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Abstract. Let.# be a Hilbert module of holomorphic functions over a natunalktion
algebra«Z (Q), whereQ C C™Mis a bounded domain. Le#y C .# be the submodule of
functions vanishing to orddron a hypersurface” C Q. We describe a method, which
in principle may be used, to construct a set of complete pnitevariants for quotient
modules2 = .# & .#y. The invariants are given explicitly in the particular case
k=2.
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1. Preliminaries

Let Q be a bounded domain @™ and Z” C Q be an analytic hypersurface defined (at
least, locally) as the zero set of a single analytic funciiohet </ (Q) be the algebra of
functions obtained by taking the closure with respect tostiggremum norm o® of all
functions which are holomorphic on a neighbourhoodXfLet .# be a Hilbert space
consisting of holomorphic functions . We assume that the evaluation functiorels
h(w), he ., w e Q are bounded. This ensures, via the Riesz representatiorethe
that there is a unique vectr(-,w) € .# satisfying the reproducing property

h(w) = (h,K(-,w)), he ., we Q.

In this paper, a module” over the function algebra/ (Q) will consist of a Hilbert space
-# as above together with a continuous action of the algebf®) in the sense of (18],
Definition 1.2). Suppose, we are given a quotient mod#lever the function algebra
</ (Q). This amounts to the existence of a resolution of the form

0— 2 «— M — My+— 0, @)

where .#y C .# are both modules over the algebsa(Q). We make the additional
assumption that the submodul&, consists of functions in#Z which vanish to some fixed
orderk on the hypersurfacg’. Then (cf. [T], (1.5)) the module#y may be described as

14
///0_{fe/z:ﬂ(z)_o, zeun, Ogegk_l},

0%

whereU is some open subset 6f.
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Let d denote the differentiation along the unit normal to the hgpgaceZ’. Recall
(cf. [7]) that the mag) : .# — .# @ CX defined by

hi— (h,dh,d°h,...,05th), he .«
plays a crucial role in identifying the quotient module. Tequirement that
{(en,0€n,... ,0k*1en)n20 : (en)n>0 is an orthonormal basis in7 }

is an orthonormal basis in rdnmakes the map unitary onto its rangd.# C .# ® CX.
Thus we obtain a pair of modules#y andJ.#, whereJ.#; is the submodule of all
functions inJ.# which vanish onZ. In this realisation, the modulé& # consists of
holomorphic functions taking values it. Let Ck*k denote the linear space of &li k
matrices over the field of complex numbers. We recall thanationK : Q x Q — Ck<k
satisfying

n
S (K(@.0)¢.G)_ > 0. Wi ah€Q, G HEENZ0 ()
i,]=1

is said to be amonnegative definittand) kernelon Q. Given such an nnd kern&l on Q,
it is easy to construct a Hilbert spac# of functions orQ taking values irC**¥ with the

property
<f(w),(>(ck:<f,K(-,w)Z>,WeQ, eCk fe.n. 3)

The Hilbert space# is simply the completion of the linear span of all vectors fué t
formK(-,w){, w e Q, ¢ € CK, with inner product defined bjfl(3). Conversely, gt be a
Hilbert space of functions of? taking values irCK. Lete,, : .# — CK be the evaluation
functional defined by,(f) = f(w), we Q, f € Z. If e, is bounded for eac € Q,
then itis easy to verify that the Hilbert spae# possesses a reproducing kenkét, w) =
e€l,, that is,K(z,w){ € .# for eachw € Q andK has the reproducing properiy (3).
Finally, the reproducing propertil(3) determines the rdpming kerneK uniquely. Ife,

is an orthonormal basis i then it is not hard to verify that the reproducing kerKel
has the representation

K(zw) = iena)en(wﬁ, zweQ,

whereen(2) is thought of as a linear map frofito CX. Of course, this sum is independent
of the choice of the orthonormal bagssinceK is uniquely determined.

