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SUMMARY
The solutions of the stochastic integro-differential equation involving,
in addition to the random transitions of the stochastic variable, a deter-
ministic change, are obtained under various approximations. It is shown
that the solution in the case of a negative deterministic change is strikingly
different from the solution when the change is positive. Examples from
physics and astro-physics are cited to illustrate such stochastic processes.

THE following type of process is well known in the theory of stochastic
processes.

7 (E|E, 1) dE is the probability that the continuous stochastic variable
E (7) assumes a value between E and E + JE at ¢ (¢ is a one-dimensional
parameter with respect to which the process progresses), given that it had
the value Ejat7 =0. We assume the process is homogeneous and Markovian
with respect to 7. We are given that:

R(E'IE)dE'dr is the probability that the stochastic variable jumps
from E to an interval between E" and E' + dE’ in the parametric interval
d. R(E'E)=0 if E'>E,

The stochastic integro-differential equation for the above process can
be directly written down using its Markovian character

7 (EE,, t) : / ~
S === (E[E, 1) f R(E'[E)dE’ + f 7 (E'|E,, 1)
0 E )
XR (EIE) dE’. (D

In some. physical problems we may have to deal with stochastic processes
more c.omphcated than the one described above. In this paper, we shall
deal with two types of complications.

L In addition to the transition process defined by R (E'|E) we are
given that L 8(E) 4y, B being always positive, is the deterministic change




On a Class of Stochastic Integro-Differential Equations 451

in the stochastic variable in interval ¢/ if it has the value E at . The positive
sign before B denotes an increment and a negative sign, a loss. In such a
case, the stochastic integro-differential equation is given by™

n (E
om ( alz‘Eo, ) {’37,. (E|E,, t)} = — 7 (E|Ey, ?) f R (E'|E) dE'

+ f 7 (E'|Eq, ) R (B[E) dE' ()

We write —’r- SE [Bﬂ' (E|E,, ©)] when we deal with an increment and — ;D—
[¢
187 (E|E,, 1)] when we deal with a loss.
This process will be dealt with in Part 1 of this paper.

II. We assume R (E'|E) =0 if E < » In such a case, equation (1)

splits up into two equations. This process, we shall consider in Part II of
this paper.

Physical examples of the above process can be cited.

Equation (1) is useful in describing the energy loss of fast particles due
to radiation. Equation (2) with + B is the fundamental equation of the
astrophysical problem of the fluctuations in brightness of the Milky Way.
Equation (2) with — B has not been solved explicitly and the main contri-
bution in this paper is to obtain the solution in this case from the solution
for the case + B. Such a process arises where we take ionisation loss also

into account when fast particles passing through matter lose energy by
radiation.

The complication of Type IT arises in the case of the energy distribution
of recoil atoms in liquids, a problem considered in Part IL

Before we deal with the actual problems, we shall obtain the formal
solution of (2) [which includes that of (1)] assuming that (i) R (E'|E) dE' can
be written as R (g) dg where ¢ =E'/E,R(g) =0forg >1 or ¢ <0, and
(ii) B (E) = BEKH (E) where & is a non-negative integer and H (E) is the
Heaviside unit function, i.e., H(E) =1 if E> 0 and H(E) =0 if E<O0.
This only means that in our stochastic process E can take only non-negative
values.

We now reduce (2) to a differential equation by the use of a Mellin’s
transformation.

* For the derivation of this equation see, for example, Alladi Ramakrishnan (1952),
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Defining
m .
p(s,8) = [m (B|E,, 1) Es-' dE,
0

1 1
@) =[R@¢dg, « =w(l) = [Rig)dy &
we get

PED o )+ 0@ p 6N+ B=Dp ikt @)

with the initial conditions,
7 (ElEg, 0) =8 (B — E,) e, p(s, Q) ==E ! (5)
where 8 is the Dirac delta-function.
When 8 =0 the above equation can be directly solved.

n (:S’ l‘) == B 51 e{@(s)-ayt (5)
and = (E|E,, 1) is obtained by inversion.
1 o+ic0 7 o\s
7 (E[Ey 1) = i f () etwrat g )
0
T—i00

