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Abstract

The self-consistent spatial distribution of particles of Galactic dark matter

is derived including their own gravitational potential, as also of that of the

visible matter of the Galaxy. In order to reproduce the observed rotation

curve of the Galaxy the value of the dispersion velocity of the dark matter

particles, 〈v2〉1/2
DM

, should be ∼ 600 km s−1 or larger.

PACS numbers: 95.35 +d, 98.35 -a, 98.35 Gi, 98.62 Gq, 98.35 Df.
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More than 20 years ago, it was suggested [1] that weakly interacting particles of non-zero
rest mass which decouple from radiation and matter early after the Big Bang would form
an invisible gravitating background of dark matter (DM) around galactic systems. Even
though at that time the only available candidates for these particles were the neutrinos
of the muon and electron flavors, the idea itself became the paradigm under which the
newly discovered particles like the tau-neutrino and newly hypothesised particles within
the context of possible physics beyond the Standard Model of particle physics could be
incorporated. Also, during the latter half of the intervening twenty years, we have witnessed
a tremendous growth in the experimental effort towards direct detection of these particles
in the laboratory. The experiments are aimed at observing the effects of the impact of
mainly the more massive candidate particles of DM with targets maintained at cryogenic
temperatures which facilitate the observation of the tiny amount of energy deposited in the
process against the background generated by internal and external radioactivity and by the
cosmic rays. These developments are reviewed in detail by Trimble [2], Primack, Seckel and
Sadoulet [3], Caldwell [4], and Price [5] .

The interpretation of these experiments to derive constraints on the properties of the
unknown particles constituting a halo of dark matter in and around the Galaxy requires
assumptions about the density and spectrum of velocities of the DM particles in the solar
neighbourhood. These parameters have been obtained thus far by describing the DM halo
as a single component isothermal sphere which is truncated at a particular radius [6]. The
normalization for the density of DM particles comes from an analysis originally suggested
by Oort [7] in which the observed spatial- and velocity distribution of stars near the solar
system indicate a DM density of ∼ 0.3 GeV cm−3 in the solar neighbourhood; Bahcall [8]
gives a detailed account of this procedure. The 3-dimensional dispersion velocity of the DM
particles, 〈v2〉1/2

DM
, has not been determined, however. It is customary to take recourse to the

virial result pertaining to an isotropic isothermal sphere [9] and set 〈v2〉1/2
DM

=
√

3
2
Θ∞, where

Θ∞ is the asymptotic value of the circular rotation speed. Since Θ∞ for the Galaxy is not
known, the usual practice is to assume that the rotation curve of the Galaxy [10,11,12], Θ(R),
is flat from R ∼ 5 kpc out to R ≫ R0 ≈ 8.5 kpc (here and below R denotes the galactocentric
distance in the plane of the Galaxy, R0 being the sun’s position), and set Θ∞ ≈ Θ(R0) ≈
220 km s−1, the rotation speed near the solar system. This yields 〈v2〉1/2

DM
≈ 270 km s−1, which

is the value usually assumed in most studies of issues related to Galactic DM. However, as
noted in the recent review by Fich and Tremaine [12], “Much of the data indicates that the
rotation curve continues to rise beyond R0”. Thus the estimate 〈v2〉1/2

DM
∼ 270 km s−1 derived

by assuming Θ∞ = Θ(R0) is uncertain. Moreover, the assumption of a pure isothermal
sphere for the description of the dark matter halo neglects the possible deviation from
spherical symmetry induced by the disk-like distribution of the visible matter.

Keeping these points in mind, we focus attention on the observed rotation curve of
the Galaxy, and develop a theoretical framework, the salient features of which are: (a) A
model for the Galaxy comprising of visible matter and particles of DM with a self-consistent

inclusion of their gravitational interactions, and (b) Departure from spherical symmetry due
to the disk-like distribution of the visible matter which will be treated as axially symmetric.
The quantity 〈v2〉1/2

DM
appears as a free parameter in our framework and is determined by

comparing the theoretical rotation curve with the observed data.
We adopt well-established models to describe the density distribution of the normal
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visible matter and the resulting gravitational potential. In this Letter we present our results
for a two-component model of the visible matter consisting of a spheroidal bulge [9,13,14]
with density ρs(r), and an axisymmetric disk [14] with density ρd(R, z):

ρs(r) =
ρ0

(

1 + r2

a2

)3/2
(1)