The modulel.# possesses a reproducing kerdiklin the sense described above. Itis
natural to construct this kernel by forming the sum:

[

JK(zw) = z (J&)(2(J&)(W)*, zwe Q.
n=0

This prescription then allows the identification of the iguicing kernellK : Q x Q —
C**K for the module).#:

(IK).j(zw) = (3'9'K)(zw), 0<f,j<k-1 (4)
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It is then easy to verify, using the unitarity of the mapthat JK has the reproducing
property:

(h,JK(-,w)Z) = (h(w),Z), we Q, e C.

The module action fod.# is defined in a natural manner. Indeed Jétbe the array

14 r .
(1)) = (i)“ﬂjf)’ osf=isied (5)

0 otherwise

)

for f € &7(Q). We may now define the module action tohe h — Jf - Jh. Notice that
Jf is ak x k matrix-valued function o2 while J¢ is the module action, that is, it is an
operator on).# . The action of the adjoint is then easily seen to be

JFIK(-,w) - x = IK(-,w) (I F)(w)* - x, x € CX. (6)

We will say that two modules over the algehsa Q) areisomorphicif there exists a
unitary module map between them.

Itis shown in [T] that the quotient modul@ is isomorphic ta.# © J.#}. Once this is
done, we are reduced to the multiplicity free case. Thus muipus results froni16] apply
and we conclude that the quotient modi#las the restriction ofl.# to the hypersurface
Z.

Let .# be any Hilbert module over the function algehs& Q). In particular, each
of the coordinate functiong, 1 <i < min C™ acts boundedly as the multiplication
operatomM; on.Z . LetM denote this commutingrtuple of multiplication operators. We
denote byM* the m-tuple (M3, ...,M},). To eachm-tuple M, we associate the operator
Dwm : # — # @ CKdefined byDyh= (Msh,...,Mynh), he .Z.

The clasB,(Q) was introduced in(13] for a single operator. This definitioasithen
adapted to the general case ofrattuple of commuting operators (cf.l[4]). We 1&* C
C™denote the domaifw e C™: w e Q} and say thaM* is in B, (Q*) if

(i) RanDy+_y is closed for allw € Q*,
(i) span{kerDy+_w:we Q*} is dense in#,
(iif) dim kerDpy+_yw = nfor all we Q*,

whereM* —w= (M; —wy, ..., M} —Wn).

If the adjoint of them-tuple of multiplication operators is iB,(Q*) (for somen € N),
then we say that7 is in By (Q*). The assumption tha# is in B1(Q*) includes, among
other things, (a) the existence of a common eigenvegiwy € ., that is,M; y(w) =
w; y(w), for w € Q*, (b) the dimension of the common eigenspace & 1. Furthermore,
it is possible to choosg(w) so as to ensure that the map— y(w) is anti-holomorphic.
Thus we obtain an anti-holomorphic hermitian line bunBlever Q whose fiber at
w is the one-dimensional subspace.#f spanned by the vectgr(w), that is,y is an
anti-holomorphic frame foE. In the case oh > 1, a similar construction of an anti-
holomorphic hermitian vector bundle of ramkcan be given. In our case, it is easy to
verify thatK (-, w), the reproducing kernel &, is a common eigenvector for tmetuple
(M3,...,Mp). SinceK(-,w) is anti-holomorphic in the second variable, it provides & na
ural frame for the associated bund@eThe metric with respect to this frame is obviously
the real analytic functiof (w,w).
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Before we continue, we make the additional assumption tieiodule #, which
occurs in the resolutiofil(1) of the quotient modidelies in the clas8; (Q*). Leti : & —
Q be the inclusion map arid : </ (Q) — </ (%) be the pullback. The® is clearly also
a module over the smaller algebitéd.e (Q)). We identify this latter algebra with/ (2).
Let (2,47(%)) stand for2 thought of as a module over the smaller algebfa?’).
Although it is possible that2, o7 (%)) lies in By(Z™*) whenever# is in B1(Q*), we
were able to prove it only in some special casEk ([7], Proipos8.6). However, in this
paper, we assume that the quotient module <7 (%)) always lies inBy(Z™*). These
assumptions make it possible to associate (a) an anti-fwfuinic hermitian line bundIE
over the domai®2 with the module# and (b) an anti-holomorphic jet bundl&es » of
rankk over the domairZ” with the modul€ 2, o7 (%)). The details of th@tconstruction
are given in ([¥], pp. 375-377). One of the main results_ing@tes that two modules
M and .4 in Bk(Q) are isomorphic if and only if the associated bundles arellipca
equivalent. While the local equivalence of bundles is catgly captured in the case of
line bundles by the curvature, itis more complicated in theagal case (cf.[3]). We recall
that the quotient modul€ may be described completely by specifying the action of the
algebraci (%) .= o (2) @ CK (cf. [7], p. 385). The action of the algebre (%), in
particular, includes the multiplication induced by thedbdefining functionp, namely,

