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Abstract. LetM be a Hilbert module of holomorphic functions over a natural function
algebraA (Ω), whereΩ⊆Cm is a bounded domain. LetM0⊆M be the submodule of
functions vanishing to orderk on a hypersurfaceZ ⊆Ω. We describe a method, which
in principle may be used, to construct a set of complete unitary invariants for quotient
modulesQ = M ⊖M0. The invariants are given explicitly in the particular caseof
k = 2.
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1. Preliminaries

Let Ω be a bounded domain inCm andZ ⊆ Ω be an analytic hypersurface defined (at
least, locally) as the zero set of a single analytic functionϕ . Let A (Ω) be the algebra of
functions obtained by taking the closure with respect to thesupremum norm onΩ of all
functions which are holomorphic on a neighbourhood ofΩ. Let M be a Hilbert space
consisting of holomorphic functions onΩ. We assume that the evaluation functionalsh→
h(w), h ∈M , w ∈ Ω are bounded. This ensures, via the Riesz representation theorem,
that there is a unique vectorK(·,w) ∈M satisfying the reproducing property

h(w) = 〈h,K(·,w)〉, h∈M , w∈Ω.

In this paper, a moduleM over the function algebraA (Ω) will consist of a Hilbert space
M as above together with a continuous action of the algebraA (Ω) in the sense of ([8],
Definition 1.2). Suppose, we are given a quotient moduleQ over the function algebra
A (Ω). This amounts to the existence of a resolution of the form

0←−Q←−M ←−M0←− 0, (1)

whereM0 ⊆M are both modules over the algebraA (Ω). We make the additional
assumption that the submoduleM0 consists of functions inM which vanish to some fixed
orderk on the hypersurfaceZ . Then (cf. [7], (1.5)) the moduleM0 may be described as

M0 =

{

f ∈M :
∂ ℓ f

∂zℓ
1

(z) = 0, z∈U ∩Z , 0≤ ℓ≤ k−1

}

,

whereU is some open subset ofΩ.
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Let ∂ denote the differentiation along the unit normal to the hypersurfaceZ . Recall
(cf. [7]) that the mapJ : M →M ⊗Ck defined by

h 7→ (h,∂h,∂ 2h, . . . ,∂ k−1h), h∈M

plays a crucial role in identifying the quotient module. Therequirement that

{(en,∂en, . . . ,∂ k−1en)n≥0 : (en)n≥0 is an orthonormal basis inM }

is an orthonormal basis in ranJ, makes the mapJ unitary onto its rangeJM ⊆M ⊗Ck.
Thus we obtain a pair of modulesJM0 andJM , whereJM0 is the submodule of all
functions inJM which vanish onZ . In this realisation, the moduleJM consists of
holomorphic functions taking values inCk. Let Ck×k denote the linear space of allk× k
matrices over the field of complex numbers. We recall that a functionK : Ω×Ω→Ck×k

satisfying

n

∑
i, j=1

〈

K(ωi ,ω j)ζ j ,ζi

〉

E
≥ 0, w1, . . . ,ωn ∈Ω, ζ1, . . . ,ζn ∈ E,n≥ 0 (2)

is said to be anonnegative definite(nnd) kernelon Ω. Given such an nnd kernelK on Ω,
it is easy to construct a Hilbert spaceM of functions onΩ taking values inCk×k with the
property

〈

f (ω),ζ
〉

Ck
=
〈

f ,K(·,ω)ζ
〉

, w∈Ω, ζ ∈ C
k, f ∈M . (3)

The Hilbert spaceM is simply the completion of the linear span of all vectors of the
form K(·,ω)ζ , ω ∈Ω, ζ ∈Ck, with inner product defined by (3). Conversely, letM be a
Hilbert space of functions onΩ taking values inCk. Let eω : M → Ck be the evaluation
functional defined byeω( f ) = f (ω), ω ∈ Ω, f ∈M . If eω is bounded for eachω ∈ Ω,
then it is easy to verify that the Hilbert spaceM possesses a reproducing kernelK(z,ω) =
eze∗ω , that is,K(z,ω)ζ ∈M for eachω ∈ Ω andK has the reproducing property (3).
Finally, the reproducing property (3) determines the reproducing kernelK uniquely. Ifen

is an orthonormal basis inM then it is not hard to verify that the reproducing kernelK
has the representation

K(z,w) =
∞

∑
n=0

en(z)en(w)∗, z,w∈Ω,

whereen(z) is thought of as a linear map fromC to Ck. Of course, this sum is independent
of the choice of the orthonormal basisen sinceK is uniquely determined.

