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Abstract

The dynamics of the dwarf spheroidal (dSph) galaxies in the gravitational field
of the Galaxy is investigated with particular reference to their susceptibility to
tidal break-up. Based on the observed paucity of the dSphs at small Galactocentric
distances, we put forward the hypothesis that subsequent to the formation of the
Milky Way and its satellites, those dSphs that had orbits with small perigalacticons
were tidally disrupted, leaving behind a population that now has a relatively larger
value of its average perigalacticon to apogalacticon ratio and consequently a larger
value of its r. m. s. transverse to radial velocities ratio compared to their values at
the time of formation of the dSphs. We analyze the implications of this hypothesis
for the phase space distribution of the dSphs and that of the dark matter (DM) halo
of the Galaxy within the context of a self-consistent model in which the functional
form of the phase space distribution of DM particles follows the King model i.e.
the ‘lowered isothermal’ distribution and the potential of the Galaxy is determined
self-consistently by including the gravitational cross-coupling between visible matter
and DM particles. This analysis, coupled with virial arguments, yields an estimate of
> 270km s~ for the circular velocity of any test object at galactocentric distances
of ~ 100kpc, the typical distances of the dSphs. The corresponding self-consistent
values of the relevant DM halo model parameters, namely, the local (i.e., the solar
neighbourhood) values of the DM density and velocity dispersion in the King model
and its truncation radius, are estimated to be ~ 0.3GeV/cm?, > 350kms~! and
> 150kpc, respectively. Similar self-consistent studies with other possible forms
of the DM distribution function will be useful in assessing the robustness of our
estimates of the Galaxy’s DM halo parameters.
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1 Introduction

A well-motivated conjecture is that electrically neutral weakly interacting par-
ticles generated in the big-bang origin of the Universe through their grav-
itation triggered the formation of galaxies (Cowsik and McClelland, 1973;
Einasto et al., [1974). This process generically leads to the formation of ha-
los of dark matter (DM) surrounding the galaxies. The DM halo in which the
Milky Way Galaxy is embedded is the subject of this paper. Detailed study
of the DM halo surrounding the Galaxy is particularly important because it
might provide insights into the more general problem of DM in the Universe
and the role of DM in the formation and dynamics of the diverse galactic
systems.

In constructing theoretical models of the DM halo of the Galaxy one must keep
in mind that the visible matter in the form of stars and gas in the Galaxy not
only act as tracers of the galactic potential but also contribute to it, domi-
nating it at galactocentric distances below a few kiloparsecs and diminishing
in importance at very large distances where DM is the main contributor. It is
the interplay between these two components that finally determines the spa-
tial distribution of both the visible and the dark matter components of the
Galaxy.

What is the mass of the Galaxy including its halo? How far does the halo ex-
tend? These are some of the crucial questions that are addressed in this paper
using a novel method that uses the dynamics of the dwarf-Spheroidal (dSph)
galaxies in the gravitational potential of the Galaxy together with a model
of the phase space structure of the DM halo of the Galaxy that incorporates
the gravitational potential of the visible matter as well as that of the DM
particles in a self-consistent manner. Early work on using the satellites of the
Milky Way as tracers of its gravitational potential includes [Lynden-Bell et al.
(1983), Little and Tremaine (1987) and |Wilkinson and Evans (1999) (here-
after WE99).

One of the most effective probes of the gravitational potential of the DM halo
of the Galaxy is the behavior of its rotation curve, the circular rotation speed
as a function of the galactocentric distance R. However, direct measurements
of the Galactic rotation curve are available only up to R ~ 20kpc. On the
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other hand, a proper understanding of the nature of the DM halo requires
the knowledge of the behavior of the rotation curve at large galactocentric
distances. It is in this context that the dynamics of dSphs, which lie beyond
several tens of kpc from the Galactic center, play an important role in the
study of the nature of the DM halo.

The central idea and the main results of this paper can be summarized as fol-
lows: The dSphs, comprising of mostly old population stars with total visible
masses in the range ~ 10° — 10” M and radii in the range 1 — 2 kpc, populate
a region extending from ~ 60 kpc to 250 kpc from the Galactic center. They
are relatively low density systems that are susceptible to tidal break-up in the
gravitational potential of the Galaxy. Even with the additional mass provided
by the DM in these systems they are near the threshold of tidal break-up in the
gravitational field of the Galaxy (Aaronson, [1983; |Gallagher and Rosemarys,
1994; Lynden-Bell et al.,;[1983;Irvin and Hatzidimitriou, [1995;/Da Costa,1999).
During the early epochs following the formation of the Galaxy and its satel-
lites, a subset of the dSphs that had close perigalactic passages must have
been tidally disrupted leaving behind a population which do not approach
the Galaxy too closely. Thus, the present day phase space distribution of the
dSphs should be such as to be depleted of orbits with large radial velocities,
vy, which would have brought them closer to the centre of the Galaxy than a
certain minimum galactocentric distance r;,. This makes their velocity dis-
tribution skewed in favor of transverse velocities, v;. The velocity skewness or
anisotropy parameter, 7, can in general be defined as

J= /), (1)

where v is the total velocity of a satellite and v, is its radial component, and
the angular brackets denote the average over a population of these satellites.
This parameter can be theoretically calculated for dSphs as a function of
the parameter r;, that parametrizes the spatial restrictions imposed on the
allowed orbits of the dSphs for an assumed form of the phase space distribution
function of the dSphs and a given potential of the Galaxy. A comparison of the
calculated radial distribution of the dSphs with the observed one then allows
us to determine the most likely value of the parameter r.,;, and thereby obtain
an estimate of the velocity anisotropy parameter j of the dSphs. This, coupled
with their observed radial velocities, then gives us an estimate of (v?) of the
dSphs. This in turn allows us to infer, using the virial theorem as formulated
by ILynden-Bell and Frenk (1981), the circular rotation speed v, of any tracer
object in the potential of the Galaxy at galactocentric distances spanned by the
dSphs. This analysis yields an estimate of v, of ~ 270 kms~! at galactocentric
distances of > 100 kpc.

Our dynamical model for the gravitational potential of the Galaxy including
its DM halo in which the dSphs move is based on simple assumptions about the



phase space structure of the DM particles, and incorporates the gravitational
potential of the visible matter as well as that of the DM particles in a self-
consistent manner. The phase space distribution function (DF) of the finite-
sized DM halo model we assume in this paper is the truncated or “lowered”
isothermal DF (“King model”) (see, e.g., Binney and Tremaine, 1987, p. 232).
This model has three parameters, namely, the density, ppy.e, and velocity
dispersion, <v2>iﬁ@, of the DM particles at the solar location, and the radius,
r¢, of the DM halo. We determine these model parameters by demanding that
the model not only yield the observed spatial distribution of the dSphs but also
at the same time be consistent with the directly observed rotation speeds of the
Galaxy at all galactocentric distances. This analysis yields good fit to all the
available observational data for values of the King model DM halo parameters,
Pomo ~ 0.25 — 0.4GeVem ™3, (vz)%ﬁ@ > 350kms~!, and r; > 150 kpc.

