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CURVATURE AND THE BACKWARD SHIFT OPERATORS

G. MISRA

ABSTRACT. Let ¡pa be a Möbius transformation of the unit disk D, \a\ < 1.

We characterize all the operators T in £¡i(D) which are unitarily equivalent

to ipa(T) for all a with \a\ < 1, using curvature techniques.

0. Introduction. The backward shift operator U+ lies in the class Bi(D),

first introduced in Cowen and Douglas [1]. It is easy to compute the curvature

Kw (w), which turns out to be —(1 — |oj|2)-2. For any operator T in i?i(D) with

||r|| < 1, we have [3], JCr(w) < -(1 - |u;|2)~2. This inequality is best possible

over all of D since equality holds for T = [/+. Some time back R. G. Douglas

asked if the inequality is best possible pointwise; that is, if T E Bi(D), ||T|| < 1

and jCt(wu) = — (1 — lwo|2)-2 f°r some wo in D, does it follow that T is unitarily

equivalent to U+l

In this note we obtain a characterization of those operators T in ¿?i(D) that are

unitarily equivalent to pa{T) for all a, where pa is a Möbius transformation of the

disk, and answer the above problem in the negative.

1. The class -Bi(D) is defined as follows.

Bi(B) = {TEC(M):(i)Dccr(T),

(ii) Vw€Dker(T w

(iii) ran(T — u) = )1,

(iv) dimker (T — oj) = 1 for all u> E D} .

For each operator T in Bi(D), such that T(~j(oj)) = <x>~y(w), it is possible to find a

holomorphic family of eigenvectors ~y(w) on D. Following Cowen and Douglas [1],

we can define the curvature of an operator T in ßi(D) to be

^) = ^i°gii7Mir2.

Let pa{oj) = (a — Lo)(l — aw)-1 be a Möbius transformation of the unit disk,

|a| < 1. Whenever ||T|| < 1, the operator ipa(T) is well defined and a simple

application of chain rule yields

II^MlX.mteaM) = <t(w).
In particular if T = U+, we obtain

^a{UV(pa(oj)) = l^Mr^M = -b'QM|-2(i ■

= -(l-|^Q(u;)|2)-2 = ^,:(^QM).
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The Cowen-Douglas theorem, which states that two operators in Bi(D) are

unitarily equivalent if and only if their curvatures are equal, implies p>a(JJ+) is uni-

tarily equivalent to U*¡_ for all a. We can now ask ourselves, which other operators

in £i(D) share this property.

PROPOSITION. IfT is in Bi(D) and \\T\\ < 1 then pa(T) is unitarily equivalent

to T for all a if and only if

rTH = -c(i-H2)-2,

for some constant c > 1.

PROOF, if Kr(w) = — c(l — |w|2)-2, a calculation similar to the one above shows

that <Pa{T) must be unitarily equivalent to T for all a.

Conversely, if T is unitarily equivalent to pa (T) for all a then we must have

/W)fa»M) = I^MI2/Cr(«) = Kt(p*(u)).

In particular, |<p'Q(0)|-2/CT(0) = KT(a) so KT(a) = {\a\2 - l)~2rCT(0) for all a

in D. Let c equal Kt(0), then Kt(w) < -(1 - M2)-2 implies that c > 1.

Now, consider the weighted shift operator T with weights w„ = (cn/cn+i)1^2,

where c„ is the nth coefficient in the generalized binomial expansion of (1 — |o;|2)_c

for a fixed real number c. The adjoint of T is in B\{D) (Seddighi [4]) and i(oj) =

(1 — jüj|2)_c is a holomorphic family of eigenvectors for T*. It is easy to compute

Kt.(uj) = -c(1-\oj\2)-2.

When c is an even integer these operators can be identified with the adjoint of

multiplication on the Hilbert space of square integrable holomorphic functions on

D with respect to the measure dp = {i/2)(l - |w|2)2~2? du: A dUi (cf. Kra [2, pp.

89 and 95]). Thus, we are able to idenify all of the operators that are unitarily

equivalent to all their Möbius transforms <pa(T).

It follows from the Proposition that if T E Bi(D) and |[T|| < 1, then the

following two statements are equivalent.

(1) Kt{wq) = —(1 — |wo|2)~2 for some ujq and pa{T) is unitarily equivalent to

T for all a.

(2) T is unitarily equivalent to U+.

However, Kt(^o) = -(1- |wo|2)-2 does not necessarily imply that T is unitarily

equivalent to U+ as we will show by means of an example.

Let T be a weighted shift operator with weights ojq, u>i, u>2,-We can consider

T to be an ordinary shift on a weighted sequence space (Shields [5]) with weights

0(0),0(1),.... For weD,

l{u) = \wywvwy''')
is an eigenvector for T* and
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Assuming T* is in ßi(D) (Seddighi [4] determines when a weighted shift is in

¿?i(D)), we compute

( °° I, ,l2"     \ '

-H,(E(-+«W&LW)

Putting w = 0, we see that

KT.(0) = -|/3(0)/3(l)-1]2-

Now, let T be the weighted shift with weights 1, k, 1,1,1,_It is easy to verify

that T* E Bi(D) and ||T*|| = 1. Since 0(0) = 1 and 0(1) = 1, it follows that
ATr-(O) = —1. Obviously T* is not unitarily equivalent to [/+.

In fact, we can compute hr- (u>) explicitly for the weighted shift of our example

and show that for* {<Pa(<¿>)) ^ |^4(c«;)|/iT" (w), therefore 71 is not unitarily equivalent

to pa(T) for any a.
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