The moduleJM possesses a reproducing kernelJK in the sense described above. It is
natural to construct this kernel by forming the sum:

JK(z,w) =
∞

∑
n=0

(Jen)(z)(Jen)(w)∗, z,w∈Ω.

This prescription then allows the identification of the reproducing kernelJK : Ω×Ω→
Ck×k for the moduleJM :

(JK)ℓ, j(z,w) =
(

∂ ℓ∂̄ jK
)

(z,w), 0≤ ℓ, j ≤ k−1. (4)
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It is then easy to verify, using the unitarity of the mapJ, that JK has the reproducing
property:

〈h,JK(·,w)ζ 〉 = 〈h(w),ζ 〉, w∈Ω, ζ ∈ C
k.

The module action forJM is defined in a natural manner. Indeed, letJ f be the array

(J f)ℓ, j =











(

ℓ

j

)

(∂ ℓ− j f ), 0≤ ℓ≤ j ≤ k−1

0, otherwise

(5)

for f ∈A (Ω). We may now define the module action to beJf : h→ J f ·Jh. Notice that
J f is ak× k matrix-valued function onΩ while Jf is the module action, that is, it is an
operator onJM . The action of the adjoint is then easily seen to be

J∗f JK(·,w) ·x = JK(·,w)(J f)(w)∗ ·x, x ∈ C
k. (6)

We will say that two modules over the algebraA (Ω) areisomorphicif there exists a
unitary module map between them.

It is shown in [7] that the quotient moduleQ is isomorphic toJM ⊖JM0. Once this is
done, we are reduced to the multiplicity free case. Thus our previous results from [6] apply
and we conclude that the quotient moduleQ is the restriction ofJM to the hypersurface
Z .

Let M be any Hilbert module over the function algebraA (Ω). In particular, each
of the coordinate functionszi , 1 ≤ i ≤ m in Cm acts boundedly as the multiplication
operatorMi onM . Let M denote this commutingm-tuple of multiplication operators. We
denote byM∗ the m-tuple (M∗1, . . . ,M∗m). To eachm-tupleM , we associate the operator
DM : M →M ⊗C

k defined byDM h = (M1h, . . . ,Mmh), h∈M .
The classBn(Ω) was introduced in [3] for a single operator. This definition was then

adapted to the general case of anm-tuple of commuting operators (cf. [4]). We letΩ∗ ⊆
Cm denote the domain{w∈ Cm : w̄∈Ω} and say thatM∗ is in Bk(Ω∗) if

(i) RanDM∗−w is closed for allw∈Ω∗,
(ii) span{kerDM∗−w : w∈Ω∗} is dense inM ,

(iii) dim kerDM∗−w = n for all w∈Ω∗,

whereM∗−w= (M∗1−w1, . . . ,M∗m−wm).
If the adjoint of them-tuple of multiplication operators is inBn(Ω∗) (for somen∈ N),

then we say thatM is in Bn(Ω∗). The assumption thatM is in B1(Ω∗) includes, among
other things, (a) the existence of a common eigenvectorγ(w) ∈M , that is,M∗i γ(w) =
w̄iγ(w), for w∈Ω∗, (b) the dimension of the common eigenspace at ¯w is 1. Furthermore,
it is possible to chooseγ(w) so as to ensure that the mapw→ γ(w) is anti-holomorphic.
Thus we obtain an anti-holomorphic hermitian line bundleE over Ω whose fiber at
w is the one-dimensional subspace ofM spanned by the vectorγ(w), that is,γ is an
anti-holomorphic frame forE. In the case ofn > 1, a similar construction of an anti-
holomorphic hermitian vector bundle of rankn can be given. In our case, it is easy to
verify thatK(·,w), the reproducing kernel atw, is a common eigenvector for them-tuple
(M∗1, . . . ,M∗m). SinceK(·,w) is anti-holomorphic in the second variable, it provides a nat-
ural frame for the associated bundleE. The metric with respect to this frame is obviously
the real analytic functionK(w,w).