ρd(R, z) =
Σ0

2h
e−(R−R0)/Rd e−|z|/h (2)

where r = (R2 + z2)
1/2

, and Σ0 ≡
∫∞
−∞ ρd(R0, z)dz is the disk surface density at the solar po-

sition, z being the vertical distance from the plane of the disk. The values of the parameters
are given by [13,14] a = 0.103 kpc, Rd = 3.5 kpc, h = 0.3 kpc, and ρs(R0) = 7×10−4 M⊙ pc−3.
(Note that the rotation curve in the outer regions of the Galaxy is relatively insensitive to
the spheroid parameters). There are conflicting reports on the value of Σ0: Whereas Kuijken
and Gilmore [14] (KG) suggest Σ0 ∼ 40 M⊙ pc−2 on the basis of data on ∼ 512 K-dwarf
stars, Bahcall et al [15,16] in their reanalysis of essentially the same data suggest a number
for Σ0 which is about twice as large. In our calculations we consider values of Σ0 in the range
(40–80) M⊙ pc−2. The estimate of the local surface density of the Galactic disk due to the
identified matter such as visible stars is ∼ 48± 8 M⊙ pc−2. Thus Bahcall et al’s kinematical
estimate of Σ0 seems to indicate the presence of a substantial amount of unseen matter in
the Galactic disk, whereas KG’s estimate is consistent with no disk dark matter. (Note
that analyses of Refs. [14,15,16] are all based on 1-dimensional solutions to the Boltzman
equation, which, in the given situation, are strictly valid for an infinite disk only). In any
case, the dark matter associated with the disk is likely to be dissipational in contrast to
that constituting the extended halo which would be collisionless and non-dissipative. We
are concerned with this latter type of dark matter in this paper. We use the conventional
nomenclature “visible” to describe effectively the total matter associated with the disk and
write the total visible matter density, ρv, as ρv = ρs + ρd, the corresponding potential being
Φv = Φs + Φd. The expressions for the potentials Φs and Φd corresponding to the chosen
forms of ρs and ρd are given in Refs. [9,13,14].

Now, for the DM component, the exercise is to calculate the distribution of the DM
particles by self-consistently including the effects of the self-gravitation of the DM particles
themselves and the potential due to the total visible component specified above. The proce-
dure we follow is analogous to the one developed earlier [17] with this difference that we now
have to contend with the axial symmetry of the potentials. Since the DM particles obey the
steady-state collisionless Boltzmann equation, the assumption of Maxwellian phase-space
density allows us to write the spatial density, ρ

DM
(R, z), of DM as

ρ
DM

(R, z) = ρ
DM

(0, 0) exp
[

−
3

〈v2〉
DM

{(

Φ
DM

(R, z) − Φ
DM

(0, 0)
)

+
(

Φv(R, z) − Φv(0, 0)
)}]

,

(3)

where the DM potential, Φ
DM

(R, z), satisfies the Poisson equation,

▽2Φ
DM

(R, z) = 4πGρ
DM

(R, z). (4)
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The solution of the coupled equations (3) and (4) for Φ
DM

is effected through the iterative
scheme (n = 1, 2, 3, . . .)

▽2φn(R, z) = 4πGρn−1(R, z), (5)

where ρn−1(R, z) is equal to the r.h.s. of Eq.(3) with Φ
DM

replaced by φn−1(R, z), and
{φ0(R, z) − φ0(0, 0)} = 0 is the initial choice for the iteration process. The quantities
ρ

DM
(0, 0) and 〈v2〉1/2

DM
are taken as free parameters.

Details of the iterative scheme and the numerical procedure are described elsewhere.
After a few iterations (typically, n ≤ 10) the potentials φn converge towards the desired
potential Φ

DM
. We checked our numerical code against test equations whose exact solutions

are known. We also check our numerical results for the actual equations (3) and (4) against
analytical results for small and large values of R and z.

Once Φ
DM

has been calculated, the rotation curve, Θ(R), is obtained through the relation

Θ2(R) =

(

R
∂

∂R
[Φ

DM
(R, z) + Φv(R, z)]

)

z=0

. (6)

Note that the contribution of the visible disk to Θ2(R) is proportional to its surface density
[see Eq.(4-159) of Ref. [9]], while that of a perfect isothermal sphere is proportional to the
square of the velocity dispersion of its particles [see Eq.(4-127b) of Ref. [9]].

