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ORDINARY LINEAR DIFFERENTIAL EQUATIONS
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ABSTRACT

Physical processes which can be represented by symbolic differential
equations involving random functions are cited and studied. The solutions
of these equations are obtained using Ramakrishnan’s recent pheno-
menological interpretation of integrals of random functions.

IN this paper, we study various physical processes that can be represented
by ordinary differential equations involving random functions of the para-
meter with respect to which the differential coefficients are defined. Such
a study has been made possible in view of Ramakrishnan’s recent pheno-

menological interpretation of integrals of random functions (Ramakrishnan,
1955). :

The present method, based on that interpretation, is applicable to pro-
cesses represented by stochastic variables which satisfy differential equations
involving random functions, provided the solution of the equations can be
put in the form of simple or iterated integrals of these random functions.
Such iterated integrals have already been discussed earlier by Ramakrishnan
(1955) and the authors (1955) without any special reference to differential
equations. In spite of the risk of possible repetition in some cases, it is

considered worthwhile to deal with these processes defined by solutions of
linear differential equations. .

GENERAL METHOD OF SOLUTION
~ Let us consider the linear differential equation of m-th order,
- gmy dm-1y
T hMOZmr + . O Y = @)X, (1)

where A; (£)’s and « (f) are fully determinate functions of t, and X (7)) is a
random function of z. The problem of studying the distribution of Y given
the distribution of X is indeed a very difficult one. However, the problem
4
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Ordinary Linear Differential Equations Involving Random Functions 5%,

can be treated quite satisfactorily, if we are able to obtain the solution of
(1) in the form -

Y = b (0 s (i) s T B ) . - [ ilt) s (1) X (1)t

@

The passage from (1) to (2) for any general m is by itself a difficult problem
except in the special case when all the A’s are constants and in this paper an
attempt is made for the case m = 2 (see Appendix A). It is interesting to
note that the solutions of a number of equations of type (1) representing
physical processes are capable of being expressed in the form (2).

Y as given by (2) is an m-th iterated integral of a random function, and
the normal interpretation of such integrals given recently by Ramakrishnan
is based on the concept of the * trajectory” or curve of growth of a sto-
chastic process. In any typical realisation of the process X (7), we °plot’
the value of the random function X () in the interval (o, #) and thus obtain
the realised trajectory. By a simple extension of the theory of Riemann

integration, the realised value of the symbolic integral fX (7) dr corres-

0
ponding to the given realisation of X (7) is now defined as the area enclosed
by thé curve X (7), the r-axis and the ordinates at + = 0 and = = ¢. Iterated
integrals of X (7) can be defined similarly. If we wish to obtain the proba-

bility frequency function of f X (7)dr [or of iterated integrals of X ()] we
0

have to assign a probability measure to the trajectory of X () in the interval
(0, #) and this is known to be a very difficult mathematical problem. How-
ever, if we confine ourselves to a simple random function X () which repre-
sents a “ basic random process ”—a Markoff process, homogeneous with
respect to 7, whose typical trajectory is characterised by a finite number of
discrete transitions, the trajectory remaining parallel to the = axis between
two transitions—it is possible to assign a measure to its trajectory. Many
physical processes whose trajectories are continuous can therefore be studied
by considering the stochastic variables involved as iterated integrals of a
basic random process or by approximating the variables to such integrals.
Even if X (#) is not a basic random process, we can readily obtain the moments
and correlation functions of iterated integrals of X () by the use of a theorem
due to Ramakrishnan (1954 a).