284 Ronald G Douglas and Gadadhar Misra

Before we continue, we make the additional assumption that the moduleM , which
occurs in the resolution (1) of the quotient moduleQ, lies in the classB1(Ω∗). Let i : Z →
Ω be the inclusion map andi∗ : A (Ω)→A (Z ) be the pullback. ThenQ is clearly also
a module over the smaller algebrai∗

(

A (Ω)
)

. We identify this latter algebra withA (Z ).
Let (Q,A (Z )) stand forQ thought of as a module over the smaller algebraA (Z ).
Although it is possible that(Q,A (Z )) lies in Bk(Z

∗) wheneverM is in B1(Ω∗), we
were able to prove it only in some special cases ([7], Proposition 3.6). However, in this
paper, we assume that the quotient module(Q,A (Z )) always lies inBk(Z

∗). These
assumptions make it possible to associate (a) an anti-holomorphic hermitian line bundleE
over the domainΩ with the moduleM and (b) an anti-holomorphic jet bundleJE|resZ of
rankk over the domainZ with the module(Q,A (Z )). The details of thejetconstruction
are given in ([7], pp. 375–377). One of the main results in [3]states that two modules
M and M̃ in Bk(Ω) are isomorphic if and only if the associated bundles are locally
equivalent. While the local equivalence of bundles is completely captured in the case of
line bundles by the curvature, it is more complicated in the general case (cf. [3]). We recall
that the quotient moduleQ may be described completely by specifying the action of the
algebraAk(Z ) := A (Z )⊗Ck×k (cf. [7], p. 385). The action of the algebraAk(Z ), in
particular, includes the multiplication induced by the local defining functionϕ , namely,

(Jϕ)|resZ : JM|resZ → JM|resZ .

To exploit methods of [3], it is better to work with the adjoint action. To describe the
adjoint action, we first construct a natural anti-holomorphic frame (not necessarily
orthonormal) for the jet bundleE onΩ. Let {εℓ : 1≤ ℓ≤ k} be the standard orthonormal
basis inCk. For a fixedw ∈ Ω, let e1 = ∑k

ℓ=1∂ ℓ−1K(z,w)⊗ εℓ be simply the image of
K(z,w) in JM . It is then clear that{ej(w) : 1≤ j ≤ k}, whereej(w) := (∂̄ j−1e1)(w) is a
natural anti-holomorphic frame forJE. (Of course, as is to be expected,eℓ(w), 1≤ ℓ≤ k
are the columns of the reproducing kernelJK given in (4).) Thus the fiber of the jet
bundleJE atw∈Ω is spanned by the set of vectors{eℓ(w) ∈ JM : 1≤ ℓ≤ k}.

Suppose we start with a resolution of the form (1). Then we have at our disposal the
domainΩ ⊆ Cm and the hypersurfaceZ ⊆ Ω. Let ϕ be a local defining function forZ
(cf. [7], p. 367). Thenϕ lies inA (Z ) and induces a nilpotent action on each fiber of the
jet bundleJE|resZ via the mapJ∗ϕ , that is,

(J∗ϕeℓ)(w) = JK(·,w)(Jϕ)(w)∗εℓ. (7)

Therefore in this picture, with the assumptions we have madealong the way, we see that
the quotient modulesQ must meet the requirement listed in (i)–(iii) of the following
Definition.

DEFINITION.

We will say that the moduleQ over the algebraA (Ω) is aquotient modulein the class
Bk(Ω,Z ) if

(i) there exists a resolution of the moduleQ as in eq. (1), where the moduleM appear-
ing in the resolution is required to be inB1(Ω∗),

(ii) the module action onQ translates to the nilpotent actionJϕ on JM|resZ which is
an isomorphic copy ofQ,

(iii) the module
(

Q,A (Z )
)

is in Bk(Z
∗).
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In this paper, we obtain a complete set of unitary invariantsfor a moduleQ in the
classB2(Ω,Z ). This means that the moduleQ admits a resolution of the form (1) and
the moduleM that appears in this resolution lies inB1(Ω). However, it is possible to
considerably weaken this latter hypothesis as explained inthe Remark below.