This paper is organized as follows: We begin, in section 2, by reviewing the
spatial distribution of the satellites and pointing out several of its relevant fea-
tures. In section 3 we derive the constraint equations pertaining to orbits which
are confined between certain minimal and maximal galactocentric distances
in the galactic potential and then discuss how these constraints influence the
distribution of dSphs in phase space. In section 4 we briefly review the virial
theorem due to|Lynden-Bell and Frenk (1981) which allows us to estimate the
circular rotation speed of any tracer object at large Galactocentric distances
if the radial velocities of an ensemble of objects at those distances are known.
Our self-consistent model for the DM halo of the Galaxy is described in section
5. The rotation curves for various different values of the relevant parameters of
the DM halo model are presented in section 6, where we also discuss how the
measured rotation speeds allow us to determine one of the parameters of the
model, namely, the DM density in the solar neighborhood. We then describe in
section 7 how the dynamics of the dSphs can be used to constrain the param-
eters of the DM halo model by comparing the theoretically calculated radial
distribution of the dSphs with their observed radial distribution. The esti-
mates of the velocity anisotropy parameter j and the resulting lower limits on
the average circular rotation speeds at large galactocentric distances spanned
by the dSphs are obtained in section 8. A summary of the main results of the
paper is presented in section 9. Three appendices provide additional material
that reinforces the underlying physical basis of the results obtained in the
main body of the paper.

2 Spatial distribution of the satellites of the GGalaxy

A careful compilation of 27 satellites of the Galaxy has been made by WE99,
and our analysis in this paper is based on the astronomical data available on
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Fig. 1. Distribution of the number of satellites as a function of the distance from

the Galactic centre. Notice the two distinct peaks separated by a dip at ~ 50kpc.

The prediction of the TF model of Wilkinson and Evand (1999) is also shown. The

dwarf spheroidals all lie in the second peak and beyond.
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this sample of 27 objects [2].
We define the radial number distribution of the satellites through the relation

N(r)dr = 4mr*n(r)dr, (2)

where n(r) is the spatial number density distribution. Observationally, N(r)
just represents the number of satellites in unit interval in r at a radial distance
r from the Galactic centre irrespective of their angular coordinates. This one
dimensional distribution is less subject to statistical uncertainties than higher
dimensional distributions such as the phase space distribution.

We display in Fig. 1 the observed distance distribution of the satellites. Even
a visual inspection of this distribution is quite revealing: There is a sharp
peak comprising of 12 satellites at around 30 kpc. Then there is a group of 15

3 Subsequent to completion of our analysis and prior to the publication of the
paper, some new satellites of the Milky Way have been discovered (see, e.g.,
Belokurov et all (2006)). It will be interesting to repeat the analysis presented here
when data on a more complete set of satellites become available.



satellites distributed as a broad peak at around 90 kpc, with a long tail ex-
tending beyond 200 kpc. On the same Figure we also display the best fitting
“shadow tracer” TF model of WE99 and note that the sharp first peak, the
dip at around 50 kpc, and the second peak at around 90 kpc are not well rep-
resented by the model. In fact it appears that no model that predicts a smooth
monotonic decrease in the number distribution will fit the observations, and
one needs to consider that there are two distinct populations corresponding
to each of the peaks and separated by a low density region centered around
50 kpec.

How can one maintain two such spatially separated populations over the age
of the Galaxy ~ 10 billion years? Unless there are dynamical constraints, the
features such as two separate peaks and a depleted region in between will get
smoothed out over a few orbital periods, that is, well within a billion years.
An important clue as to the possible dynamical reasons for imposing these
features on the distance distribution of the satellites stems from the fact that
all the dSph galaxies lie in the second more distant region and none nearby. As
noted in the Introduction, the dSphs are highly susceptible to tidal break up
in the gravitational field of the Galaxy. The key idea is that at an early epoch
when the Galaxy and its satellites were being formed, perhaps even prior to
the complete condensation of the satellites into their present configurations,
a dynamically chosen subset of the satellites were tidally disrupted by the
centrally condensed galaxy. A fraction of the satellites might have been tidally
stable, as would be the case for globular clusters, for example, which might
have settled down into the distribution peaked at around 30 kpc that we see
today.

As for the objects populating the second peak around 90 kpc, it is likely that
these represent a subgroup of objects, which even though were weekly bound
at the time of their formation, survived tidal disruption as their orbits did not
ever bring them close to the central galaxy. The other subgroup with more
radial trajectories, on the other hand, were tidally disrupted, as their trajec-
tories brought them much closer to the galaxy where the tidal fields are much
stronger. Thus the tidal effects on this second subgroup caused a reduction in
their densities at short galactocentric distances, with the concomitant effect
on their phase space distribution whereby asymmetries were introduced into
their velocity distribution. These considerations are relevant to any model for
the formation of the satellites that dynamically removes progenitors which ap-
proached the central galaxy too closely in the past. We may look for this effect
in the data available on the proper motions of six satellites given in Table 3
of WE99, three of which are dSphs. From these data (see also [Piatek et al.
(2005, 2002)), it is straightforward to estimate the asymmetry parameter j
defined in equation (1), which yields j = 1 + ((v2)/(v?)) ~ 4.7 for all six
objects and j ~ 4.4 for the three dSphs, as compared to the value jis, = 3 for
an isotropic distribution of velocities. Note, however, that because the data



sample is small and uncertainties in the proper motion measurements sizeable
the above estimate of j is to be treated with caution, even though the data
do seem to indicate the possible existence of a velocity anisotropy favoring
transverse velocities in the distribution of the dSphs. As shown later in this
paper, a more robust estimate of the asymmetry parameter j can be obtained
from the analysis of the number distribution N(r) of the satellites without
any reference to the data on the radial velocities nor on the proper motions
of the satellites.

Our j parameter is related to the parameter S defined in WE99 through the
relation
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which gives, for the same data set as mentioned above, § ~ —0.85 for all
six objects and 3 ~ —0.7 for the three dSphs. Note the negative values of
[ signifying possible existence of a velocity anisotropy in favor of transverse
velocities over radial velocities.

In the next section we begin by deriving the kinematic constraints on the orbits
of dSphs and go on to show how the two observational features, namely, their
depletion at short galactocentric distances and the velocity anisotropy get
related to each other.

3 Truncated phase space of the dwarf spheroidals

Let us consider the motion of dSphs in the potential of the Galaxy with its
DM halo. Consider then an initial phase space distribution function (DF) F
for the dSphs, from which all representative points corresponding to orbits
which do not satisfy the constraint

T'min S 7 < Tmax (4)

have been removed. Here r is the radial coordinate, and r,;, and r,., are the
perigalacticon and the apogalacticon of the orbits of the population of dSphs.
For such a truncated DF we wish to evaluate the skewness parameter j defined
in equation (1). Now, referring to Figure 2 we can write the equations for the
conservation of energy and angular momentum of a dSph’s motion as

=502+ 4o, )



Fig. 2. The sketch shows a typical orbit (dashed curve) of a dwarf spheroidal galaxy
around the Milky Way, and defines the various distances and velocities used in the
calculation. It is assumed that all the permitted orbits of dSphs lie between rpnin
and Tpax (see text). The solid curve represents the “maximal” orbit: This orbit has
the maximum transverse velocity at ry;, and hence permits the maximum radial
velocity at any r.

and

J = Ty = rminvt(rmin) - /rmin\/2[E - ¢(Tmin)] s (6)

where F' is the energy per unit mass, J the angular momentum per unit mass,
vy the transverse velocity and ¢ is total gravitational potential of the Galaxy.