The random variable Y as defined in (2) has been dealt with by the
authors (1955) for the special case, X (7) = dn (7)/d~ where n (7) represents
a Poisson process, ie., n(7) has value n with probability e-M (AT)%/n)
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9 P. M. MATHEWS AND S. K. SRINIVASAN

where 1 is the parameter of the process. dn (7)/dr in such a case has a spe-
cialised meaning which will be explained presently. The Laplace transform
solution of the p.ff. of Y has been explicitly obtained in that paper and here

we shall make use of the solution to obtain the moments in particular cases
of physical interest. |

LINEAR DIFFERENTIAL EQUATION OF THE FIRST ORDER

Let us consider a stochastic variable Y (2) (¢ is the parameter with res-
pect to which the physical process we have to deal with progresses) defined by

P LNOY=cOX ), ©)
where A, (1) and « (f) are fully determinate functions of t, and «(¢) is a
random variable representing a process progressing with ¢z Our object is

to obtain the p.f.f. of Y (¥), or its moments—at least the first few—given the

nature of the process X (f). The first step consists in formally writing the
solution of (3) as

Y (1) = Yoot = Y' (¢) = [ e-ww(0} i () X (1) d, @
as if X () were a determinate function. (%) is given by
i
~ p(O=[x()dr ()

The initial condition is defined as Y=Y, at t=0.

We shall now consider particular cases of X ().
: dn (1) | .
@D X = ~7 where n (t) represents a Poisson Process.

It is well known that corresponding to a realisation of events at

t1, 235 - - . ., I, along the t-axis, the realised value of dn (1)/dt is given by
z S(t— 1)

where & is the Dirac-delta function. The distribution of Y’ (f) =Y —
Yo e ™ has been studied by the authors (1955).

Defining the Laplace transform p(s;t) of o (Y’; 1), the probability fre-
quency function of Y’ (), as :

p(s; 1) = jo eV (Y50 dY, (6)
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the solution for p (s; ¢) was obtained there as
ps;t)=exp [— A+ AJ oxp{ — sic(r) e Web-uinn} g (7)

Moments of Y — Y, e+® and hence those of Y can be obtained from (7).

An example of such a process is provided by the fluctuation of voltage
at the anode of a thermionic valve due to the fluctuations in the number of
electrons per unit time emitted by the cathode (Moyal, 1950). If we assume
the probability of emission of an electron per unit time to be constant, we
may reasonably expect the number # (¢) of electrons emitted in the interval
(0, t) to be governed by the Poisson distribution. The fluctuating voltage
V (¢) across C satisfies the equation

av VvV e dn
i TRCT T C @ | ®)

where we have assumed that the circuit between anode and earth is equivalent
to a resistance R in parallel with a capacity C. eis the charge of the electron.
Substituting the values of A(#), « (#) (which are constants in this particular

case) in (7) the Laplace transform solution of = (V;f) the p.f.f. of V is

obtained as
p(s; 1) =exp I:—— not + nooftexp {‘g "‘t“”/RC} d’r] , ) )]

where 7, is the mean number of electrons emitted per unit time.

The moments are given by

E{V () — Ve R = — p eR (1 — ¢-tIR0) * (10)
E{[V (t) —_ VO e-—i/RC]2} — ﬂ02€2R2 (1 - e_'ch)z
+ Z’%’ER (1 — e—2thC)’ ' an

E{[V (f) — V, e ¥R} =

| m=1 T i ] —e HM=T)IRC RC(m—1)!
g E (—- -c) E{[V({#) — Ve ]}( e(m__,_)_l) '(’:1' )
r=0 (12)

(i) X (¢) represents a ‘Q’ process.

* Throughout this paper E denotes expectation value,
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A Q’ process is defined as follows: Consider the distribution of random.
points on a line representing the t-axis, according to a Poisson distribution
with parameter A. Let the value ¢; be associated with the i-th point, all the
gi’s having the same probability frequency function ¢(g). Then the Q-
process is defined by the stochastic variable

QW) =qqs- .. -qn (13)

which is associated with the interval (0, £) when 7 points are realised in (0, #).