[Remark.Although we have assumed the moduleM to be in the classB1(Ω), it is inter-
esting to note that the proof of our Theorem requires much less. Specifically, the require-
ment that the ‘RanDM∗−w is closed’ is necessary to associate an anti-holomorphic vector
bundle with the module. However, in our case, there is already a natural anti-holomorphic
vector bundle which is deteremined by the framew→ K(·,w). Indeed, if we assume that
the moduleM contains the linear spaceP of all the polynomials andP is dense inM ,
then the eigenspace atw is forced to be one dimensional. (To prove this, merely note that
for any eigenvectorx atw and all polynomialsp, we have

〈p,x〉= 〈Mp1,x〉= 〈1,M∗px〉= p(w)〈1,x〉= 〈p,cK(·,w)〉,

wherec = 〈1,x〉. It follows thatx = cK(·,w).) Finally, the linear span of the set of eigen-
vectors{K(·,w) : w∈ Ω} is a dense subspace of the moduleM . Therefore, for our pur-
poses, it is enough to merely assume that

(a) M is a Hilbert module consisting of holomorphic functions onΩ,
(b) the moduleM contains the linear space of all polynomialsP and thatP is dense,
(c) M possesses a reproducing kernel K.

It is then clear that the same holds for the quotient moduleQ, whereP consists of
Ck-valued polynomials andK takes values inCk×k. Hence, ifx is an eigenvector atw for
the module(Q,A (Z )), we claim that it belongs to the range ofK(.,w) which is thek-
dimensional subspace{K(·,w)v∈Q : v∈ Ck} of Q. As before, for 1≤ j ≤ k, let ε j be
the standard unit vector inCk andp = ∑k

j=1 p j ⊗ ε j be aC
k-valued polynomial. Then we

have〈p,x〉= ∑k
j=1〈Mp j ε j ,x〉= ∑k

j=1〈ε j ,M∗p j
x〉= ∑k

j=1 p j(w)〈ε j ,x〉

= ∑k
j=1〈p,K(·,w)ε j 〉〈ε j ,x〉 = 〈p,∑k

j=1c jK(.,w)ε j 〉, wherec j = 〈ε j ,x〉. Thusx is in the
range ofK(·,w) as claimed. Therefore the dimension of the eigenspace atw equals the
dimension of rangeK(.,w) which isk.]

We now raise the issue of adapting the techniques of [3] to finda complete set of unitary
invariants for characterizing the quotient modulesQ in the classBk(Ω,Z ). While the
methods described below will certainly yield results in thegeneral case, we have chosen
to give the details of our results in the case ofk = 2. The reason for this choice is dictated
by the simple nature of these invariants in this case. Furthermore, these are extracted out
of the curvature and the canonical metric for the bundleE.

2. Canonical metric and curvature

LetM be a module inB1(Ω∗) and the reproducing kernelK(·,w) be the anti-holomorphic
frame for the associated bundleE. If M̃ is another module in the classB1(Ω∗) with repro-
ducing kernelK̃(·,w), then it is clear that any isomorphism between these modulesmust
mapK(·,w) to a multipleψ(w) of K̃(·,w), whereψ(w) is a non zero complex number
for w∈ Ω. Moreover, the mapw→ ψ(w) has to be anti-holomorphic. It follows thatM
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andM̃ are isomorphic if and only if̃K(z,w) = ψ(z)K(z,w)ψ(w) (cf. [4], Lemma 3.9) for
some anti-holomorphic functionψ . There are two ways in which this ambiguity may be
eliminated.