Manipulating equations (5), (6) we can write

W) = min L2(r) + 2[6(r) — O]} (7)



The spatial restriction imposed on the orbits by equation (4) implies con-
straints on the velocity components v, and v, which can be deduced as follows:
First, note that the orbit having the maximum transverse velocity at 7, will
be the one that permits the maximum radial velocity at any r. Considering
this “maximal” orbit, shown schematically in Figure 2, and using the energy
and angular momentum conservation equations given above, it is easy to show
that the maximum radial velocity, v, max, at any r is given by

0 () =2 ( = ) ( _‘“) 9(mas) — $(rmia)] = 2[0(7) = (7)) -(8)

The maximum v; at any r, v;max (7, 0-(r)), using conservation of energy, is
then given by

2
2 r

Vmax (1 0n () = 225 {2 [0(ras) — 0(r)] = 07(r) } - (9)

2 _ 2
T hax r

It can be shown by a Taylor expansion around r = 7., that this equation (9)
correctly gives v7 ., (7 = Tmax) = 72| = 2(rmax), Where v, is the circular

) or
velocity.

The minimum v; at 7, Vgmin (7, (1)), has to be such that the radial velocity
at rpi, for this orbit, v, (rmi , v-(r)), vanishes, and the kinetic energy at ry;,
is completely due to transverse motion. This gives

Vmin (7, 0r(r) = 22— {02(r) + 2[6(r) — $(ram)] } - (10)

re—r

Notice, as before, v7 i, (1 = Tmin) = 2 (Fmin)-

The constraint equations (8), (9) and (10) as functions of r are displayed for
illustration in Figure 3 for a simple representative Galactic potential at large
r of the form

o(r) = =k (1+ (r/ro)) ", (11)

where k and 7y are dimensionful constants. We have found that this simple
“softened Keplerian” potential with appropriately chosen values of the normal-
ization constants, xk ~ 40 x (100 kms™1)? and ry ~ 65 kpc roughly reproduces
the potential of the Galaxy at large galactocentric distances > 50 kpc. Notice
that v? vanishes at 7y, and rp.. and is less than vzmax for considerable

r,max
distances from the end points, and it is only at intermediate distances that

v2 . becomes larger than v2 . and v? . for large values of v,. Thus it is

r,max
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Fig. 3. Constraints on the radial and transverse velocities of dSphs given by
equations (8), (9) and (10) displayed as functions of r for ryi = 50kpc
and rmax = 250kpc, for the “softened Keplerian” potential of the form
¢(r) = —k(1+4(r/rg))”" with normalizations s ~ 40 x (100kms™')2
and 19 ~ 65kpc. The o7 ; (r,v.(r)) (solid curves) and w7, (r,v.(r))

(dashed curves) are shown for five different values of v2(r), namely,

v2(r) = (0.2,0.4,0.6,0.8,1)xv2 . () (from top to bottom). The dotted curve shows

T r,max

v%max(r). Similar constraints derived from a self-consistent model of the Galaxy were

used for deriving the results quoted in the paper.

clear that such kinematic restrictions on the population will yield one with a
large value of the asymmetry parameter j defined in equation (1). We should
emphasize that the choice of the potential (11) here is merely to illustrate
the general nature of the constraint equations. In the actual calculations and
the results presented in this paper the potential is calculated self-consistently
using a dynamical model of the Galaxy described in section 5.

The kinematic constraints derived above will immediately impose asymmetries
on the phase space distribution function of the dSphs. Writing the primitive
isotropic phase space distribution function of the dSphs as F'(uv,v,, ), the
spatial number density distribution of the dSphs is given by

Vr max Ut,max

n(r) = / / F (v, v, 1) 21 vy doy do, (12)
0

Vt, min
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for rmin < r < Tmax, and n(r) = 0 otherwise. The radial number distribution
N(r) of the dSphs is then given by equation (2).

Similarly the velocity skewness or asymmetry parameter j defined in equation
(1) is given by

VU
[ [rmax potmax (g )02 2 vy dug dv, d3r

— Tmin Vt, min ) (13)
Jrme fo e F(vg, v, 7)02 27 vy dvg do, d3r

Before we calculate these constrained distributions and the skewness parame-
ter from a self-consistent dynamical model, we will discuss the importance of
the skewness parameter j in constraining the circular speed and in turn the
Galactic potential at large distances.

4 Circular rotation speed at large Galactocentric distances

The estimate of the skewness parameter j from the observed data allows us
to derive the circular rotation speeds v, in the Galactic potential at distances
spanned by the dSphs. Following [Lynden-Bell and Frenk (1981) consider the
identity

1 d?|r|?

5 g v =ri=rVo=—02, (14)

applicable to any particle moving in a gravitational potential ¢. Here v = 7
denotes the velocity vector of a particle at the position r with respect to the
center, and v.(r) is the circular velocity that would balance the radial compo-
nent of gravity at the radius r. Averaging equation (14) over an ensemble of
particles with position vectors r; and noting that

d , dl

for a system of particles in virial equilibrium (I being the moment of inertia),
one gets

(v*) = (7). (16)

Thus, by measuring (v?) for an ensemble of objects at large Galactocentric
distances we may estimate the value of (v?) at those distances. As emphasized
by ILynden-Bell and Lynden-Bell (1995), the validity of this theorem does not
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require that the potential be self-generated by the ensemble of particles under
consideration. Thus, in general, we can write,

(W) = j(?), or v ~ Y vA)V2. (17)

T

It is worth emphasizing that in this formulation of the virial theorem the
kinetic energy gets equated to (rd¢/0r) rather than to the potential energy
as in the standard formulation.

The root mean square of the radial velocities, (v2)/2, can be estimated from

a compilation of the radial velocities of various astronomical objects given in
Table 2 and 3 of WE99, for example. This gives (v?)1/2 ~ 115kms~!. The
errors we expect in the determination of this (v2)/? are primarily systematic,
even though the smallness of the sample will also contribute to the uncer-
tainties. Referring to the extensive review by Mateo (1998) we note that the
typical accuracy with which the radial velocities with respect to the solar sys-
tem barycentre are quoted is £2kms~!. Thus the errors are primarily due to
the uncertainty in the circular velocity of the local standard of rest. Keeping
in mind that the value of the circular rotation velocity at solar circle quoted
in literature is in the range 200 — 220 kms™!, and that the component of this
velocity in the direction of the satellite is to be subtracted from the observed
radial velocity with respect to the solar system, there would be an additional
uncertainty of ~ 5kms™! on the average in the estimate of (v2)!/2.