(\]d’)\res 2 1 M res » — J///\resff-

To exploit methods of( ]3], it is better to work with the adjbimction. To describe the
adjoint action, we first construct a natural anti-holomacpfiame fot necessarily
orthonormal) for the jet bundIgé on Q. Let{¢;: 1 < ¢ <k} be the standard orthonormal
basis inCK. For a fixedw € Q, lete; = 5X_, 9 'K (zw) @ & be simply the image of
K(z,w) in J.#. Itis then clear thafej(w) : 1 < j <k}, whereej(w) := (81 ter)(w) is a
natural anti-holomorphic frame fdiE. (Of course, as is to be expectedw), 1 < ¢ <k
are the columns of the reproducing kerdd given in [4).) Thus the fiber of the jet
bundleJE atw € Q is spanned by the set of vectdmy(w) € .7 : 1 < ¢ < k}.

Suppose we start with a resolution of the fofth (1). Then weshatwour disposal the
domainQ C C™ and the hypersurfacg” C Q. Let ¢ be a local defining function fo2”
(cf. [, p. 367). Thenp lies in <7 (%) and induces a nilpotent action on each fiber of the
jet bundleJEes o via the mapl, that is,

(Jper) (W) = IK(-, W) (Ig) (W) & (@)

Therefore in this picture, with the assumptions we have nadaleg the way, we see that
the quotient modules? must meet the requirement listed in (i)—(iii) of the follow
Definition.

DEFINITION.

We will say that the module? over the algebra?(Q) is aquotient modulén the class
Bk(Q,2) if

(i) there exists a resolution of the modut®as in eq.[[IL), where the modulg appear-
ing in the resolution is required to be By (Q*),
(i) the module action o2 translates to the nilpotent actidg on J.#|.es » Which is
an isomorphic copy of?,
(iii) the module(2, (%)) isinB(Z*).
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In this paper, we obtain a complete set of unitary invaridotsa module2 in the
classB,(Q, ). This means that the modul@ admits a resolution of the forrl(1) and
the module.# that appears in this resolution lies B1(Q). However, it is possible to
considerably weaken this latter hypothesis as explaingusiiRemark below.

[Remark.Although we have assumed the modu#to be in the clasB1(Q), it is inter-
esting to note that the proof of our Theorem requires much Bgecifically, the require-
ment that the ‘Ramy«_y is closed’ is necessary to associate an anti-holomorpleiowe
bundle with the module. However, in our case, there is ajr@athtural anti-holomorphic
vector bundle which is deteremined by the frame- K(-,w). Indeed, if we assume that
the module# contains the linear spac® of all the polynomials and?” is dense in#,
then the eigenspaceatis forced to be one dimensional. (To prove this, merely nuoaé t
for any eigenvectox atw and all polynomialg, we have

(p.X) = <MP15X> = <1vM;X> = p(w)(1,x) = (p,cK(-,w)),

wherec = (1,x). It follows thatx = cK(-,w).) Finally, the linear span of the set of eigen-
vectors{K(-,w) : w € Q} is a dense subspace of the modu#e Therefore, for our pur-
poses, it is enough to merely assume that

(a) . is a Hilbert module consisting of holomorphic functions@n
(b) the module# contains the linear space of all polynomia# and that%” is dense,
(c) . possesses a reproducing kernel K.