By the application of the theorem established by Ramakrishnan (1954 a),
the 7-th moment of Y — Y,e#® as defined in (4) when X ()= Q(?) is
given by

B{(Y = Yoo =1 ... JEQ(m) Q(m)-. . .Q (rm)

k(m) k(79). .. .k(mp) exp [—mu () + (7)) +p(r)+....+

+ p (mp)] dry drg. .. .d7y, (14)
where

EQQ() Q(7)....Q(m)} = exp [« Ml — gn) 71 + (1 — gny)
(e— )+ ... + (1= q) (7n — mnp)}],
O<m <1< ... <), (15)*
gn = E{g"} = Ja" % (9 dq. (16)

Such a Q process occurs for example in statistical astronomy. If we
assume that interstellar matter consists of discrete clouds, g being the trans-
parency factor of a single cloud, then Q is the cumulative transparency factor
of an aggregate of clouds occurring in a Poisson manner. If it is further
assumed that the amount of light radiation from an element of length dr
at 7 along the line of sight of an observer at ¢ = 0 is dr (i.e., a uniform distri-
bution of sources exists), then Y (¢), the total intensity reaching the observer
from the system extending from 0 to ¢ satisfies equation (3), with A, (¥) = 0,
«(f)=1and Y (0)=0. The moments of Y have been obtained by Rama-
krishnan (1954 b). The correlation function of Y of degree n is given by

EY®WY)....Y (tn)

_ f} - _an{Q () Q(D....Q ()} drydry. ... dry.  (17)

* For a derivation of this result, see Alladi Ramakrishnan (1954 b).
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We note that the explicit expression (15) for the correlation function%""**:‘m{_j )
can be written down only after the variables are ordered. In the integration
of the expression (17), we have to take into consideration the relative order
of the n variables 7y, 7y,...,, 7. Hence in the process of integration, the
range of integration of each of the variables is split up into intervals ©, 1),

(1, £9)s- -+ o5 (tnps )5 (1 <1 < .... < tp), and the resulting n-fold inte-
grals computed in the ranges one by one. Use is also made of the following
well-known lemma on ordering of the variables of integration.

t

4 13
[ [f Ky Koy - Xp) dXq dX,. .. .dXy,
00 0

: |3 i &
=n!l[dX;[dX,.... | Xy Xyy...., Xn) dXy, (18)

0 Xy Xn—1
where f is symmetrical in all the variables X;, X,,. ..., X,. The correlation
functions of degree two and three have been evaluated by this method. These
are given in a paper by Alladi Ramakrishnan and S. K. Srinivasan (1956)
for the particular case when ¢ (g') = 8 (¢’ — g), but the same expressions

are valid for any general ¢ (q) if ¢" is replaced by g, everywhere in them.

(iif) X (#) represents a fluctuating density field : (F.D.F.).

Recently, the concept of a wildly fluctuating field has been introduced
by Chandrasekhar and Munch (1952) and studied in great detail by Rama-
krishnan (1954). Here we recall some of the results obtained by Rama-
krishnan. Let = (X'|X;|# —¢[)JdX’ be the conditional probability that
the density X (¢) (considered as a stochastic variable) has a value X’ at ¢
given that it had a value X at ¢; we assume that = (X' | X; |#'— ¢]) —»
RX'[|X)-[t'—1|as|t'—¢]~0and also that R (X’ | X) is a function
of X" alone, and write R (X' | X) = R (X’). Ramakrishnan has proved that

X |X; [ —t)= 5—(39 (1 — g~uitr=tyy

+ 8 (X — X) g~aitr-ti (19)
a=JR(X)dx’ (20)

Note as | = t| o0, (X' |X; |1 — 1) »RE) gy, apy
T'he concept of wild fluctuation is introduced by making a very large. In this

case 7 — for [¢' —t| > > 1/a and hence the distribution at # is effec-
tively independent of the distribution at z.  But it is to be noted that however
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large a may be, the densities are not independent in the range 0< |t'—z| < 1/a.
Hence in any process of integration over the z-space (this has to be carried
out if we desire to obtain the moments of integrals associated with X) a
correlation exists and contributes a correction term of the order of 1/a when
a is very large. The correction term is taken care of by replacing e '~
by 1/a (' — 1) in (19). |

'We now consider physical processes represented by (3) when X ()
represents an F.D.F. For a free particle (of mass m, velocity v) the equation
of motion is

m %y—t + v =F @, (22)

where fis the frictional force and F (¢) is an F.D.F. defining the random force
(Wang and Uhlenbeck, 1945). Again, the current i in an R — L circuit satisfies
a similar equation. If a body of thermal capacity C is connected to its
surroundings by a thermal resistance R, the temperature difference 6 between
the body and the surroundings (which are supposed to form a * heat-bath )
satisfies the equation (MacDonald, 19438-49) ‘

do 1
CZE +E 9 =H (), - (23)

where H (¢) is an F.D.F. defining the flow of heat.