The measurements of proper motions are less certain and provide estimates of
the transverse velocities as seen from the solar system. Since the solar system
is at a distance of ~ 8.5kpc from the Galactic centre we need to make use
of both the observed components of the velocities to determine the radial
velocity with respect to the Galactic centre. In so far as the distances of the
satellites are much larger than 8.5 kpc, the transformations of the velocity
components from the heliocentric to the Galactocentric system do not add
additional uncertainties except in rare instances. Thus the determination of
(v2)/2 is reasonably robust.

On the other hand, the transverse velocities are to be estimated from the mea-
surements of proper motions and are subject to greater uncertainties. This,
coupled with the fact that there are only a small number of dSphs for which
proper motion data are available, makes reliable observational determination
of the anisotropy parameter j from direct measurements of the radial and
transverse velocities somewhat difficult. We shall instead estimate the param-
eter j in section 8 below from the observed radial number distribution, N(r),
of the dSphs, which was introduced in section 2.

To proceed further, we next describe the model we have adopted for calculating
the potential of the Galaxy in which the dSphs move.

12



5 Dynamical Model for the Dark Matter Halo of the Galaxy: The
mathematical formalism

Both the visible matter and the dark matter contribute to the potential of
the Galaxy, even though their relative contributions vary, with visible matter
dominating at galactocentric distances below ~ 5kpc and the dark matter
contribution increasing slowly with distance until beyond ~ 20kpc it is the
dominant contributor. Whereas the density distribution of visible matter may
be directly inferred from the astronomical observations, the density distribu-
tion of dark matter has to be deduced by somewhat more involved methods.
The spatial distribution of the DM particles is dictated by their velocity dis-
tribution and the overall gravitational potential to which they also contribute
depending on their density distribution. Thus one should ensure internal con-
sistency between their velocity distribution and their density whose contribu-
tion to the potential when added to that of the visible matter should yield the
overall potential.

The overall gravitational potential of the Galaxy is well determined by the
observed rotation curve of the Galaxy at least up to ~ 15 kpc. The method
using the dSphs discussed in the previous section will help us to determine the
potential up to distances of ~ 100 — 200 kpc. In order to ensure the overall self-
consistency we need a dynamical model, and to this end we start by making a
convenient ansatz regarding the functional form of the phase space distribution
of the particles constituting the DM halo. We then derive the structure of the
halo by solving the combined Poisson-Boltzmann equation which involves the
known gravitational potential of the visible matter of stars and gas of the
Galaxy and the as yet undetermined potential of the DM halo. The solutions
are a parametrized family of functions representing the potential due to the
dark matter distribution. We may add to this the known contribution of the
visible matter to get the total potential corresponding to different values of
the parameters that characterize our DM halo model. By fitting the potential
derived from the measurements of the rotation curve and the dSph dynamics,
we can then determine the acceptable range of the parameters of our assumed
DM halo model.

We assume that the density distribution of the normal visible matter is known
and can be described adequately by a spheroidal bulge superposed on an
axisymmetric disc (Caldwell and Ostriker, 1981; [Binney and Tremaind, [1987;
Kuijken and Gilmore, 1989). The density distributions of these are given re-
spectively by

pu(r) = ps(0) (1 + —2)_3/2 | (1)
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and

)y —(R— —|z
pa(r) = T (R=Fo)/Ra o=2l/h (19)

where r = (R? + 22)Y/2 | R being the Galactocentric distance in the median
plane of the disc and z the distance normal to the plane. The parameters
take the values p,(0) = 4.2 x 10°Mgpc™3, a = 0.103kpc, Ry = 3.5kpc,
and h = 0.3kpc. Also Ry = 8.5kpc is the solar Galactocentric distance
and ¥ & 36 Mg pc~2 is the column density of the disk at the solar location.
The expressions for the gravitational potentials, ¢, and ¢4, corresponding
to above forms of ps and py, are given in (Caldwell and Ostriker (1981) and
Kuijken and Gilmored (1989).

The true phase space DF that describes the DM halo of the Galaxy is not
known. To make progress we choose a phase-space distribution function (DF)
of the dark matter dictated by the following physical considerations: It should
represent a collisionless system and should allow a parametrization in terms of
the three main physical parameters of the halo, namely, the density and veloc-
ity dispersion of dark matter at some reference location within the halo, and
the size (radius) of the halo. The truncated or the so-called “lowered” isother-
mal distribution (often called the “King” model) is a simple DF which has
these features, and has been studied extensively (see, e.g., Binney and Tremaine,
1987, p. 232). As such, in the present study we adopt this DF, which is given
by

o) 3/2 e/o? _ r
o) = f(o) = p1(2mo*) (e 1) fore >0, (20)

0 fore <0,

with
L,
55¢0—(§v +¢). (21)
Here ¢ = ¢5 + ¢q + ¢py is the total gravitational potential due to the visible
and the dark matter components of the Galaxy, and ¢y, p; and o are pa-
rameters to be determined by comparing the results of the model calculations
with observations. Notice that here f is chosen as a function of the conserved

quantity, total energy (per unit mass), £ = (%v2 + ¢), so that the collisionless
Boltzmann equation is stationary. The density of dark matter is given by

Pom = /f dgv’ (22)
and vanishes at the location r = r, where € = 0, representing the outer edge
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of the halo. Note also that the parameter o (having the dimension of velocity)
is not equal to the velocity dispersion of the DM particles, (1)2)]13/& ; the latter
can be calculated for the DF given above and is a function of r, vanishing at
T =T%.

The visible matter potentials and densities being already known, the DM
potential ¢p,, is obtained by solving the Poisson equation

v2¢DM(R> z) = 4nGppu(R, 2) . (23)

Notice that ppy appearing on the 7.h.s. of the equation (23) is a nonlinear
functional of ¢ = @5 + ¢g + dpy via equations (20), (21) and (22). Assuming
axisymmetry, we numerically solve the nonlinear equation (23) through an
iterative procedure discussed earlier in [Cowsik et al. (1996), which has been
tested on special cases where analytical solutions are available. The solutions
thus obtained give the values of ¢py(R, z) for different chosen values of the
parameters pi, o and ¢g.

In our numerical calculations we take the DM density at the solar location,
pom,e = Pou(R = Ro,0), the DM velocity dispersion at the solar location,
(1)2)]13/5@ = (WEZ(R = Ry,0), and the truncation radius r;, as the three
“observable” free parameters of the model, instead of the parameters p;, o
and ¢ appearing in equations (20) and (21). From this 3-parameter family of
solutions we need to choose the one which fits all the known observations.