When & =1 and 8 £ 0, the equation can be solved easily. The solu-
tion is

1 oHico s
T (EIE(). t) :?‘1;;'— f (%0> el?(8)-at(s-1g)t ds,
ﬂa'—ioo
PART 1

~ Let us take the case when k =0, 5% 0. Then we are faced with a
difference equation in a complex variable which obviously cannot be solved
by simple iteration. We shall show that in the special case of
R(g) =3(q¢" — ¢), the equation can be completely solved. The solution
when Bdr represents a dsterministic increment was first obtained by Chandra-
sekhar and Munch (1950, 51) in connection with a stochastic problem in
astrophysics and subsequently by one of us using different methods (Rama-
krishnan, 1953). The solutions are strikingly different in the two cases of
deterministic gain and loss and onr object is to discuss the two, and study
their behaviour as r tends to infinitity.

1
Before we do so, it is necessary to note that o = f R (g) dg is independent

0
of ¢ and adr represents the probability that a discrete jumap occurs in dr,
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T:he number of discrete jumps in an interval ¢ has a Poisson distribution
given by
e~et (af)?/n ! (8)

We can dofine my (B|Ee £) dE to be the joint probability that »n events
have .occurred and the variable has a value between E and E + dE given
that it had a value E, at ¢ =0.
Then
A PAY )
o (BB, 1) = D" 7 (BIEo, 1, 1) ©)

n .

where = (E|E,, 7, £) is the conditional probability that the variable lies between
E and E + dE given that n discrete transitions have occurred. The stochastic
variable in the case of my, (B|Bo, ¢) when Bdz denotes an increment is obviously

BE= Bog"+ xg"" + (xg—X1) g™ 2+ ... (Xp — Xn) ¢ (t—Xp)

—Eog® + X o)
where we assume that the # discrete (ransitions occur between x; and x; + dxy,
Xy and X, - @xg. .- 5 X and x, -+ dx, respectively. X is the stochastic

variable in mn (B|Eg, #) when Eq =0. The distribution function of X has
been obtained by Chandrasekhar and Munch* (8 can be put equal to unity
without loss of generality). |

AL e—u.t m—1

—_ (;ljﬁ' k_Z(,' A" (E — qu)w—l: (tg™ < E < tg™1)

7o (B, 1) = e 8 (B —1) (11)

(B, 1)

where
|

A = - ., — ,
= g —gF) (" —g"). . - - (gF" =) (gFT—gF) (gF2—g%). .. .(A—gF)

We can immediately extend the above solution to the case when Eq # 0

ane—at m—1 -
iy (E|Eg 1) = — =T > A (E — Eg™ — igFy,
3 } =0

(g™ << E — Bog™ < ™) (12)
7%CEE%t)=¥KMBG%—Eo—Z%7ﬂEEmﬂ==§deEmﬂ-
n=0

We note that the solution is continuous in the range 0 < E < Eo -+ 7
and at B =1 + B, there is a delta-function singularity.

* We give here the solution in the form obtained by one of us (R) in & subsequent paper:
~ Proc. Camb. Phil. Soc., 1953, 49, 473. When E,= 0, we write my (E|Eq. 1) as w, (E, 1.
‘ e
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Now consider the case when Bdt represents deterministic loss. Then
our stochastic variable is obviously
E =Eqq"— g — (- Xp) g e P g — ( — xp)
=Eog"— X (13)
Compare (13) with (10).  While in (10) the variable is the sum of two
stochastic variables which can assume only positive values, in (13) it is the
difference between two variables which can assume only positive values.
If the physical conditions of the problem require that E should be non-nega-
tive then the probability that E should be exactly zero is given by the prob-
ability that X is greater than Eyq", ie., at E =0, there is a delta-function
singularity. This feature is not present in the case of deterministic gain.
The difference will be apparent if we take two stochastic variables x and y
which can assume only non-negative values and form the stochastic variable

z=x-+y. If D;(x), D, (p), D, (z) are the distribution functions of
X, y and z respectively, then

m&%=wawm&-anz=x+y (14)

" where X, 7, Z are the mean values of x, y, z, respectively.