The first approach is to note that if the two modules̃M andM are isomorphic, then
K̃(z,z)/K(z,z) = |ψ(z)|2. Sinceψ is holomorphic, it follows that

m

∑
i, j=1

∂i ∂̄ j log
(

K(z,z)/K̃(z,z)
)

dzi ∧dz̄j = 0. (8)

On the other hand, if we have two modules for which equation (8) holds, then the pre-
ceding argument shows that they must be isomorphic. It is then possible to find, in a
small simply connected neighbourhood of some fixed pointw0, a harmonic conjugate
v(w) of the harmonic functionu(w) := logK̃(w,w)/K(w,w). The new kernel defined

by ˜̃K(z,w) = exp(u(z) + iv(z))K̃(z,w)exp(u(w)+ iv(w)) determines a module ˜̃
M iso-

morphic toM̃ but with the additional property that the metric̃̃K(w,w) = K(w,w). It is
then easy to see that the map takingK(·,w) to ˜̃K(·,w) extends linearly to an isomet-
ric module map. Therefore,∑m

i, j=1 ∂i ∂̄ j logK(z,z)dzi ∧dz̄j is a complete invariant for the
moduleM

The second approach is to normalise the reproducing kernelK, that is, define the kernel
K0(z,w) = ψ(z)K(z,w)ψ(w), whereψ(z) = K(z,w0)

−1K(w0,w0)
1/2 for z in some open

subsetΩ0 ⊆ Ω and some fixed but arbitraryw0 ∈ Ω0. Also, Ω0 can be chosen so as to
ensureψ|res Ω0

6= 0. This reproducing kernel determines a module isomorphic to M but
with the added property thatK0(z,w0) is the constant function 1. IfM andM̃ are two
modules inB1(Ω∗), then it is shown in ([4], Theorem 4.12) that they are isomorphic if and
only if the normalisationsK0 andK̃0 of the respective reproducing kernels at some fixed
point are equal. As before, it is then easy to see that the map taking K(·,w) to ˜̃K(·,w)
extends linearly to an isometric module map. The normalisedkernelK0 is therefore a
complete unitary invariant for the moduleM .

Notice that if a moduleM is isomorphic toM̃ , then the module mapΓ is induced by a
nonvanishing functionΦ onΩ, that is,Γ = MΦ ([4], Lemma 3.9). Consequently, ifM0 is
the submodule of functions vanishing to orderk on Z , thenΓ(M0) is the submodule of
functions vanishing to orderk in M̃ . It follows that ifM andM̃ are isomorphic modules,
then the corresponding quotient modules must be isomorphicas well. Therefore we can
make the following assumption without any loss of generality.

Hypothesis.Now we make a standing hypothesis that the kernel for the module M

appearing in the resolution of the quotient moduleQ is normalised.

Recall that ifE is a hermitian holomorphic vector bundle of rankk over the domain
Ω ⊆ Cm, then it is possible to find a holomorphic frames = (s1, . . . ,sk) such that (a)
〈si(w0),sj (w0)〉= 1, (b)∂ j〈s(w),s(w)〉|w=w0

= 0 for 1≤ j ≤m (cf. [12], Lemma 2.3). We
offer below a variation of this Lemma for the jet bundleJE corresponding to the hypersur-
faceZ ⊆Ω and the Hilbert moduleM in the classB1(Ω). We state the following Lemma
in terms of a frame for the bundle associated with the moduleM . There is an obvious
choice for such a frame in terms of the reproducing kernel of the module. The relationship
between the reproducing kernel of the module and the hermitian metric of the associated
bundle was explained in ([7],§ 2). Let 〈s(w),s(w0)〉 be the matrix of inner products, that
is, 〈s(w),s(w0)〉i j = 〈si(w),sj (w0)〉M , 1≤ i, j ≤ k for some fixed but arbitraryw0 ∈ Z

and allw∈Z .
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Lemma. LetM be Hilbert module in B1(Ω) andM0 ⊆M be the submodule consisting
of functions vanishing on the hypersurfaceZ ⊆Ω. Then there exists an anti-holomorphic
frames for the jet bundle JE satisfying

〈s(w),s(w0)〉|resZ =

(

1 0
0 S(w)

)

,

for w∈Z and some anti-holomorphic function S onZ .