6 The Rotation Curve and the value of p;, ¢

One of the most useful probes of the potential of the Galaxy is the circular
rotation curve (RC), v.(R), which is given by

0 00 0
ve(R) = R (R, 0) = Rems 6o (R, 0) + 05(R, 0) + ¢a(R, 0)] (24)

We have run a series of models of the Galaxy spanning a wide range of values
of the parameters ppy e, (vz)éﬁ@ and r; distributed about their values esti-
mated from earlier studies. Figure 4 shows a sample of the RC’s of the Galaxy
calculated from our model [*| together with the available data for R < 20kpc
as summarized in Honma and Sofue (1997). In the same Figure we have also
indicated two different estimates of the expected lower limits on v, in the

4 In Appendix A we present several more of these RCs calculated for values of the
relevant parameters of the halo neighboring those used in Fig.4.
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Fig. 4. A sample of theoretically calculated rotation curves of the Galaxy based
on our self-consistent model, including the lower bounds derived from the study
of dynamics of dwarf spheroidals. The dark matter is modeled as having a low-
ered (truncated) isothermal distribution. The curves shown are for dark mat-
ter density in the solar neighborhood, ppu,e ~ 0.3 GeV em ™3, truncation radius,
ry = 150kpc, and various values of <v2>]13/1\i®, the velocity dispersion of the dark
matter particles at the solar neighborhood, as indicated. The solid curve corre-
sponds to the maximum possible value of (1)2%/1\?’@ consistent with the chosen val-
ues of ppu,» and ;. The doubly thick solid curve represents our “conservative most
likely” (CML) model (see text) with DM parameter values ppy e =~ 0.3 GeV em™3,
<v2>;ﬁ® ~ 400km s~! and r; = 200 kpc. The observational data (crosses and verti-
cal lines with error bars) are from [Honma and Sofue (1997) for the case Ry = 8 kpc
and v.(R = Rp) = 200km s~1. The two solid horizontal lines represent two different
estimates of the expected lower limits on v, in the region of R ~ 100kpc obtained
in this paper from the dynamics of the dwarf spheroidals. The small glitches in the
curves at R ~ 100 kpc are artifacts of numerical calculation and are due to increased
grid spacing used for distances r > 100 kpc in order to reduce the total computation

time.

region R ~ 100 kpc obtained in this paper from the dynamics of the dwarf-
spheroidals; derivation of these estimates is discussed in section 8 below.

In the very central regions (R < 1kpc) of the Galaxy the density of normal
matter is so high that the RC is essentially determined by it and is sensibly
independent of the parameters of the DM. In the region 1kpc < R < 10kpc
the contribution of normal matter progressively decreases as the contribution
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of DM increases, maintaining a nearly flat RC. Based on the results of our
extensive calculations of approximately more than two hundred model RCs
for a wide range of the relevant parameters (only a selected few of which are
shown in Fig. 4, Fig. A.1 and Fig. A.2), we can conclude that, as long as
we restrict ourselves to the available data below galactocentric distances of
~ 20kpc, a range of ppy e values from ~ 0.25GeV/cm? to ~ 0.4 GeV/ cm?
with suitably chosen values of the other two parameters, r; and (vz)%)/hi@, can
yield acceptable fits to the data. To be specific, we use the value

Pom.o ~ 0.3 GeV cm ™3 (25)

for the DM density in the solar neighborhood in our numerical calculations
discussed below; the results derived in this paper do not change by any signif-
icant amount for other values of this parameter within the approximate range
given above. Some theoretical rotation curves for other values of ppy e are
given in Appendix A.

Sensitivity of the rotation curves to the two other parameters of our DM halo
model, namely, r; and (1)2)]13/5@, commences at distances R > 10kpc, with
strong sensitivity to these parameters at R > 20 kpc where direct measure-
ments of the rotation curve are absent. The estimates of the rotation speeds
derived from the dynamics of dSphs, therefore, play an important role in con-
straining the values of these two parameters, which we shall proceed to discuss

in the next section.

Based on the nature of the theoretical rotation curves displayed in Fig. 4,
Fig. A.1 and Fig. A.2, for example, together with the existing rotation curve
data, we shall restrict our attention, for the subsequent discussions in the

paper, to the values of the parameters r, and (vz)%ﬁ@ satisfying

ry > 100 kpe, (26)

and

(W 5 > 300kms™" (27)

For suitable choices of values of the parameters in these ranges, the theoretical
rotation curves fit the observed data satisfactorily. Some theoretical rotation
curves for parameter values outside the values and ranges indicated by equa-
tions (25), (26) and (27) are also shown in Fig. 4, Fig. A.1 and Fig. A.2.

The DM density profiles in the plane of the Galaxy for the same set of our

self-consistent models corresponding to the rotation curves of Fig. 4 are shown
in Figure 5.
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Fig. 5. The dark matter density profiles in the plane of the Galaxy for the same
set of model parameters corresponding to the rotation curves of Fig. 4.

7 Constraining the parameters of the dark matter halo using the
dynamics of dwarf spheroidals

As discussed in Section 4 the rotation speeds at large galactocentric distances
can be estimated from the dynamics of the dSphs. In sections 2 and 3 it
was shown that the dSphs will have a skewness in their velocity distribution
quantified in terms of the parameter j, which is a sensitive function of the
parameter 7., the location of the dip in the radial number distribution of
the satellites of the Galaxy. We can determine the value of r;,, and hence,
the parameter j, from the observed radial distribution of the dSphs in the
following way:.

Referring to Fig. 1, let N°™ be the observed number of dSphs in the i-th, 10
kpc-size radial distance bin, with ¢ = 1,2, ... denoting the radial distance bins
(0-10 kpc), (10-20 kpc), etc., respectively. We calculate the theoretical expec-
tation for the number of objects in each of these bins, N from the radial
number distribution of the satellites, N(r), calculated in a number of theoret-
ical models with various possible values of r;, and a large enough value of
Tmax ~ 500 kpc. Our calculations discussed below have negligible dependence
on the exact value of r., as long as it is large enough to accommodate the
most distant satellites.
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The radial number distribution N(r) can be calculated using equations (2)
and (12). To do this, we need to provide the primitive (undistorted) phase
space distribution function, F'(v;, v,, 1), of the satellites, which we take to be
of isothermal form, namely,

F(ui,vr,r) o exp {3 (562 +2) +0(1)) /o) (28)

where oy is the primitive velocity dispersion of the satellites, and ¢(r) is the
gravitational potential in which the satellites move [5]. The potential can be
taken to be spherically symmetric without much loss of accuracy since our
theoretically calculated self-consistent potentials become progressively spheri-
cally symmetric at the large galactocentric distances where the dSphs lie. The
kinematic velocity limits appearing in equation (12) are obtained by solving
the constraint equations (8), (9) and (10) for a given self-consistent potential
¢(r) and given values of ry;, and rpax.

Having already fixed the DM halo model parameter ppy, ¢, we can numerically
calculate the theoretical quantities N for plausible values of the other rel-
evant parameters, namely, r, <vz>]13ﬁ®, 0, and ryin, and determine the most
likely values of these parameters by performing a simple likelihood analysis as
follows: Assuming Poissonian probability distribution,

)Ngbs 1

P (NP, NR) = e (V)T

)

(29)

for the occurrence of N number of dSphs in the i-th radial bin when the
expectation is N, we calculate the likelihood function £ defined as

imax P, obs ATth irmax Ngbs
L= H?'Zl B (N2 N2 = [ e (V") (Nith> , (30)
[Ty Py (Né’bsa Nf,%) i1 Nk

where 7., denotes the maximum number of radial bins and Niﬁ% is the mean
number expected in the i-th bin calculated in a base model with fixed values
of the parameters ry, <v2>;ﬁ@, os and 7.