If z=x—y, then

Dy() = / D,(r+2) Dy () dy (15

and }
Z=x—y (16)

But if we impose the condition that z must always be positive, then P X—F
and there is a delta-function singularity for D, (z) at z — (. The probability
that z is equal to 0 is

/ D) dz
where D, (2) is given by (15)
i=x—-y+4+ szg(-z)dz_—_/zDa(z)dz. an
0 [

Hence our solution in the case of loss is given by

ane—at m—1

Tn (E!EOs 1 = — (]T:I\ﬁ ]._“20 Akn (qun —FE — 7476)')1—1’
(9™ <EBog" — B <rgm-1 (18)
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The probability that E ==0 and » discrete transitions have occurred is given
by

En
PO, n, 1y = f 7y (E. ) dE where m, (E, ) is given by (11)
Eog™
PO, ) = 5 PO~ (19)

n=0
where P (C, #) represents the probability that E =0 at ¢
An example of a stochastic process involving deterministic gain is the
astrophysical problem of “ Fluctuations in Brightness of the Milky Way”

so fully discussed by Chandrasekhar and Munch. As ¢ tends to infinity,
7 (B|E,, #) has a stationary distribution which can be shown to be

7 (E|E,, 1) as {— oo, =n (B, 1) as t — oo, =7 (E)

where
n(B) = S [Ker T Quetrame], | (20)
K = — 1 -
II(1—4q"
and =

i r

Qn = ("‘ 1)” ’_Jg 1_?7?
a solution obtdined by Chandrasekhar and Munch. In the case of deter-
ministic loss the stationary solution is trivial, and for all ¢ > Eq,  (E|Eq, ¢)
—0Oforall E > 0and P (0, f) =1. Thisis the direct result of the restrictive

condition that E = E.g™ — X must always be positive.

A direct example of the above process is the energy loss of fast particles
when passing through matter. The discrete loss occurs due to the radia-
tion, i.e., Bremmstrahlung, while the steady deterministic loss occurs due
to ionisation. R (g)dg is given by the Bethe-Heitler cross-sections, but here

we have made the approximation R (¢)) =8 (¢ —g). But (19) represents
P (0, 1)
ot

the rigorous solution based upon the above assumption and dt repre-
sents the probability that the energy of the particle assumes the value zero

. 0,1 . SR
for the first time between f and t -+ dt. Hence oP g - ) is the distribution

function of the range of the particle.

+ The actual numerical values for P (0, /) for various values of tand ¢ will be given in

a later note.
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PArT 11 g

We shall take the case when 8 =0 but impose the following condition
on R(E'|E)dE’. While R(E'|E)dE’ can be expressed as R (g) dg where
g =E'/JE, R(E'|[E) =0if E <« v, i.e., the discrete process is “frozen” when
E <wv. This splits the equation (1) into two and defining

w2 (E‘EO’ t,) =x (ElEoy £) if E > v,
) (ElEm l’) =T (EIE()s f‘) if E <V
we obtain the equations

D (E|E,, 1) _
ot

— 7% (E[E,, 7) a (E)

Ey |
+ /7 (B, ) R EBIEWE, (£ )
E

=0)

fm’ (E'[Eg. AR (EIE) dE', (E < »), (21)

»

o (BIEy, #) _
Tt U

If

€

R(?) = [ =W (EIE,, /) dE

(¢}

€ E, i
= [ dE [ R(EIE') dE’ S 7O (B'|E,, 1) dr (22)

R (1) represents the probability that the stochastic variable assumes a value
less than ein time 7. Let us obtain R (2) as 7 tends to infinity. It is quite
clear that as 7—» co

D (E[Egp )0, (E>w) (23)
S BlEe ) dE 1, (E < »), 24) i
We define -
W (E) = [ % (B[E, 1) dr (25)
Eq
= (B[Ey, o) = /¥ (E') R (B[E") dE’ 26)
R =R (co) = [ 7 (E|E,, o0) dE o