Proof. Let us assume, without loss of generality, thatw0 = 0. We first observe that if we
replace the moduleM by an isomorphic copy, then the class of the associated bundle
JE does not change. Indeed, ifM andM̃ are isomorphic modules, then there is an anti-
holomorphic mapϕ which induces a metric preserving bundle map of the associated bun-
dlesE andẼ. It is then clear that the mapJ∗ϕ induces a bundle map of the corresponding
jet bundles. Therefore, we may assume that the reproducing kernelK for the moduleM
is normalised, that is,K(z,0) = 1. Let(z̃,w̃) denote (temporarily) the normal coordinates
in Ω×Ω. From the expansion

K(z,w) =
∞

∑
ℓ,n=0

Kℓ,n(z,w)z̃ℓ ¯̃wn, z,w∈Z

it is clear thatKℓn(z,0) = 0 for ℓ 6= 0 andn = 0. SinceK(z,w) = K(w,z), it follows that
Kℓn(0,w) = 0 for ℓ = 0 andn 6= 0. However,Kℓn(z,w) = (∂ ℓ∂̄ nK)|z̃=0,w̃=0(z,w). Hence

((Kℓn(z,w)))k−1
ℓ,n=0 = JK|resZ (z,w) for z,w ∈ Z by definition (4). Recall thateℓ(w) =

∑k
j=1 ∂̄ ℓ−1∂ j−1K(·,w)⊗ εℓ, for 1≤ ℓ≤ k is an anti-holomorphic frame for the jet bundle

JE. It follows that 〈eℓ(w),en(0)〉 = (JK)ℓn(0,w). But (JK)ℓn(0,w) = Kℓn(0,w) = 0 for
ℓ = 0 as long asn 6= 0. The proof is completed by takings(w) = {e1(w), . . . ,ek(w)}. �

There is a canonical connectionD on the bundleJE which is compatible with the metric
and has the propertyD′′ = ∂̄ . Let C∞

1,1(Ω,E) be the space ofC∞ sections of the bundle

∧(1,1)T∗Ω⊗E. The curvature tensorK associated with the canonical connectionD is in
C∞

1,1(Ω,herm(E,E)). Moreover, ifh is a local representation of the metric in some open

set, theniK = ∂̄ (h−1∂h). The holomorphic tangent bundleTΩ|resZ naturally splits as
TZ +̇NZ , whereNZ is the normal bundle and is realised as the quotientTΩ|resZ /TZ .
The co-normal bundleN∗Z is the dual ofNZ ; it is the sub-bundle ofTΩ|resZ consisting
of cotangent vectors that vanish onTZ ⊆ TΩ|resZ . Indeed, the class of the conormal
bundleN∗Z coincides with[−Z ]|resZ via the adjunction formula I ([10], p. 146). Let
P1 be the projection ontoN∗Z andP2 = (1−P1) be the projection ontoT∗Z . Now, we
have a splitting of the(1,1) forms as follows:

∧(1,1)T∗Ω|resZ =
2

∑
i, j=1

Pi
(

∧(1,0) T∗Ω|resZ

)

∧Pj
(

∧(0,1) T∗Ω|resZ

)

.

Accordingly, we have the component of the curvature along the transversal direction toZ
which we denote byKtrans. Clearly,Ktrans= (P1⊗ I)K|resZ . Similarly, let the component
of the curvature along tangential directions toZ beKtan. Again,Ktan= (P2⊗ I)K|resZ .
(HereI is the identity map on the vector space herm(E,E).)

Recall that the fiber of the jet bundleJE|resZ atw∈Z is spanned by the set of vectors
∂̄ ℓ−1K(·,w), 1≤ ℓ ≤ k. Thus the module actionJ∗ϕ can be determined by calculating it
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on the set{∂̄ ℓ−1K(·,w) : 1≤ ℓ ≤ k andw∈Z }. This calculation is given in eq. (7). We
therefore obtain an anti-holomorphic bundle mapJ∗ϕ on the bundleJE|resZ . Thus the
isomorphism of two quotient modules inBk(Ω,Z ) translates to a question of equivalence
of the pair(JE|resZ ,J∗ϕ). This merely amounts to finding an anti-holomorphic bundle
mapθ : JE|resZ → JE|resZ which intertwinesJ∗ϕ . It is clear that if we could find such a
bundle mapθ , then the line sub-bundles corresponding to the frameK(·,w), w∈Z must
be equivalent. From this it is evident that the curvaturesKtan in the tangential directions
must be equal. Also, we can calculate the matrix representation for the nilpotent action at
w, as given in (7), with respect to the orthonormal basis obtained via the Gram–Schmidt
process applied to the holomorphic frame atw. A computation shows that the matrix
entries involve the curvaturesKtrans in the transverse direction and its derivatives. It is not
clear if the intertwining condition can be stated preciselyin terms of these matrix entries.
In the following section we show, as a result of some explicitcalculation, that ifk = 2
then the curvature in the transverse direction must also be equal. We also find that an
additional condition must be imposed to determine the isomorphism class of the quotient
modules.