It is then clear that the same holds for the quotient mod#jevhere & consists of
C*-valued polynomials ani takes values i€k, Hence, ifx is an eigenvector at for
the module( 2, &7 (%)), we claim that it belongs to the range kf.,w) which is thek-
dimensional subspad (-,w)v € 2 : v € C} of 2. As before, for 1< j <k, letgj be
the standard unit vector iik andp = zij(:l pj ® € be aCK-valued polynomial. Then we
have(p,x) = zij(:1<ij &j,X) = zij(:1<€ijEj X) = ZT:l p;j (W) (€}, X)
= 351 (p.K(- W)gj) (&)%) = (p,3_1 ¢iK(.,W)gj), wherecj = (g],X). Thusx is in the
range ofK(-,w) as claimed. Therefore the dimension of the eigenspaeeegtuals the
dimension of rang& (., w) which isk.]

We now raise the issue of adapting the techniques of [3] toeficmimplete set of unitary
invariants for characterizing the quotient modul@sin the classBy(Q, Z). While the
methods described below will certainly yield results in ¢emeral case, we have chosen
to give the details of our results in the caséef 2. The reason for this choice is dictated
by the simple nature of these invariants in this case. Furthee, these are extracted out
of the curvature and the canonical metric for the buiitlle

2. Canonical metric and curvature

Let.# be amodule iB;(Q*) and the reproducing kernigl-, w) be the anti-holomorphic
frame for the associated bundtelf .# is another module in the claBg(Q*) with repro-
ducing kerneK (-,w), then it is clear that any isomorphism between these modules
mapK (-,w) to a multipley(w) of K(-,w), whereg(w) is a non zero complex number
for w € Q. Moreover, the mapr — (w) has to be anti-holomorphic. It follows tha#
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and.# are isomorphic if and only i (z,w) = @/(2)K (z, W) () (cf. [@], Lemma 3.9) for
some anti-holomorphic functiogy. There are two ways in which this ambiguity may be
eliminated. .

The first approach is to note that if the two modulgsand.# are isomorphic, then

K(z2)/K(z2) = |@(2)|2. Sincey is holomorphic, it follows that

m

> a9 log (K(z2)/K(z2))dz Adzj = 0. (8)

i,]=1
On the other hand, if we have two modules for which equafidrhds, then the pre-
ceding argument shows that they must be isomorphic. It is gfassible to find, in a
small simply connected neighbourhood of some fixed paita harmonic conjugate
v(w) of the harmonic functioru(w) := logK (w,w) /K (w,w). The new kernel defined
by K(zw) = exp(u(2) +iv(2))K (z,w)exp(u(w) +iv(w)) determines a module/ iso-
morphic toM but with the additional property that the metr€(w,w) = K(w,w). It is
then easy to see that the map takk@,w) to K(-,w) extends linearly to an isomet-
ric module map. Thereforg,[";_; d,0;l0gK(z,2)dz A dz; is a complete invariant for the
module.#

The second approach is to normalise the reproducing kKriieat is, define the kernel
Ko(z,w) = Ww(2)K(zw)w(w), wherey(2) = K(z,wo) K (wo,Wp)*/? for zin some open
subsetQy C Q and some fixed but arbitramyg € Qp. Also, Qg can be chosen so as to
ensureyjresq, # 0. This reproducing kernel determines a module isomorhit but
with the added property thdty(z, wo) is the constant function 1. lf# and.# are two
modules irB;(Q*), then it is shown in [[4], Theorem 4.12) that they are isorharff and
only if the normalisation&, andKq of the respective reproducing kernels at some fixed
point are equal. As before, it is then easy to see that the aldpgtK (-,w) to K(-,w)
extends linearly to an isometric module map. The normalierdel Kg is therefore a
complete unitary invariant for the modul#’.