Note that, depending on the value of r;, for the model under consideration,
there will be bins with r < ry, for which Nf% or both N} and N® may be
zero, in which cases £ defined in equation (30) diverges or is ill-defined. This,

® The DF (28) has an isotropic velocity distribution. We have investigated in Ap-

pendix B the effects of a possible anisotropic initial DF favoring radial velocities
over the transverse component. As discussed there, our results do not change sig-
nificantly compared to those obtained using the isotropic DF (28).
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Fig. 6. The likelihood £ as a function of the parameter rp;, for various different
values of o, as indicated, for fixed values of 1 = 200kpc, ppu,e = 0.3GeV/ cm?

and (1)2%/1\?7@ = 400 km s~!. The base model has the parameter values r; = 200 kpc,

pom,e = 0.3GeV/ cm?, (v2>]13/1\i® =400kms™!, 0, = 180km s~ and rmin = 61kpc.
of course, is an artifact, due to the sharp cut-off in the number distribution
of the satellites at ry;,. A more mathematically rigorous procedure would be
to impose, for example, an exponential cutoff of the number distribution of
the satellites below rp;,, thus giving a small but finite number for the values
of Ni%y and N/ below 7. Another way to avoid the problem is to use the
simple regularization procedure of adding a small constant ¢ to N in the
numerical calculations of £, which is the procedure we have followed in our
calculations of £. We have checked that the resulting numerical values of £
have negligible sensitivity to the assumed value of € in the range € ~ 1076 —
107%. Accordingly, we take € = 107% in our numerical calculations.

7.1  Likelihood of model parameters

We have calculated the likelihood function £ for a wide range of plausible
values of the relevant parameters. Of the parameters r;, (1)2)]13/15@, os and Tmin,
the most sensitive dependence of L is on ry;,. In Figures 6 and 7 we display
the result of our calculation of £ as a function of the parameter r,;, for

various different values of o, and for two fixed sets of values of the DM model
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Fig. 7. The likelihood £ as a function of the parameter rp;, for various different
values of o, as indicated, for fixed values of 1 = 150kpc, ppu,e = 0.3GeV/ cm?

and (1)2%/1\?7@ = 400 km s~!. The base model has the parameter values r; = 200 kpc,

pove = 0.3GeV/cm?, (v2>]13/1\i® = 400kms™!, o, = 180kms™! and 7y, = 61kpe.

parameters, namely, ppy e = 0.3 GeV/cm?, (1)2)]13/15,@ = 400kms~! and 1, =
200 kpe (Fig. 6), and ppye = 0.3GeV/cm?, (vz)%ﬁ@ = 400kms™t and r; =

150 kpe (Fig. 7).

The dependence of the likelihood of different models on the value of the pa-
rameter <v2)]13/1\i® is illustrated in Figure 8 where we display £ as a function

rmin for fixed values of r, = 200kpc and oy = 180kms~! but for different

values of the DM parameter (02)14 ..

The base model used in the likelihood curves shown in Figures 6, 7 and 8 has
been chosen to have the parameter values

i = 200kpe, ppue = 0.3GeV/cm?, (02)%)/13,@ =400kms™!, (31)
o, = 180kms™!, and ry = 61 kpe. (32)

The reason for choosing this set of parameter values for the base model is
clear from a comparison of Figures 6, 7 and 8, which shows that this model
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Fig. 8. The likelihood L as a function of the parameter r,;, for various different val-

ues of (v2>]13/1\i® as indicated, for fixed values of r; = 200kpc, ppy.e = 0.3 GeV/cm?

and o5 = 180kms~'. The base model has the parameter values r, = 200kpc,

pove = 0.3GeV/cm?, (v2>]13/1\i® = 400kms™!, o, = 180kms™! and rp;, = 61 kpe.

has the highest likelihood within the ranges of values of the relevant param-
eters considered in these Figures. We have also calculated the likelihood £
for parameter values beyond their ranges displayed in Figures 6, 7 and 8.
The likelihood can be higher than that for the base model chosen above if
we allow (1)2)]13/15@ > 400kms~!. For example, with respect to the above cho-
sen base model, and with other parameters being equal, we get £ ~ 1.04
for a model with <v2>i,ﬁ® ~ 450kms™! and o, ~ 220kms~!. We have not
done a fine-grained scanning of the entire parameter space spanned by all the
relevant parameters for (1)2)]13/15@ > 400 km s, but our present calculations in-
dicate that the model with the absolute highest likelihood, i.e., the “best-fit”
model seems to correspond to a value of (1)2)]13/15@ close to ~ 500 kms™! with
os ~ 290kms~!. However, to be on the conservative side as far as the most
likely value of the important parameter (vz)%ﬁ@ is concerned, we shall refer
to the above chosen base model with parameters given by equations (31) and
(32) as our “conservative most likely” (CML) model. The radial distribution
of the dSphs calculated using equations (2) and (12) for the parameter values

corresponding to the above CML model is shown in Figure 9.

From Figures 6, 7 and 8, we find that the relevant parameter values outside

22



I o e T T T 1 T T T T T T 1 T T T 1 LI B L B T T T 1 T T T 1

i observed dSphs ]
i Best-fit model -------- ]
25 - —
(7)) - .
£ - -
o] - .
g 2f - .
< - .
o - .
i L .
£ B 7
5 - .
9 i - 4
Q B l 7
o - ; -
5 1F =1 r s -
o - .
Z - .
05 | N
0 o 11 | ] --:--I--I- I I T o R S e S SO [

0 50 100 150 200 250 300 350 400 450

r (kpc)

Fig. 9. Distribution of the number of dwarf-spheroidals as a function of the distance
from the Galactic centre. The prediction of our conservative most likely model,
which corresponds to (v2>éﬁ® = 400kms~!, oy = 180kms~! and rmi, = 61kpc,

with ppy,e = 0.3GeV/cm? and r; = 200 kpe, is also shown (see also Fig. 1).

the ranges
(W) 5 2 350kms ™!, 150 < ry < 200kpe, (33)
52 < Tmin < 66kpe, 150 < 0, < 220kms™!, (34)

have less than 50% likelihood of explaining the observed radial distribution of
the dSphs. Demanding higher likelihood narrows down these ranges further.
Note that for the conservative most likely model the likelihood that ry;, <
50 kpc is very small, less than 4%.

8 Estimating the velocity anisotropy parameter j and limits on the
rotation speed at large galactocentric distances

We now have at hand all the parameters needed to theoretically estimate the
value of j using equation (13). To explicitly show the dependence of j on 7y,
and o, we have calculated j as a function of r;, for various different values
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Fig. 10. The velocity anisotropy parameter j as a function of ry;, for various
different values of o, as indicated. The DM halo parameters have been fixed at

pove = 0.3GeV/cm?, (v2>i)/1\i@ = 400km s~! and 7, = 200kpc.

of o, including very large values of o, corresponding to a constant DF for the

satellites. The results are shown in Figures 10 and 11 for (v2) 5 o = 400 kms™!,

re = 200 kpe (Fig. 10) and (02)} o = 350 kms™, r, = 150 kpe (Fig. 11).