0
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THE SOLUTION OF THE PROBLEM
We shall solve equations (1) and (21) when R (E|E") dE is homogeneous
in E, E', i.e., R(E|E)dJE =R (q9)dg, ¢ =E[E" by defining the Mellin’s
transformations,

o0 1
ps,t) = [ m(E|Ep ) S dE, o5 = [ RQ)gdq (28)
0 0
Equation (1) reduces to (putting without loss of generality, a=1)
-
WED s, (1 — wp); p(,0) =Eo* 29)
p (s, 1) =Bt emet Y
t
S—1
(p G pydr = {22 (1= o) a1
o - Wg .
(4]
f?o E.51
s b [ = 0 32
)2 (s, ) dt = — o, (32)
> 1 (BJBP
. — 0
¥ (B) = f m (BlEy i =g | T s (33)
o a—i00

We shall now assume

R (B|E") dE — ET.,(‘;’EZ), R (E[E) =0 only if E' > E >Er. (34)

Thus
1
sq dg _ 1—1° _ 35
‘“Szfq”l—r‘ig_a-—r)‘ (339
Expressing T’-ll—Zu_ as the infinite series 20 w™ we get
S M
o+ioo =) E
Y(E) = 27?%‘]3}, f (as g wsm> ds where @ = El’ (36)

Substituting for wg from (35) and expanding (1 — 7)™ as a binomial series,

K

, 1 TR - 1 : s (MY ei .
¥ ® =g, | [‘Z, it 24 “’(f)’”] -

o—ico J=t

m=u (37)

A2
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Now
o{c0 . T+ioo N
I aspSi 1 es log ari 4
2mi ) T B T ) eme— @
Gl G -={oD
We know
1 G'-Hcosz et
e zm— .
— an ds = = ____ if z~0 39
2mi f sm (m—1)1 (39)
O~i00

and is equal to zero if 2 < 0,
so that the contour integral in (38) is equal to

jym-1 . .
%g—i—r%)“' if a¥ > 1, ie., E < Eg? (40)

and to zero if E > Egi.

Hence, if Ey™! > E > Eg! the expression (37) for ¥ (E), on integra-

tion, splits up into two parts, for the contour integral in it vanishes for
Jj=1

Thus

1 ot o (— 1)i (’7) (log '(l)-j)?n—l

m— DI =™

"w=0 =0
) -1 (1 [™ Jym-1
i = (— 1) (j)(logalzm h
Eq m—1)TA =5 ™

m=l i=0

Putting (log ari)m-1 ag (loga + jlog ym-1 gng expanding as a binomial
- series, the first part of expression (41) for ¥ (E) can be put in such a form
that by identity (A 16) (see Appendix) it can be shown to vanish.

Hence

2 & (— i m 1 §9£j m-1
r® =E1f32 Z (ni EJI_? r(((;ghlf)m : (42)

m=l i=0

This expression can be substituted in (26)

E/ =
7 (E[Ey, o0) = f ¥ (E) iy #3)
; |
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In this integration, because of the discontinuities of the function ¥ (E) as
given by (42), two distinct cases arise.

Let
Egrf—t > » > Eyk. | (44)
Case I. Egk > E > Bkt
The whole range of integration v to Er being in the same domain

(Eo(‘ el > E’ > v > Eg¥) direct integration is possible, and we have

Er oo k-1 (— )] m log EQ 7 m '
7V (E|E,, o) = J'Z | E, (ngi—)l() ! (1E~— ,-))m Elc?lz““")

v m=k  j=0

(— 1) (m) Eol’j m
= Eo( l—r)ZZ ml (1—r)m (Iog T)

J+IN ¢
~ (log B )m] (Eg* > E SEgicH), (45)

Case II. v >E > Eg*

The range of integration being in two different domains, the discontinuity
of ¥ (E) necessitates separate integration for the two parts.