Notice that if a module# is isomorphic ta, then the module malpis induced by a
nonvanishing functio® on Q, that is, = Mg ([4], Lemma 3.9). Consequently,.if7y is
the submodule of functions vanishing to ordtesn 2, thenl'(_//lo) is the submodule of
functions vanishing to orddein .. It follows that if .# and.# are isomorphic modules,
then the corresponding quotient modules must be isomogshwell. Therefore we can
make the following assumption without any loss of geneyalit

Hypothesis.Now we make a standing hypothesis that the kernel for the teodti
appearing in the resolution of the quotient moddiés normalised.

Recall that ifE is a hermitian holomorphic vector bundle of raklover the domain
Q C C™, then it is possible to find a holomorphic frame= (s1,...,%) such that (a)
(s(Wo),Sj(Wo)) =1, (b) 3j (S(W), S(W)) jw—w, = O for 1< j <m(cf. [12], Lemma 2.3). We
offer below a variation of this Lemma for the jet bundlge corresponding to the hypersur-
faceZ C Q and the Hilbert moduleZ in the clas$3;1(Q). We state the following Lemma
in terms of a frame for the bundle associated with the modéleThere is an obvious
choice for such a frame in terms of the reproducing kerndieftodule. The relationship
between the reproducing kernel of the module and the hemmitietric of the associated
bundle was explained in[{[7},2). Let (s(w),s(wp)) be the matrix of inner products, that
is, (s(w),s(Wo))ij = (s(W),Sj(Wo)).~, 1 <1, <k for some fixed but arbitrarwg € 2
and allw e .
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Lemma. Let# be Hilbert module in B(Q) and.#y C .# be the submodule consisting
of functions vanishing on the hypersurfageC Q. Then there exists an anti-holomorphic
framesfor the jet bundle JE satisfying

1 0
s so))es 7 = (o g )
for w e £ and some anti-holomorphic function S éf

Proof. Let us assume, without loss of generality, thgt= 0. We first observe that if we
replace the module# by an isomorphic copy, then the class of the associated bundl
JE does not change. Indeed,.# and.# are isomorphic modules, then there is an anti-
holomorphic mag which induces a metric preserving bundle map of the assattain-
dleskE andE. It is then clear that the maf) induces a bundle map of the corresponding
jet bundles. Therefore, we may assume that the reprodueimgek for the module #

is normalised, that id{(z,0) = 1. Let(Z, W) denote (temporarily) the normal coordinates
in Q x Q. From the expansion

Kzw) = Y KinzWZW', zwe 2
(,n=0

it is clear thatk,,(z,0) = 0 for £ # 0 andn = 0. SinceK(z,w) = K(w, 2), it follows that
Kem(0,w) = 0 for £ = 0 andn # 0. However K (z,w) = (0[0“K)‘2:0,\,~\,:0(z,w). Hence
((Kgn(Z,W)))?BiO = JKjes #(zW) for zw € 2 by definition [3). Recall thag,(w) =
le(:l 0191 1K (-,w) ® &, for 1 < ¢ < kis an anti-holomorphic frame for the jet bundle
JE. It follows that (e;(w), en(0)) = (IJK)n(0,w). But (IJK)sm(0,w) = Kpn(0,w) = O for

¢ =0 as long a® # 0. The proof is completed by takirggw) = {e;(w),...,e(w)}. [

There is a canonical connectibron the bundld E which is compatible with the metric
and has the property” = 4. Let Cr1(Q,E) be the space of” sections of the bundle

ALUT*Q @ E. The curvature tenso¥” associated with the canonical connectidis in
11(Q,hern(E,E)). Moreover, ifh is a local representation of the metric in some open

set, theri.#” = d(h~1dh). The holomorphic tangent bundlees » naturally splits as
TZ+NZ,whereN .2 is the normal bundle and is realised as the quoliétes » /T 2.
The co-normal bundIb* 2 is the dual oN 27; it is the sub-bundle of Qs » consisting
of cotangent vectors that vanish 8n2° C TQres . Indeed, the class of the conormal
bundleN* 2" coincides with[—2;.es » Via the adjunction formula 1 ([10], p. 146). Let
P, be the projection ontdl* 2 andP, = (1— P;) be the projection ontd*%. Now, we
have a splitting of thé1, 1) forms as follows:

2
AT Qs = 5 R(AM T Qs ) AP (ACY T Qe ).
i,]=1

Accordingly, we have the component of the curvature aloedrdnsversal direction t&
which we denote by#frans Clearly, #rans= (PL®1 )J/‘res 4. Similarly, let the component
of the curvature along tangential directions#obe #tan. Again, #an= (P2 ®1) #res »-
(Herel is the identity map on the vector space héfE).)

Recall that the fiber of the jet bund)&s »- atw € 27 is spanned by the set of vectors

0'~1K(-,w), 1 < ¢ < k. Thus the module actiody, can be determined by calculating it
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on the sef 91K (-,w) : 1 < ¢ < kandw € Z}. This calculation is given in ed}(7). We
therefore obtain an anti-holomorphic bundle mipon the bundleJEyes ». Thus the
isomorphism of two quotient modulesBy(Q, &) translates to a question of equivalence
of the pair(JEes #,J3). This merely amounts to finding an anti-holomorphic bundle
mapo : JEes » — JEes 2~ Which intertwinesl;. It is clear that if we could find such a
bundle mapB, then the line sub-bundles corresponding to the friiew), w € 2° must

be equivalent. From this it is evident that the curvatukgs, in the tangential directions
must be equal. Also, we can calculate the matrix representr the nilpotent action at
w, as given in[[l7), with respect to the orthonormal basis oleiia the Gram—Schmidt
process applied to the holomorphic framewatA computation shows that the matrix
entries involve the curvature®gansin the transverse direction and its derivatives. It is not
clear if the intertwining condition can be stated preciselierms of these matrix entries.
In the following section we show, as a result of some exptiaitulation, that itk = 2
then the curvature in the transverse direction must alsogoeleWe also find that an
additional condition must be imposed to determine the igpimem class of the quotient
modules.

3. The case of rank 2 bundles

In this case, the adjoint action ¢fon 2 = J.Z|,.s » produces a nilpotent bundle map
onJE which, atw € Z, is described easily:

ew) 1= () — 0 and(de)(w) := ( ;éffm) . [00)Wyew)

on the spanning ség(w), (a_e) (w) :we £} for the fiberJE(w) of the jet bundIgJE atw €
% . Thus the adjoint action induced kjydetermines a nilpote(w) of order 2 defined

by <8 (0¢())(W)) on each fibedE(w), w € 2 with respect to the bas{®(w), (de)(w)}.

Now, consider the orthonormal bas{sn(w), y1(w)}, where

Yo(w) = [[e(w)]|~te(w), ~

ya(w) = a(w)e(w) + b(w) (de) (), w e 2.
The coefficienta(w) andb(w) can be easily calculated (cfl[3], p. 195):

—a(w)||e(w)||* = ((0€) (W), e(W)) (— FirandW)) /2,

b(w)||e(w)|| = (= Hrandw)) 2,
where #ansW) denotes the curvature in the transversal direction. In #se of a line
bundle, we have the following explicit formula:
m - f—
Hrand W) = Pl( z 0,0; log||e(w)||?dz /\dzj), we Z. 9)
i,]=1

The nilpotent actioM,n(w) at the fiberJE(w), w € 2 with respect to the orthonormal
basis{yo(w), y1(w)} is given by

<0 b(W)Ile(W)||(0¢)(W)>
0 0 '
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Now, we are ready to prove the main theorem which gives a okt of invariants
for quotient modules in the cla®(Q, 2). At first, it may appear that the condition
angle of the theorem stated below depends on the choice diolbenorphic frame. But
we remind the reader that the normalisation of the keknébr the module# ensures
that it is uniquely dtermined. Therefore salls.

Theorem. If 2 and 2 are two quotient modulesver the algebra7(Q), in the class
B2(Q, 2), then they are isomorphic if and only if

tan: #an= %an
trans: Hans= e%%rans _
angle:((de)(w),e(w)) = ((9&)(w),&w)).