Investigations of these processes by the workers mentioned above and
by others are confined only to the first two moments in the stationary case
(i.e., t > c0).

All these processes will now be studied by taking A, (f) and « (¢) as con-
stants in (3). Then (4) takes the form
Y — Y Mt = « [ e -1 X () di. (24)
. [

As we are interested in the stationary case, i.e., ¢ = oo, the second term on
the LHS can be neglected. The n-th moment of Y is given by

E{Y" =Hmw®[]....[ e (b
00

=>co

S

EX () X (19) .... X(mn)} dTl dry....dry (25)
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By definition,
E{X(rl)X(frz)....X(rﬂ)}-—j oo XX . Xy

Xpn Xp—y Xy

T (Xn, X?’L—l’ e 'SXI I XU s TNy Tr—qov =« «» 'Tl) XmdXZ. .o .an
=[ J.. XX .. . XpmXn| Xn; ™ — Tn-)

Xn Xn_l Xl

7 (Xpa l Xn-23 Tn— — ’Tn-z) e

. .W(Xl l Xo; Tl) Xm dX2 N dX'n. (26)*

Now, the exponential factor in the integral in (25) vanishes as # - oo
except for values of =, 7o,...., 7o Which keep (nt — v, — 7, — .. .. — )
finite; hence the whole contribution to the integral comes from the region
where values of =y, 7, ...., 7, all tend to infinity. The differences

i — T (= 1,2,3, n) are all however considered finite. Consequently
in the expression (26) for E{X (m) X (79)....X (7p)} which is to be fed into
(25), we put

7(Xy [ Xo; ) = ¢ (XY, 27

since only values of =; tending to infinity are significant for our purpose,
as explained above, while for the remaining factors = (x; | xj_y; 7 — Tig)
we have to substitute from (19) because ;3 — 7;_, is finite.

We then have,

E{X(r)X(rp).... X(ma)} =[] .... [XXK,....Xp [lﬁ(Xl)sb(Xz)----

X1 Xo Xy

7o SEIES Z’a(n — )+ Z¢<X1)¢<xo)) & (Xn)

506 — X 8 — i) + 0 (3)] 4% 0%, % (28)

Introducing the expression (28) into the right hand side of (25), we obtain
after some calculation

ey=[Em] + [Em]” 2o B — @xpe] o)
where
B X" = [ X" § (X) dX. (30)

* In this paper the symbol fx means integration over the whole range of the variable X.
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In particular when n = 2,

vy = (B + & [Exy - @], e

a)

(29) can be written as

ey = [E00]" + 2050 ey — e wy] @ @

LINEAR DIFFERENTIAL EQUATION OF THE SECOND ORDER
We proceed to discuss the case where Y (f) satisfies the second order
linear differential equation

Xm0 1207 =c@X @), (33)

where A, (%), A, () and «(f) are fully determinate functions of ¢ and X ()
is a random function as before. The solution of (33) can always be put in
the form (see Appendix A)

Y = e-dutd f e—{eatt)-a(r)} d,-fe-f-{az(r)—aa(rl)} k()X (') dr’ (34)
B - 0 3 0 .

under proper initial conditions.
We will now consider somé particular cases of the function X (.

@O X@ = é—gﬁ,where n (1) is a random variable representing a Poisson

Process.
This has been dealt with by the authors earlier (1955); the Laplace
transform of = (Y ;) is given by

p(s; 1) =exp [—Ar + Alexp {—sf(t, ) ()} dr] (33)
where .

D =exp [— 30 () — 2 (t) — ay ()] [ exp [2a, (w)ld=".  (36)
The moments of Y of any order can be readily obtained from (35).