3. The case of rank 2 bundles

In this case, the adjoint action ofϕ on Q ∼= JM |resZ
produces a nilpotent bundle map

onJE which, atw∈Z , is described easily:

e(w) :=
(

K(·,w)
∂K(·,w)

)

→ 0 and(∂̄ e)(w) :=
(

∂̄K(·,w)

∂ ∂̄K(·,w)

)

→ (∂ϕ)(w)e(w)

on the spanning set{e(w),(∂̄ e)(w) : w∈Z } for the fiberJE(w) of the jet bundleJE atw∈
Z . Thus the adjoint action induced byϕ determines a nilpotentN(w) of order 2 defined

by

(

0 (∂ϕ)(w)
0 0

)

on each fiberJE(w), w∈Z with respect to the basis{e(w),(∂e)(w)}.

Now, consider the orthonormal basis:{γ0(w),γ1(w)}, where

γ0(w) = ‖e(w)‖−1e(w),

γ1(w) = a(w)e(w)+b(w)(∂̄e)(w), w∈Z .

The coefficientsa(w) andb(w) can be easily calculated (cf. [3], p. 195):

−a(w)‖e(w)‖3 = 〈(∂e)(w),e(w)〉(−Ktrans(w))−1/2,

b(w)‖e(w)‖ = (−Ktrans(w))−1/2,

whereKtrans(w) denotes the curvature in the transversal direction. In the case of a line
bundle, we have the following explicit formula:

Ktrans(w) = P1

( m

∑
i, j=1

∂i ∂̄ j log‖e(w)‖2dzi ∧dz̄j

)

, w∈Z . (9)

The nilpotent actionNorth(w) at the fiberJE(w), w∈Z with respect to the orthonormal
basis{γ0(w),γ1(w)} is given by

(

0 b(w)‖e(w)‖(∂ϕ)(w)
0 0

)

.
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Now, we are ready to prove the main theorem which gives a complete set of invariants
for quotient modules in the classB2(Ω,Z ). At first, it may appear that the condition
angle of the theorem stated below depends on the choice of theholomorphic frame. But
we remind the reader that the normalisation of the kernelK for the moduleM ensures
that it is uniquely dtermined. Therefore so isJK.

Theorem. If Q and Q̃ are two quotient modules, over the algebraA (Ω), in the class
B2(Ω,Z ), then they are isomorphic if and only if

tan:Ktan = ˜Ktan

trans:Ktrans= ˜Ktrans

angle:〈(∂̄ e)(w),e(w)〉 = 〈(∂̄ ẽ)(w), ẽ(w)〉.

Proof. Suppose, we are given two quotient modulesQ andQ̃ which are isomorphic. Then
the module mapΦ : Q → Q̃ induces an anti-holomorphic bundle mapΦ : JE|resZ →

JẼ|resZ . For w ∈ Z , let JE(w) andJẼ(w) denote the two dimensional space spanned
by {e(w),(∂̄ e)(w)} and{ẽ(w),(∂̄ ẽ)(w)}, respectively. Then the bundle mapΦ defines a
linear mapΦ(w) : JE(w)→ JẼ(w). The mapΦ(w) must then intertwine the two nilpotents

N(w) andÑ(w) which implies thatΦ(w) must be of the formΦ(w) =
(

α(w) β (w)
0 α(w)

)

, where

α,β are anti-holomorphic functions forw in some small open set inZ . We observe that
Φ(w) mapsγ0(w) to α(w)‖ẽ(w)‖‖e(w)‖−1γ̃0(w). SinceΦ(w) is an isometry, it follows
that α(w) = ‖e(w)‖‖ẽ(w)‖−1. Because we have chosen to work only with normalised
kernels, we infer that‖e(w)‖‖ẽ(w)‖−1 = 1 for all w∈Z which is the same as saying that
α(w) = 1 for w∈Z . The condition ‘tan’ of the theorem is evident.

