Proc. Indian Acad. Sci. (Math. Sci.) Vol. 112, No. 3, August 2002, pp. 393–397. © Printed in India

Principal bundles on the projective line

V B MEHTA and S SUBRAMANIAN

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Raod, Colaba, Mumbai 400 045, India E-mail: vikram@math.tifr.res.in; subramnn@math.tifr.res.in

MS received 21 January 2002; revised 19 April 2002

Abstract. We classify principal *G*-bundles on the projective line over an arbitrary field k of characteristic $\neq 2$ or 3, where *G* is a reductive group. If such a bundle is trivial at a k-rational point, then the structure group can be reduced to a maximal torus.

Keywords. Reductive groups; principal bundles.

1. Let *k* be a field of characteristic $\neq 2, 3$ and let *G* be a reductive group defined over *k*. Let \mathbb{P}^1_k denote the projective line defined over *k*. Let $\mathcal{O}(1)$ denote the line bundle of degree one over \mathbb{P}^1_k . For a one-parameter subgroup $\lambda : G_m \to G$ of *G*, we denote by $E_{\lambda,G}$ the principal *G*-bundle associated to $\mathcal{O}(1)$ (regarded as a G_m bundle) by the group homomorphism $\lambda : G_m \to G$. A principal *G*-bundle *E* on \mathbb{P}^1_k is said to be trivial at the origin if the restriction of *E* to the *k*-rational point $0 \in \mathbb{P}^1_k$ is the trivial principal homogeneous space over Spec *k*. In this article, we show

Main theorem. Let $E \to \mathbb{P}^1_k$ be a principal *G*-bundle on \mathbb{P}^1_k which is trivial at the origin. Then *E* is isomorphic to $E_{\lambda,G}$ for some one-parameter subgroup $\lambda : G_m \to G$ defined over *k*.

In particular, since every one-parameter subgroup lands inside a maximal torus of G we observe that any principal G bundle on \mathbb{P}_k^1 which is trivial at the origin has a reduction of structure group to a maximal torus of G. This result was proved by Grothendieck [3] when k is the field of complex numbers and by Harder [4] when G is split over k and the principal bundle is Zariski locally trivial on \mathbb{P}_k^1 .

While we understand that this result is known (see [2], unpublished), we believe that our geometric method of deducing it from the properties of the Harder–Narasimhan filtration of principal bundles is new and of interest in its own right.

2. Let *X* be a complete nonsingular curve over the algebraic closure \overline{k} of *k* and *G* a reductive group over \overline{k} . Let $E \to X$ be a principal *G*-bundle on *X*. *E* is said to be semistable if, for every reduction of structure group $E_P \subset E$ to a maximal parabolic subgroup *P* of *G*, we have

degree $E_P(\mathfrak{p}) \leq 0$,

where \mathfrak{p} is the Lie algebra of P and $E_P(\mathfrak{p})$ is the Lie algebra bundle of E_P [9]. When G = GL(n), a vector bundle $V \to X$ is semistable if for every subbundle $S \subset V$, we have

$$\mu(S) \le \mu(V),$$

394 V B Mehta and S Subramanian

where for a vector bundle W, $\mu(W)$ denotes the slope degree(W)/rank(W).

If the principal bundle $E \to X$ is not semistable, then there is a canonical reduction $E_P \subset E$ to a parabolic P in G (also called the Harder–Narasimhan filtration) with the properties:

- (i) degree $E_P(\mathfrak{p}) > 0$.
- (ii) If U denotes the unipotent radical of P and L = P/U a Levi factor of P, then the associated L bundle E_P/U is semistable.
- (iii) U has a filtration $U_0 = U \supset U_1 \supset U_2 \supset \cdots \supset U_k = e$, such that U_i/U_{i+1} is a direct sum of irreducible L-modules for the natural action of L (see Theorem 2 in [12]), and if M is an irreducible L-module which occurs as a factor of U_i/U_{i+1} for some *i*, then degree $E_L(M) > 0$, where $E_L(M)$ is the vector bundle associated to the principal L-bundle E_L by the action of L on M.

For the existence of such a canonical reduction, see Behrend's paper [1], where degree $E_L(M)$ as above is called a numerical invariant associated to the reduction $E_P \subset E$, and the vector bundles $E_L(M)$ are called the elementary vector bundles. This reduction was first defined for vector bundles by Harder–Narasimhan in [5], and for principal bundles by Ramanathan [9].