(ii) X (¢) represents a < Q° _proce;vs, ie., X (tj =0 (t)‘. :




Ordinary Linear Differential Equations Involving Random Functions L;a

It is convenient to express Y as a single iterated integral. This can be “f%»,,,W'M

achieved by changing the order of integration of = and +’ on the R.H.S. of
(34) and performing the integration over =. Thus we obtain

Y= {:K () f(t, ©) X (+) dr, 60

where f (¢, 7) is defined in (36).
The n-th moment of Y is given by an expression similar to (14).

A special case of interest is when A, ()= X, (f)=0 and « () =1, ie.,
f(t, 7y =1t— 7. The first few moments of Y are then given by

t 1 — e (1-q)t
- E{Y(®)} = —
{ ()} )\(1 — 41) A2 (1 ____ ql)z > (38)
1 2 2t 1 — g~ 1-qat
E{Y? =2 — e, S —
0 =2[xr=g ra=a ~ wo a2 S =g
1 ¢ 1 — e ~Qa)t
(A —g)? {A(l —¢q) N0 —g)? }
1 t e-A1-qut e (1-gut A -qat
RE (I —g)* {A (01— q2) A2 (q1— g)* TR (4, — 42)2}] ’

(39)
B 1 3 3r2 6t
B{Y* (0= 6| yrr= W T—2) T —3) ~ B g+ (1= g)°

s . 1 2
6 iy {Aa(l—-—qm(l-qﬁ =gy (=20}

—_ 2.
reca - ma—t? o=t =gy @G=a)
{tz e =qut 2y o\ -yt e~ (1-aut e—) (-gu)t }

A(qy — gs) N A2 (g1 — gs)*® + F@l —q5)* N xﬁm@l”’ 4373

2 1 t
+ {A‘(l-ql) =g " X (1*"%)2(1“42)2} {,\ (1—gs)
1 — e 0—aqat
A2 (1 — g5)? }

{ 2 n 1 _ 1
MA—g)(1—g2)* " ¥(1—g)*(T—g)* X (I—gp)* (41““92)2}
f e (-t ) =@t __ o\ (-qut 1

{}‘ (92 — ) A2 (g2 — gs)* } RS 1'— 91)* (41 — q2)°

t e-h U—qut e~ 1=QIt __ o—x (1-Qa)t-
{A (1 —a» A% (91 — g5)° } ]

(40)
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;Q;lisit,e o Ramak‘rishnah (1955) has proved that in this case (Y; 1),-the p.ff.
ue - of Y satisfies the equation
w0, o Y. N ¢@dg _ ,w(Y;0).
LACSL ,\W(Y,r)Jr/\/w(a,z) = T (4D

If p (s; £) be the Mellin’s transform of = (Y; 7) with respect to Y then p (830
satisfies the equation '

*_bpg§5 D = A (si0) + Ap(s:0) gt 4 ts—Dp(s—1;0. (42)

The n-th moment of Y is given by p (n -+ 1; £). The first three moments of
Y have also been calculated from (42) and are found to be identical with
(38), (39) and (40) as expected.

(iil) X (2) represents an F.D.F.
'We can use (28) and the n-th moment of Y is given by an expression
similar to (25). Physical processes represented by (33) when X () is an F.D.F.

can easily be cited. The distance s traversed by a Brownian particle (of
mass ) is determined by the equation (Wang and Uhlenbeck, 1945)

a2 d.
m s+ 2 =F ), (43)

or, considering an example from electricity, the total charge K in an R-L
circuit satisfies the equation (McCombie, 1953)

-+ dK dK ’

Again let us consider the fluctuation of 0, the torsion of a suspended coil
galvanometer. The equations governing the process are [Jones and
McCombie (1952)]

d20 df :

17 +k 4+ c0=F(@) + G (45)
di | . do

LZ; +Ri =B@®-GZ, (46)

where I is the moment of inertia of the suspended system, k and ¢ are the
damping and torsional constants and G js the flux linkage of the coil. F )
and E (7) in (45) and (46) are F.D.F.’s defining the random couple and random
voltage respectively. If the inductance is negligible, we obtain

2% G2\ db G
1Ez+(k+v§)%+cozy(z)+_RE(t)ﬂ. -@n
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It is assumed that the random couple is independent of that arising from
the random e.m.f. in the coil so that E (£) and F () are uncorrelated. Hence
(47) is of the same type as (33).