The module mapφ has to satisfy the relation

JK(z,w) = Φ(z)JK̃(z,w)Φ(w), z,w∈Z .

However,JK(z,0) =
(

1 0
0 S(z)

)

, and similarlyK̃ at (z,0) has a matrix representation withS

replaced byS̃. Now, evaluate the formula relatingJK andJK̃ at w = 0 to conclude that
β (z) = 0 for all z∈Z .

Now, sinceΦ(w) has to preserve the inner products, it follows that〈(∂̄ e)(w),e(w)〉−
〈(∂̄ ẽ)(w), ẽ(w)〉= β (w)‖e(w)‖2. Hence it follows that〈(∂̄ e)(w),e(w)〉= 〈(∂̄ ẽ)(w), ẽ(w)〉
which is the condition ‘angle’ of the theorem.

Finally, the requirement that the nilpotentsN(w) andÑ(w) must be unitarily equivalent
for eachw∈Z amounts to the equality of the(1,2) entry ofNorth(w) with that ofÑorth(w).
Since we have already ensured‖e(w)‖= ‖ẽ(w)‖, it follows thatb(w) = b̃(w). This clearly
forces the condition ‘trans’ of the theorem which completesthe proof of necessity.

For the converse, first prove that the natural map fromJE(w) to JẼ(w), w∈Z , which
carries one anti-holomorphic frame to the other is an isometry. It is evident that this map,
which we denote byΦ(w), defines an anti-holomorphic bundle map and that it intertwines
the nilpotent action.

To check ifΦ(w) is isometric, all we have to do is see if it automatically mapsthe
orthonormal basis{γ0(w),γ1(w)} to the corresponding orthonormal basis{γ̃0(w), γ̃1(w)}.
Clearly, Φ(w)(γ0(w)) = ẽ(w)‖e(w)‖−1 = γ̃0(w)‖ẽ(w)‖‖e(w)‖−1. Suppose that the two
curvatures corresponding to the bundlesJE andJẼ agree on the hypersurfaceZ . Then it
is possible to find sections of these bundles which have the same norm. Or, equivalently,
we may assume that‖γ0(w)‖= ‖γ̃0(w)‖. It then follows thatΦ(w)(γ0(w)) = γ̃0(w). Notice
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that

Φ(w)(γ1(w)) = a(w)ẽ(w)+b(w)(∂ ẽ)(w)

= a(w)‖ẽ(w)‖γ̃0(w)+b(w)(b̃(w))−1(γ̃1(w)

− ã(w)‖ẽ(w))‖γ̃0(w)

= (a(w)b̃(w)− ã(w)b(w))‖ẽ(w)‖(b̃(w))−1γ̃0(w)

+b(w)(b̃(w))−1γ̃1(w).

A simple calculation shows that

a(w)b̃(w)− ã(w)b(w) = ‖e(w)‖3‖ẽ(w)‖(−K (w))−1/2(− ˜K (w))−1/2

(

〈(∂̄ e)(w),e(w)〉− 〈(∂̄ ẽ)(w), ẽ(w)〉
)

.

It follows thatΦ(w) mapsγ1(w) to γ̃1(w) if and only ifb(w) = b̃(w) and〈(∂̄ e)(w),e(w)〉=
〈(∂̄ ẽ)(w), ẽ(w)〉.

We have therefore shown that the two bundlesJE andJẼ are locally equivalent (via the
bundle mapJϕ). We now apply the Rigidity Theorem ([3], p. 202) to concludethat the
two modulesQ andQ̃ must be isomorphic. �

It is not clear if the condition ‘angle’ of the theorem can be reformulated in terms of
intrinsic geometric invariants like the second fundamental form etc.

In the casek > 2, if we show that the bundle map is the identity transform on each
of the fibers, then it will follow that the matrix entries of the two nilpotent actions on
each of these fibers must be equal. These entries are expressible in terms of the curvature
in the transverse direction and its normal derivatives. So if two quotient modules are
isomorphic, then it follows that these quantities must be equal. However, we are not sure
what a replacement for the condition ‘angle’ in the theorem would be.
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