Thus

| 1 g m Eyriym-t |
W (E|Eq, c0) = F e Y ( ) ( }%’) _dE
™ 0 ) = Eqm—DI1—nrn™  E (1—r)

v j=0 m=k

Elr k—2 1) (ﬂl) (IO Eor.? mM—1
+‘f Eo(m——l)l(l_r)m

Egrb—1 j=0 m=k—1

X Ea=h (46)
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which gives

1 A 1y (?7) Eqrd\™
T (E[Eg, o) =E‘6‘(‘1‘T:“,:)Z Ly mI(1—r)m [(log v

i=0 m=k

_ ((j.; k4 1) logr)m] S et (11__ ;

£ 2 = SRRy }?_1 m
x Z‘ Z ('(11);(7!)_”1)“ [(G— &+ 1)io0g r)

j=0 m=k—21 m

~ (ls B @7)

This can be reduced to

mli(l — rm

m=r

) E—1 o0 (___ 1)3 (]}'l) .
. 1 J Eqgrizm™
T (E[Eq, o0) = E,d=7 Z , m (1 — /) (log o

oz (22 (— 1)j m
- 5= P P Wr?(fj)—z

i=0 m=k=1

(log BTY™ | (= DFT (log ryfet
(e )+ maty (I — k=t

E

(v > E > Eyk). (48)

In making this reduction, identities (A 16) and (A 17) (see Appendix)
have been used. g

Equatidns (45) and (48) can be put‘in a more useful form by considering

the infinite sum over m as an exponential function minus a finite sum. Thén
they become

i k~1
1 | — 1) "IN YNES
i=0 '
L:—J—lﬂi—‘ (log Eo/'j/v m _ 1
m ! ‘T‘:‘,‘“‘) } E’(}ﬂ’('l'*:—“?f)

m=0
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k-1 .
. (— 1) slog Egfi+yEN [(E N L
Z 7 T=7 ) [Ce )=

k—ji—1 i
1 log E it m
B Z m! (E%E) ] (Egk>B>E i)

m=0

9
and (49)

=3 (B[Bp, ) =51 =) Z (1 (BBl T (B

. Z log Eoﬂ/v 1
1 G - ma=n
(= 1)-’? Iog EgHYEN [(Byith\ L
Z' ) (G

§=0

o §—2

. logEqr+1/EN™ (— 1)k
,Zm' =) 1 erom

« %g_:’:’);; . (v >E>Eg%) (50)

Again using identities (A 16) and (A 17) after putting the finite sums
over m in the two expressions in a suitable form, we find that (49) and (50)

reduce to

o e = gty S B (1

517 Z SHIC D

log Eg#HYEY 1 T+l
X (_1_____)“_”),(5@ >B >Eqgk) (51)




462 ALLADI RAMAKRISHNAN AND P. M. MATHEWS

and

k—1 . A N .
‘ 1 (— 1y fE = log Egr?/v\§
7By 00 = gy 2, () G

1 ST (— 1y (Eor’”“1 2,
B, (T=7) Z J! E
=0

X (@%E.o’”l/E)’, (»>E>Epk).  (52)

- F

This is the probability distribution of the stochastic variable after the
stationary state is attained. From expressions (51) and (52), the probability
that the variable assumes a value less than e can be calculated simply by
integrating these expressions over E between the limits r» (energies below
which cannot be reached) and ¢; or by substracting from unity, the integral
of w1 (E|E,, oo) over E between the limits € and v. Both these give identical
values since the integral of 7@ (E|Ey, o0) over the whole range rv to » is
unity; but for convenience, (5 1) is integrated by the former method (because
rv and e being in the same domain, no discontinuities occur in the region

of integration), while (52) is integrated by the latter way (here e, » are in
the same domain).

The integration is done easily by making the substitution, _1,:1:_;
j+1 ) ,
log Ifgog__ =) when the integral assumes the form | e'Yyldy which can

easily be evaluated.
Thus we get the probability R in the two cases -

k=1

Rt T o (B2

¢ 2 D o (e

“EP L e
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and

’ ‘ Tl o . . ,
—_1 e VY f (— 1y (Eg™\.= Eg\y?
R=1- =< YU (BN g ()51

v(l—1)

v

- 5 BRI
i=0 =0

- (B e om

The above mathematical problem arose in connection with the theoreti-
cal treatment of the energy distribution of recoil atoms in liquids produced
as a consequence of the emission of gamma-rays of substantial momentum
due to the radio-active capture of neutrons by nuclei. The physical process,
according to Libby, Miller and others (Libby, 1947; Miller, Gryder and

Dodson, 1950; Capron and Oshima, 1952) can be briefly described as
follows : .