The theoretical rotation curves thus obtained for various values of the parameters
ρ

DM
(0, 0) and 〈v2〉1/2

DM
are to be compared with observations [10,11,12] to ascertain the do-

main of the parameter space which is acceptable. This comparison is shown in Fig.1 for
Σ0 = 80 M⊙ pc−2 and ρ

DM
(0, 0) = 1 GeV cm−3. The value of 80 M⊙ pc−2 for Σ0, it being the

upper limit on the allowed value of Σ0 in our calculation, gives us a conservative estimate of
(i.e., a lower limit on) 〈v2〉1/2

DM
. This is because, for a given value of Θ at a given value of R,

a lower value of the disk surface mass density (Σ0) requires a higher value of 〈v2〉1/2
DM

(for a
fixed value of ρ

DM
(0, 0)). Our choice of ρ

DM
(0, 0) ≈ 1 GeV cm−3 is dictated by the constraint

[7,8] that ρ
DM

(R0, 0) ∼ 0.3 GeV cm−3 and the need to fit the rotation curve. A slightly lower
value of ρ

DM
(0, 0) generally requires higher values of 〈v2〉1/2

DM
in order to satisfy the above

constraint and to fit the rotation curve. In this sense, our choice of ρ
DM

(0, 0) ≈ 1 GeV cm−3

yields, again, a lower limit to 〈v2〉1/2
DM

. A higher value of ρ
DM

(0, 0), on the other hand, can
be consistent with the constraint ρ

DM
(R0, 0) ∼ 0.3 GeV cm−3 for sufficiently low values of

〈v2〉1/2
DM

; however, in this case, the rotation curve falls steeply beyond the solar circle and
thus provides a poor fit to the rotation curve.

In order to determine (a lower limit to) the best-fit value of 〈v2〉1/2
DM

we have calcu-

lated χ2 ≡ 1
N

N
∑

i=1

(

Θi(Ri)−Θi,o(Ri)

σi

)2
as a function of 〈v2〉1/2

DM
(for Σ0 = 80 and 40 M⊙ pc−2 and

ρ
DM

(0, 0) = 1 GeV cm−3), where N is the number of observational data points, Θi(Ri) and
Θi,o(Ri) are the theoretical and observational value of the rotation speed, respectively, for
the ith data point for which R = Ri, and σi is the 1σ uncertainty in the measured value
of Θi,o(Ri). We calculate the above χ2 for the entire data set for R in the range ∼ (2–20)
kpc as well as for the restricted data set for R in the range ∼ (10–20) kpc in which the
observed rotation curve data show a conspicuous rising trend. For Σ0 = 80 M⊙ pc−2, both
data set give a minimum χ2 at 〈v2〉1/2

DM
∼ 600 km s−1. For Σ0 = 40 M⊙ pc−2, the minimum of
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the χ2 lies at 〈v2〉1/2
DM

∼ 750 km s−1 for the restricted data set while the minimum is beyond
900 km s−1 for the full data set. From the above analysis we conclude that the lower limit
on 〈v2〉1/2

DM
is ∼ 600 km s−1.

Notice from Fig.1 that for 〈v2〉1/2
DM

∼ 300 km s−1 the potential of the visible component
concentrates the distribution of DM towards the centre, causing the rotation curve to fall
below the observational data at large galactocentric distances. As the kinetic energy of the
DM particles increases with increased value of 〈v2〉1/2

DM
the particles are affected progressively

less by the potentials and spread out farther. This causes the rotation curves to be elevated.
We thus see that the rms velocity of particles of DM needed to generate the observed

rotation curve is higher than that adopted in a variety of discussions of DM [18] . Indeed,
we had an inkling that this might be so, based on our analytic estimates made earlier in this
context [19]. The implications of this result are multifarious:

• 1. Since the typical velocity of individual DM particles is higher by at least a factor
of ∼ 2 on the average, the energies they would deposit in the detectors would be
higher by at least a factor ∼ 4. This would make these events stand out against the
background.

• 2. The higher velocities imply higher fluxes and the event rates would be increased by
at least a factor of ∼ 2.

• 3. When the observed pulse height spectrum in the detectors are reanalysed taking the
above two points into account the existing bounds on the masses and other properties
of dark matter particles would become substantially more stringent.

• 4. The higher velocities would also mean lower rates of capture by the Sun by accretion;
consequently the flux of high energy neutrinos arising from their annihilations in the
central regions of the Sun [20] is expected to be correspondingly smaller.

• 5. The large velocities would also imply an extended halo (with an estimated mass of
∼ 1.5×1012 M⊙ up to ∼ 100 kpc) whose influence on the dynamical motions within our
Galaxy and on the Local Group, as also the tidal effects on the dwarf-spheroidals would
become important. For example, this high temperature halo will impart stability to
the disk according to the criterion derived by Peebles and Ostriker [21].

These issues are under study and will be reported elsewhere.
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FIGURES

FIG. 1. The theoretically calculated rotation curve of the Galaxy for various values

of 〈v2〉1/2
DM

compared with the available observational data [10,11,12]. All curves are for

ρ
DM

(0, 0) = 1GeV cm−3 and Σ0 = 80M⊙ pc−2 (see text). The data and error bars for R in

the range ∼ (2–17) kpc are from Fig.3 of Ref. [11], and those for R > 17 kpc are from Fig. 2 of

Ref. [12]. The data for R below ∼ 2 kpc are from Ref. [10].
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