Note that, for a given potential ¢(r) and a given value of 7y, the lowest
value of j obtains, as expected, in the case F' = constant (i.e., 05 — 00 in
equation (28)), because then all orbits in the interval ry;, to rp. will be
equally probable. Smaller (finite) values of o4 correspond to favoring orbits
with mean apogalacticons smaller than (rpa.x — Tmin)/2, making the orbits
more circular and thus yielding larger values of j.

Considering the dependence of j on the DM halo model parameters <v2>iﬁ@

and r;, we find that j depends most sensitively on (1)2)]13/15@ and weakly on 7.

In general, for a given value of (vz)%ﬁ@, the value of j is smaller for a smaller

value of ry, but only marginally so for values of r; in the range 100 — 200 kpc.

From Figure 10 we find that for our CML model with the relevant parameter
values given by equations (31) and (32), we get jomr &~ 15.4. The observational
data on the dSphs given in WE99 yield (v2)'/2 = 116 kms~!. Taking this to
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Fig. 11. Same as Fig. 10 but for (v?);}; o = 350kms™" and r, = 150 kpc.

imply (conservatively) (v2)'/2 > 100 kms~! one finds, using equation (17),

(WA = jchaLWAY? 2 392kms ™! (35)

[

This value is consistent to within about 15% with the peak value of the ro-
tation curve for the DM model parameters corresponding to the CML model
(indicated by the doubly thick solid curve in Figure 4).

To be conservative on the side of the asymmetry parameter j, if we take the
parameter values i, > 50kpe, 0, < 220kms™!, <vz>]13/1\i® > 350kms~! and
ry > 150 kpe, then we get Jeonservative = 8.2, yielding

(v2)1/2 > 286 kms ™" (36)

conservative

as a conservative estimate of the rotation speed at r ~ 100-200 kpc, the typical
distances of the dwarf spheroidals.

Even more conservatively, taking o, < 280 kms~! with r;, > 50 kpc, <vz>]13/1\i® >
350kms~! and r, > 150 kpc, we get j = 7.1, which yields

(v2)1/2 > 266kms" . (37)

most conservative
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We have indicated the conservative lower limits (36) and (37) in Figures 4,
A.1 and A.2 by the solid horizontal lines. Note that these lower limits on the
rotation speeds are obtained entirely from the dynamics of the dSphs, and are
clearly consistent with the rotation curves shown in Figures 4, A.1 and A.2
for (0212 o > 350kms™ and r, > 150 kms ™.

In our analysis thus far in the estimation of j we have assumed the DF of
the dSphs to be isotropic at the epoch of their formation. In Appendix B
we investigate the effects of making the initial DF favor radial velocities over
transverse velocities. This analysis indicates that once the DF is modified
by removing the subset of orbits with small perigalacticons, the resultant
distribution function rapidly starts favoring transverse velocities. An intuitive
understanding of the generation of anisotropies favoring transverse velocities
as a result of imposing a minimum value on the perigalacticon radius may be
gained through a kinematic analysis of elliptical orbits; this is presented in
Appendix C.

From the foregoing analysis, supplemented by the discussions in the appen-
dices A, B and C, we find that we are able to fit the available data on the
rotation curve of the Galaxy, the radial distribution of the dwarf spheroidals
and the value of the circular rotation speed at ~ 100 kpc estimated from the
analysis of the data on dSphs, with a self-consistent model of the Galactic
dark matter halo in which the phase space distribution function of the DM
particles is described by the King (i.e., the truncated isothermal) model, with
the following values of the model parameters:

le\/I,® =~ 03 Gev Cm_3 P
(W2 > 350kms™t, (38)
ry 2 150kpc.

Whereas we will have to await further astronomical observations to yield a
complete, unbiased data set on the dSphs, it is expected that the above esti-
mates, being conservative, will hold. The above estimates are also consistent
with the earlier estimation of these parameters by [Cowsik et al, (1996) using
only the rotation curve data of the Galaxy up to R < 20kpc. The current
set of parameters yields a total mass of the Galaxy, including its DM halo,
MGalaXy ~ 2 X 1012 M@.
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9 Summary and Conclusions

The theoretical density distribution of the dark matter particles constituting
the halo depends sensitively on the competition between their velocity dis-
persion and the total gravitational potential generated by the dark and the
baryonic matter of the Galaxy. We have exploited this sensitivity to estimate
the parameters related to the phase space distribution of the dark matter in
the Galaxy. This is carried out within the context of a self-consistent model
of the dark matter halo which solves the collisionless Boltzmann and Poisson
equations, in which the density distribution of baryonic matter is taken di-
rectly to fit the observations, while a specific functional form — namely, the
King or the truncated isothermal model — for the phase space distribution of
the dark matter particles in the halo is used. This DM halo model has three
free parameters — the density (ppu.e) and velocity dispersion ((vz)éﬁ@) in
the solar neighborhood and the radius (r;) of the halo. We have estimated
these three parameters by comparing the theoretical predictions with the as-
tronomical observations, namely, (a) the rotation curve of the Galaxy mea-
sured up to ~ 20kpc and (b) the distance and radial velocities of the dwarf
spheroidal satellites which probe the galactic gravitational field up to very
large distances. Indeed, the dSphs, located as they are at distances well be-
yond 20 kpc with a broad peak around ~ 100 kpc, provide crucial inputs in
fixing the parameters (1)2)%)/1\?7@ and r; of the halo model. We have shown that
the observed paucity of the dSphs at short Galactocentric distances imposes
constraints on their possible orbits and makes their velocity distribution asym-
metrical favoring transverse velocities over radial velocities. A special version
of the virial theorem is then applied to the observed radial velocities of the
dSphs to estimate the circular rotation speed at galactocentric distances of
~ 100 kpc. The self-consistent model reproduces the rotation speed and the
observed distance distribution of the dSphs. Whereas one will have to await
further astronomical observations which will yield rotation curves with less
scatter and a more complete sample of dSphs, the available astronomical data
indicates ppye ~ 0.3GeV/em?, (1) e > 350kms™! and 7, 2 150 kpe for
our assumed model of the halo. Improvements on these model parameters
could also result from an analysis of the tidal streams surrounding the Milky
Way system.

Finally, we emphasize that while the estimates of (or constraints on) the DM
halo parameters given above have been obtained within the context of a spe-
cific assumed model of the phase space distribution function of the DM parti-
cles in the Galaxy, namely the King model, we believe that other models for the
phase space DF that are parametrizable in terms of the three coarse-grained
parameters as above, and which give similar fits to the observational data on
the rotation curve and the number distribution of the dSphs as obtained in
this paper, will yield similar values of the three parameters. This, however,
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remains to be explicitly demonstrated. It will thus be interesting to repeat the
analysis with various other possible forms of the DF for the DM particles in
order to assess the robustness of the parameter values or the constraints on
them obtained in this paper for the DM halo of the Galaxy.
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APPENDICES

A Rotation curves for various Galaxy model parameters

In this Appendix we display several sets of theoretical Rotation Curves (RCs)
for the Galaxy covering a wider range (than what was given in the main body
of the paper) of possible values of the Dark Matter (DM) halo parameters
that describe our self-consistent model of the Galaxy used in this paper (see
sections 5 and 6). These are shown in Figures A.1 and A.2.