’1
i=0

(i) Every (n, y) process produces a free recoil atom with the same
kinetic energy E,. The kinetic energy of the atom is such that the atom

cannot participate in stable chemical combination until it has lost
energy. :

(i) Bnergy loss occurs by elastic ““ billiard ball collisions ” with the
solvent atoms.-

(iii) If sufficient emergy is transferred in a given collision the struck
molecule will be dissociated into free radicals. In case the recoil atom has
a kinetic energy less than a critical amount ¢ after this impact it will be
trapped in a liquid cage of free radicals.

(iv) We assume that sufficient energy is not transferred if the energy
is below a critical amount », (v > ¢) to produce dissociation. The effect
of assumption (iv) is that only those atoms which * drop’ to an energy below
¢ from an energy state greater than v, are “ trapped’ while atoms with energy
between v and ¢ which drop to an energy below e escape the cage and move

freely.

Our object is to find R the ratio of the trapped recoil atoms to the total
number of recoil atoms in the stationary state, R is given by (53)
and (54),
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APPENDIX

We define coefficients Ar" (r =k always) obeying the relations

At = B (A1)
n — g 3
Ayl = [Agk -+ Ak ... .. + Ar4Fl, A0 =1 (A2)
From (A1) and (A 2)
A 0
— 1k k_ __ e 0 . ,
(= DF Ay [(‘?0 —q1) (G0 — Grea). . . . .. (G0 — ¢4)
@ —aq1) (@1 — qr). .. ... (91 — q2)
A k-1
...... — Dt Skl a3
+ +(=1 4k~1“Qk] (A3)

Substituting in (A 3) for Ay *only, an expression similar to (A 3),
and after reducing, substituting for Ag_*-2 alone and so on, by successive
reduction we get

1
N T o ey @ =g @9
and
(= Dr Agn
Ak —qn) Gre—dn). .. (Fk—qr1) Gr—qr_) (9—qK-2). . (qr—qy)
| (A5)
The sum
;2“ Agrgm ———kz’: A" @™ @ — ) + gn 5 Agn ggmt (4 6)
=0 ;=0 k=0
ie.,

n=—1

n n
-—}Z; ArTqp™ = ;2:, A g™ g 72 Aglgym-1
o= o= =0

n—1i n=1

= Akn~19km~l T qn X Aknmlmcmu2
E=0

k=9

Nm—

1
+ + g™ 3 At
: k=0
m==1 q~—

1
= 3 K1 RE' Ar™ g™ 1~ where Kil =g,m (A7)
-t

=9
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Using relation (A 6) this can be reduced to

me—z n=—2 ‘ o - | ! .
--rg;o K,? ig At g™, where Kt = 3 Kplg, " P (A 7a)
= =0 =

0

This can be further reduced so that in general, we can write

. m—i . =i . .
(= D 3 Axtg™ = I Kot B AT (A8)

r=0

where i may vary from 0 to m or n, whichever is smaller, and
K',-i — :Kq-i‘*l + K')'—li Gnis (A 9)

from which we get

. i
Kyt = X K 1Pqpnp (A 10)
p=0
and
Kt = 25' Kyt gpin™? (A 1l)
p=0

From (A B), we see that if m < n, putting i = m in the right-hand side
of (A8) it reduces to Ko™ % (— 1)»™ Apm" which is zero by (A 2).
k=0

Hence
73: Armq™ =0, (m<n) | (A 12)
When m = n, putting‘ i =m =wnin (A8), we get, since K,i=1 for all ;,
(— 1)“3’2 Arg™ =1, (m=1) (A 13)

For m > n, we can put { =n which then gives

(— D™ 3 Aqi™ = 5 K g™, (m > n). (A 14)
=0 r=o0

Relations (A 12) and (A 13) are of direct application in the problem
we are considering, where the coefficients Ax™ are of a particular
form, with

| —1 n—k
gx =k so that (— 1y* A = U0 (A15)
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Thus we have as particular cases of (A 12) and (A 13),

-k
SRR =0 <) (A 16)
k=0
and
yn—k
(,S__l]gv nkm =1 (m =mn) (A 17)

E=0

(A'16) and (A 17) have been used directly in the problem.
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