV are expected. In such a region, the effect of the top quark would be
dramatic and significant. The combination of the large mass of the top quark and a charge
squared of 4/9 implies that the usual massless expressions for the thrust would not work.
We have estimated that the difference between choosing a massless formula for describing
the thrust beyond the top quark threshold and using the (more appropriate) massive formula
changes the value of the thrust by about a factor of 5 near the threshold. Most of this
contribution comes, in fact, from the top quark mass. In table 3 we give an estimate of
the change that would occur between choosing all quarks massless and massive above the
top quark threshold. It is obvious that the effect is spectacularly large, particularly near the
threshold. Mass effects in the resummation of event shape variables are also expected to
be significant and this is presently being studied.

Thus, it is imperative that in order that reliable estimates be made of the thrust at these
energies, we have available, calculations to higher orders inα s of e+e� scattering with
massive quarks in the final state. This would also give us a handle on the relative magni-
tudes of power corrections to the thrust to a particular order inα s and the magnitude of the
next order term inαs [7,9]. For example, NNLO effects might be capable of mimicking the
1=Q behavior. Mass effects in the resummation of event shape variables are also expected
to be significant and this is presently being studied.

To summarize, we have, in this paper, made some significant departures from earlier
work in this area, viz.,

� There are no Monte Carlo ‘artefacts’ in any of our analysis.
� We have shown that the masses of quarks (in addition to the power corrections of the

non-perturbative kind) also give anm=Q effect rather than am2=Q2 effect.
� That this effect even at lowest order is sufficient to change the central value ofα s.

Higher order corrections would change this presumably even further but the effect
is already visible. This is why we have not in fact called it a ‘new’ determination of
αs. That would have to wait for the full NLO analysis.

� Even though mass correction calculations to the perturbative thrust and other jet
variables do exist, in principle, to NLO, these are not in a form that is easily amenable
to the analysis we have done. This is something we are endeavouring to incorporate
at present.

Table 3. Difference between choosing massless and massive quarks above the top quark
threshold.

Q (GeV) αs h1�Ti (Massless) h1�Ti (Massive)

360 0.0995 0.0323 0.1605

500 0.0957 0.0311 0.0994

1000 0.0888 0.0289 0.0435

Pramana – J. Phys.,Vol. 59, No. 3, September 2002 463



Sunanda Banerjee and Rahul Basu

Acknowledgements

One of us (RB) would like to thank George Sterman for many illuminating discussions.
This project was started at the Sixth Workshop on High Energy Physics Phenomenology
(WHEPP-6), held at Chennai, India in January 2000 and we would like to thank all the
funding agencies which made this workshop possible.

References

[1] Yu L Dokshitzer and B R Webber,Phys. Lett.B352, 451 (1995)
Yu L Dokshitzer, G Marchesini and B R Webber,Nucl. Phys.B469, 93 (1996)

[2] B R Webber,Phys. Lett.B339, 148 (1994)
[3] G P Korchemsky and G Sterman,Nucl. Phys.B437, 415 (1995)
[4] R Basu,Phys. Rev.D29, 2642 (1984)
[5] ALEPH Collaboration: D Bukusulicet al, Z. PhysikC55, 209 (1992)

ALEPH Collaboration: D Bukusulicet al, ALEPH 98-025 (1998), contributed to 1998 winter
conferences
AMY Collaboration: Y K Li et al, Phys. Rev.D41, 2675 (1990)
CELLO Collaboration: H J Behrendet al, Z. PhysikC44, 63 (1989)
DELPHI Collaboration: P Abreuet al, Phys. Lett.B456, 322 (1999)
JADE Collaboration: A Morivilla Fernandezet al, Europhys. J.C1, 461 (1998)
L3 Collaboration: M Acciariet al, Phys. Lett.B489, 65 (2000)
MARK-II Collaboration: A Petersonet al, Phys. Rev.D37, 1 (1988)
MARK-II Collaboration: A Abramset al, Phys. Rev. Lett.63, 1558 (1989)
MARK-J Collaboration: D P Barberet al, Phys. Rev. Lett.43, 902 (1979)
OPAL Collaboration: G Abbiendiet al, Europhys. J.C16, 185 (2000)
PLUTO Collaboration: Ch. Bergeret al, Z. PhysikC12, 297 (1982)
TASSO Collaboration: W Braunschweiget al, Z. Phys.C47, 187 (1990)

[6] Sunanda Banerjee and Rahul Basu, under preparation
[7] Yu L Dokshitzer, hep-ph/9911299
[8] P Nason and C Oleari,Nucl. Phys.B521, 237 (1998)
[9] G Sterman, Talk at the QCD-Euronet Workshop, Florence, Italy, October 1999

464 Pramana – J. Phys.,Vol. 59, No. 3, September 2002