We can study (43), (44) and (47) by assuming that A;, A, and « are
constants. Note that the procedure adopted in the Appendix is not necessary.
If —a, and — g, are the roots of the equation

X2+ 4X + A, =0, (48)
then

Y= (X@En —cntn) g (“49)

al“"az
0

The real parts of a;, a, are all positive in the physical examples consi-
dered above. (Otherwise the differential equation would imply instability).

The moments of Y can be obtained by the same technique as we have
adopted before. In this case, it is not possible to obtain an explicit expres-
sion for the n-th moment. Nevertheless the first few moments can always
be obtained without much difficulty and we give below the second "and
third moments.

By =[py] + 5 BEAEAOE (50)

By = [B(w] +3eny) B EXD
= BOOF + 3B} E (Y~ BV (s1)

To obtain the correlation function of Y of degree two we write a; =
§+in, ag= & —in, £ being positive. Then (49) becomes

Y (1) = 71) f X (7) et &1 sin n (¢t — 1) dr. (52)

We wish to obtain E {Y (#) Y (#,)} when £, — co and #, — oo in such'a manner
that 7, — #; = a constant = b.

E{Y (t) Y (t,)} is given by

t1 ta
E(Y(®)Y ()= o f f et { mmd+ ) in (5 — 1)
0 0

sin 7 (2, - 7o) E{X (7y) X (7o)} drydr,. (53)
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Ji%liSifR amakrishnan (1954 @) has shown that

B (X ()} = BEG [1— 2 8(m—n |)]

T 1
I | . : + ZEXB8(|ma— 7). (54)
[This is indeed an immediate deduction from (28)]. If we now denote the

RH.S. of (54) by R (|7, — 7, |) and introduce it into the R.H.S. of

(53), the double integral can bé reduced to a single integral (see Appendix B),
and we have,

e BE @YW = pomes (RO e

fa—t=b

sin (77| + tar? ?E-) dr. (55)

Using the expression (54) for R, we obtain

; _EXZ-[EXE . :
lim B{Y (1) Y (ta)} = = & (& L7 €% (ncosby + £ sin by),

(56)
~ a result obtained by Wang and Uhlenbeck using spectral theory.

LINEAR DIFFERENTIAL EQUATION OF m-TH ORDER

We shall finally consider the m-th order differential equation given
by (1). 'We shall be concerned with the case where the solution is given by
(2). When X (f) = dn (1)/dt explicit Laplace Transform solution of the
pLf. of Y has been obtained by the authors. Note that the R.H.S. of (2)
can be telescoped into a single integral so that (2) becomes

Y = b () b0 (9 x (0 X (89 £ (1 10 dre | 57
where ' ‘
£, 1) = fsbl @) dtltf bo (1) dta. ...J buny (tmos) dt s, (58)

Written in this form, it is quite easy to see how the problem of obtaining
the moments of Y could be dealt with. A formal expression for the n-th
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moment of Y is given by

1

E{Y™ = [bm (O [ 1S 0 (7 0 (7). o () e () e (7).

ek () f( Tt 7)o S ) E{X () X (70). ... X ()}
- | drydr,....dm,. (59)

In the theory of servo-mechanisms, the output Y and the input X are
related by (2). If the input is white noise, i.e., F.D.F. (as is usually the
case) the moments of Y can be readily obtained. Jones and McCombie
have recently discussed the Brownian fluctuation of galvanometers and
galvanometer amplifiers. These processes are represented by differential
equations of the type (1) and order higher than two. All the results of Jones
and McCombie are capable of extension by the present method of approach.