The dark matter is modeled as having a lowered (truncated) isothermal dis-
tribution function [see equations (20) and (21)] which is described by three
parameters, namely, (i) the dark matter density in the solar neighborhood,
Pom,es (ii) the velocity dispersion in the solar neighborhood, (vz);ﬁ@, and (iii)
the truncation radius, r;.
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Fig. A.1. Theoretically calculated rotation curves of the Galaxy based on the self-
consistent model described in the main text, with ppy o = 0.2 GeV/cm? and values

of (1)2%/1\?7@ and 7, as indicated. (In the legends inside the Figure, the subscript s
is used in place of ®). For each value of 7, we show two RCs: the one with the

thicker line corresponds to the maximum possible value of <v2>]13/1\i® consistent with

the chosen values of ppy,e and 74, and the other with a lower value of <v2>]13/1\i®,

in order to indicate the possible range of the RCs obtained as one varies the val-
ues of (v%iﬁ@ for fixed values of ppm,e and r;. The observational data are from
Honma and Sofud (1997) for the case Ry = 8kpc and v.(R = Rgy) = 200km s,
The two solid horizontal lines represent two different estimates of the expected lower
limits on v, in the region of R ~ 100 kpc obtained in this paper from the dynamics of
the dwarf-spheroidals. The small glitches in the curves at R ~ 100 kpc are artifacts
of numerical calculation and are due to increased grid spacing used for distances

r > 100kpc) in order to reduce the total computation time.
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B Velocity asymmetry parameter for anisotropic distributions

In this Appendix we investigate the effect of deviations from an initially
isotropic velocity distribution of the dSphs, on the velocity anisotropy pa-
rameter j discussed in the main text. Specifically, we consider an initial distri-
bution function (DF) that favors radial orbits and suppresses large transverse
velocities. Such DFs can be obtained by introducing a dependence on the
angular momentum L which is an integral of motion in the relevant poten-
tial (Binney and Tremaine, [1987). Following the prescription in Binney and
Tremaine let us consider, as an explicit example, an initially anisotropic DF
for the dSphs obtained by multiplying the isothermal (and isotropic) DF (28)
by a factor L=2% with 0 < o < 1:

Faniso (Vg vy, 1) o |L|72* exp {—3 (%(vf + ) + qb(r)) /0—3} , (B.1)

where L = rv;. As before, o, is the initial velocity dispersion of the satellites,
and ¢(r) is the gravitational potential in which the satellites move. The pa-
rameter « controls the amount of initial suppression of transverse velocities,
with a = 0 representing the isotropic case discussed in the main body of the
paper. The singularity of the factor L=2% at r — 0 can be treated as usual by
suitably softening the factor near the origin.

The exercise now is to impose a lower cutoff on the radial coordinate at r;,
and numerically calculate the velocity anisotropy parameter j (as a function
of rmin) given by equation (13), using the DF (B.1), for various values of the
parameter «.

The results are shown in Figures B.1 and B.2 for o, = 180kms~! and
280 kms~!, respectively, for example.

From these Figures we see that the effect of the initial radial anisotropy sur-
vives only for small values of r;,. As rm, increases, the value of j increases
rapidly with r;,, the increase being steeper for larger values of the radial bias
parameter «.

The above behavior of j is easy to understand, when we note that as we try
to suppress large values of v; by suppressing large values of L(= rv;), we are
suppressing large values of r as well. Stronger the suppression of large L, less is
the probability of having orbits with large apogalacticons, r,. Consequently,
when orbits having perigalacticons, r,, less than r.,;, are removed, we are
left with a set of orbits with relatively higher values of the ratio n = r,/r,
compared to the case when there is no large r suppression. These are nearly
circular orbits, for which transverse velocities dominate over radial velocities
(see Appendix C for a discussion of j in terms of elliptical orbits), leading to
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Fig. B.1. The velocity anisotropy parameter j as a function of ry;, for an initially

anisotropic DF of the form Funiso o |L|72* exp {—3E/0?%} for o5 = 180kms™! and

four different values of @ = 0, 0.1, 0.5, and 0.8, as indicated. The values of other

relevant parameters are as indicated.

increasingly larger values of j as a function of r;, compared to the case when
there is no large L (and consequently large r) suppression.

From the above discussions it is clear that, for the relevant ranges of values of
the various parameters, the values of j obtained for an initially radially biased
DF are, in fact, larger than those for the initially isotropic DF. The values of
j obtained in the main body of the paper assuming an initially isotropic DF
are thus conservative estimates.
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C Estimation of j-parameter from the kinematics of an elliptical
orbit

The orbits of dSphs in the Galaxy, in general, will follow rosette like patterns,
which may not close. But for the present purposes let us approximate them
as ellipses with various values of apo- and peri-galacticons, r, and r,, but
confined within the limits 7., and 7, respectively, as defined in the main
text.

We begin by writing the equation of an ellipse in polar coordinates r, ¢ (with
origin at one of the foci):

¢

_ 1
" 1+ecost’ (€.1)

where £ is the semi-latus rectum and ¢ the eccentricity; in terms of r, and r,
these are given by

2y I—n

,
l = — ith n=-"=. C.2
T+n ° 1+g 1T (€2)

Note, also, that
C=r,(1+e)=r(1—¢). (C.3)

Since the orbits of the dSphs sample large r values in the halo, compared
to the radial scale of the disk, the potential is nearly spherically symmetric
and we may assume an approximate conservation of angular momentum L
(Binney and Tremaine, [1987) and write, for the tranverse component of the
velocity,

Uy =T— = —. (C.4)

Now, the probability P(r)dr of finding the dSph between r and r + dr is
inversely proportional to the radial component of its velocity, v,., at r(¢):

1
PO < @ €9
where
UT[T(w)]_dr_ﬂd@D_Lssinw. (C.6)

T At dydt 4
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With the probability P(r) given by equation (C.5) above, the velocity anisotropy
parameter j is given by
(v}) 1

] 1+m:1+€—2]—1, (C?)

where (v7) and (v}) are the mean square transverse and radial velocities,
respectively, and

s

sin? ¢
0/ 1+ ECOS@D 780 (€8

We can also calculate the average location of the satellite on the ellipse, r,, =
[rP(r)dr/ [ P(r)dr, in terms of either r, or r,. This gives

I
Tav El_g’ (09)
where
[ e
J 1+Ecos¢ ) (1+ecosy)

The integrals I, I and I3 are easily evaluated numerically. The resulting
values of j and 7,, for the ellipse under consideration, as functions of the
parameter 7 = r, /r,, are displayed in Figure C.1.

The observed value of r,, for the mean location of the dSphs estimated from
Figure 9 is ~ 150 kpc which, with our most likely value of r;, ~ 60kpc,
gives 1,/ rmm < 2.5, which from the left panel in Figure C.1 corresponds to
N =1n/re 2 0.3. For this value of n, then, we can read off the value of j from
the left panel of Figure C.1, giving j > 6.4.

The analysis presented in this Appendix thus gives a kinematic insight into
the values of j parameter derived from a consideration of the phase space
distribution in the main body of the paper.
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