Proof. Suppose, we are given two quotient modutand.Z which are isomorphic. Then
the module mapb : 2 — 2 induces an anti-holomorphic bundle map: JEes » —

JE‘resg. Forw e 2, let JE(w) and JE(w) denote the two dimensional space spanned

by {e(w), (de)(w)} and{&w), (0€)(w)}, respectively. Then the bundle mdpdefines a
linear mapd(w) : JE(w) — JE(w). The mapd(w) must then intertwine the two nilpotents

N(w) andN(w) which implies thatb(w) must be of the forn®(w) = (G(OW) gm) , where

a, B are anti-holomorphic functions fav in some small open set i¥’. We observe that
d(w) mapsy(w) to a(w)|&w)|||e(w)]| " (w). Sinced®(w) is an isometry, it follows
that a(w) = ||e(w)]||||&w)| 1. Because we have chosen to work only with normalised
kernels, we infer thate(w)||||&w) |~ = 1 for allw € 2 which is the same as saying that
a(w) =1 forwe Z. The condition ‘tan’ of the theorem is evident.

The module majp has to satisfy the relation

IK(zw) = D(2)IK(Zzw)d(wW), Zwe Z.

However,JK(z 0) = (é 5(02) ) and similarlyK at (z 0) has a matrix representation wigh

replaced byS Now, evaluate the formula relatintk andJK atw = 0 to conclude that
B(z)=0forallze Z. B

Now, sinced(w) has to preserve the inner products, it follows tf{@e) (w), e(w)) —
((08)(w),8&(w)) = B(w)||e(w)||?. Hence it follows thaf(de) (w), e(w)) = ((I&)(w), &w))
which is the condition ‘angle’ of the theorem.

Finally, the requirement that the nilpoteitéw) andN(w) must be unitarily equivalent
for eachw € 2 amounts to the equality of th{&, 2) entry ofNorn(w) with that ofNorth(w).
Since we have already ensuiggfw)|| = ||&w)||, it follows thatb(w) = b(w). This clearly
forces the condition ‘trans’ of the theorem which completesproof of necessity.

For the converse, first prove that the natural map fa@tw) to JE(w), w € 2, which
carries one anti-holomorphic frame to the other is an isomktis evident that this map,
which we denote by (w), defines an anti-holomorphic bundle map and that it interési
the nilpotent action.

To check if®(w) is isometric, all we have to do is see if it automatically méps
orthonormal basi§ys(w), 1 (W)} to the corresponding orthonormal ba&jg(w), 1 (w)}.
Clearly, ®(w)(yo(w)) = &w)||e(w)|| =L = Jo(w)||&w)|||le(w)|| L. Suppose that the two
curvatures corresponding to the bundlEsandJE agree on the hypersurfack. Then it
is possible to find sections of these bundles which have tine serm. Or, equivalently,
we may assume thp(w)|| = || o(w)]|. It then follows thatd(w) (yn(w)) = Jo(w). Notice
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that

It follows thatd(w) mapsy: (w) to y4 (w) if and only if b(w) = b(w) and((de)(w),e(w)) =
((08) (W), &w)). )

We have therefore shown that the two bundlésindJE are locally equivalent (via the
bundle mapl¢). We now apply the Rigidity Theorem.{[3], p. 202) to conclutiat the
two modules2 and 2 must be isomorphic. Il

It is not clear if the condition ‘angle’ of the theorem can leformulated in terms of
intrinsic geometric invariants like the second fundamiiotan etc.

In the casek > 2, if we show that the bundle map is the identity transform ache
of the fibers, then it will follow that the matrix entries ofehwo nilpotent actions on
each of these fibers must be equal. These entries are expeasserms of the curvature
in the transverse direction and its normal derivatives. fSwd quotient modules are
isomorphic, then it follows that these quantities must beabdHowever, we are not sure
what a replacement for the condition ‘angle’ in the theoreould be.
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