‘We are deeply indebted to Dr. Alladi Ramakrishnan, for suggesting

the series of problems illustrating the concept of integrals of random func-
tions. One of us (P.M.M.) is grateful to the National Institute of Sciences
of India, for the award of an I.C.I. Research Fellowship and the other (S.K.S.)
to the University of Madras, for a research scholarship during the tenure of
which this work was done. :
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APPENDIX A

Our object is to resolve the L.H.S. of (33) into operational factors. 'We
make the transformation

Y=Zewtr (A-1)

where () = f A (7) dr, (33) becomes

22 L P z= ()X (D), (A-2)
where P (¢) is given by )
__1 P 1anG :
PO=—;[n0] -1 A0 0, (a-3)
Next we use the identity

e O] [£ +4 0] 2

= G2 O — [ O, N

Hence if a, is a solution of the Riccati equation

il & —C=P0, - 49
’ | we can rewrite (A-2) as
| p
(% —=0] [§+a0]z=cox0. (a-6) |

The solution is therefore given by

4 , T
7 — f e (Mas () g f er® M-a (1N} o (1) X () dr’ (A-7)
0 o -

under proper initial conditions. Thus Y is given by

i T
Y = et [ ouitrarn g, [ etemany k()X () dr'. (A-8)
0 0 '

¢
In equations (A-7) and (A-8) above, a(t) = [ o, (s) dr.
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APPENDIX B

We wish to reduce the R.H.S. of (53) to a single integral when #; — o
and f, —> oo in such a manner that #, — #; = a constant = b. For finite
7, and 75, e4 (&) + (=)} tends to zero as f, and f, tend to infinity, and
hence the whole contribution to the integral comes from values of =, and =,
for which t; — 7y -+ t, — 7, is finite as #y, , —co. The integral can be
split up into two parts, in one of which 7, > 7,, while in the other 7, < 741.
'We then obtain, ‘

. E{Y(WY(@)}=A+B (B-1)
where ‘
A= %; f dry f et Gemettma) gin g (1 — 7))
i sin 7 (t, — 79) R (1o — 7p) dry (B-2)
an

A
o

B= -, f dr, f et GomtteTs) gin g (1, — )
sin 7 (fy — 7o) R (1, — 7) dmy (B-3)

=

These double integrals can be reduced to single integrals by changing
the order of integration. We can then write A as.

4 14
=1 [dr [ et Gtrm2n=D R (7)[cos  (r—b) —cos 7 (ty+t—27—7)]
0 0

tﬂ-T

dri+3 f dr [ et R (7) [eos n (v — b)

— cos 1 (ty -+ ty — 27— 7)) d7. (B-4)

Performing the integration we obtain,

b
= % J‘ R (7) [cos n (r —b)- X {e g (0-1) =g (alar))
0

- 21"”(?2}4’-_{") et O-D (D¢ o5y 'b — 7) — 2nsinn (f+la—1))
gy € (26 cos (4 = ) — 2

sin n (t + £, — "')}] dr




20 P. M. MATHEWS AND S. K. SRINIVASAN
1 ta 1 . '
+3 f R (7) [cos 7 (b - 9 (et 6= ot st
" ,

— SE Y (2005 (r — b — 2y sinn (e — B

+ Z“@}m et e D cosy (ty + 1, — 7) — 2

sin 5 (t, + t, — T)}] dr. (B-5)
et (b—") dr

o sin fn (r — B) b sigt 7
+4f\/mbf1{()sm{n( B + st )
et ™0 4o (B-§)

Passing to the limit, we have

lim A = WIR(T)SIH {n(b—T)+Sln_1V§2

Repeating the same process for B, we obtain

g ‘
lim B = lim :,12 f R (7) [cos (b + 1) - le: et D+7) o=t (rttimr))
‘ S

4(§z "ﬁ(+‘T){2§COS7)(b+T)—2nslnq7(b+q-)}
5 + 4_(_-5—2_1——-]—*7;2?) e"‘§(1+tz‘~7-){2£ Cos 7 (t; + 1, — ) — 2
sin (4 + £, — T)}] dr
T dENJER ‘77?7:,7“2 J-R(T) et 0+ gin {77 G+

7 ,
Ve A (B

: ‘ + sin?
Hence on adding (B-6) and (B-7), we have

m B{Y () Y (2)} = W/??Tn‘i J- RM—1) et

sin {ﬂf{ + st ;7+ n‘”} dr. )