For convenience of reference, we recall Thereom 4.1 of [6] here.

Theorem. Let $E \to X$ be a principal *G*-bundle on *X*, where *G* is a reductive group. Suppose that $\mu_{\min}(TX) \ge 0$, where *TX* is the tangent bundle of *X*. Then we have,

- (i) If $E \to X$ is semistable, so is $F^*E \to X$, where F is the absolute Frobenius of X. (ii) If $E \to X$ is not semistable, and $E_P \to X$ the canonical reduction of structure group
- of $E, E(\mathfrak{g})$ the adjoint bundle of E, and $E[\mathfrak{p}] \to X$ the canonical reduction of structure group of $E, E(\mathfrak{g})$ the adjoint bundle of E, and $E(\mathfrak{p})$ the adjoint bundle of E_P , then

 $\mu_{\max}(E(\mathfrak{g})/E(\mathfrak{p})) < 0$

and, in particular

$$H^0(X, E(\mathfrak{g})/E(\mathfrak{p})) = 0.$$

We now let $X = \mathbb{P}^1$. Since $\mu(T\mathbb{P}^1) = 2 > 0$, where $T\mathbb{P}^1$ denotes the tangent bundle of \mathbb{P}^1 , we can apply Theorem 4.1 of [6] in our context. Let $E \to \mathbb{P}^1_k$ be a principal *G*-bundle over \mathbb{P}^1_k , where *G* is a reductive group defined over *k*, and let \overline{k} denote the algebraic closure of *k* and k^s denote the separable closure of *k*. Let $E_{\overline{k}}$ be the principal $G_{\overline{k}}$ bundle over $\mathbb{P}^1_{\overline{k}}$ obtained by base changing to \overline{k} , and suppose $E_{\overline{k}}$ is not semistable. Then by Theorem 4.1(ii) of [6], the canonical parabolic reduction $E_P \subset E_{\overline{k}}$ descends to E_{k^s} . Further, by [1], the canonical reduction to the parabolic is unique (actually, it is the associated parabolic group scheme $E_P(P)$ which is unique) and hence by Galois descent, the reduction $E_P \subset E$ is defined over *k*. In particular, the parabolic subgroup *P* which is *a priori* defined over *k*, is actually defined over *k*.

3. We first consider torus bundles on \mathbb{P}^1 . Let *k* be a field, and let *T* be a torus over *k*. Let $E_T \to \mathbb{P}^1_k$ denote a principal *T*-bundle on \mathbb{P}^1_k . We have

PROPOSITION 3.1

Let $E_T \to \mathbb{P}^1_k$ be a *T*-bundle on \mathbb{P}^1_k which is trivial at the origin. Then there exists a one-parameter subgroup $\lambda : G_m \to T$ defined over *k* such that E_T is isomorphic to $E_{\lambda,T}$, where $E_{\lambda,T}$ denotes the principal *T* bundle associated to $\mathcal{O}_{\mathbb{P}^1}(1)$ (regarded as a G_m bundle) by the group homomorphism $\lambda : G_m \to T$.

Proof. Let $A_0 = \mathbb{P}_k^1 - \{\infty\}$ and $A_\infty = \mathbb{P}_k^1 - \{0\}$. The two open sets A_0 and A_∞ cover \mathbb{P}_k^1 . By Proposition 2.7 in [7], the restriction of E_T to A_0 is obtained from a *T* bundle on Spec *k* by base change, and since we assume E_T is trivial at the origin, we obtain that $E_T | A_0$ is trivial. Now consider $E_T | A_\infty$. Again by Proposition 2.7 of [7], $E_T | A_\infty$ comes from Spec *k*. Since $E_T | A_0$ is trivial, there are *k*-rational points of $A_\infty \cap A_0$ at which E_T is trivial. It follows $E_T | A_\infty$ is also trivial. Hence there is a transition function $\mu : A_0 \cap A_\infty \to T$ which defines the principal *T* bundle E_T on \mathbb{P}_k^1 . Since $A_0 \cap A_\infty = G_m$, we have thus obtained a morphism of schemes $\mu : G_m \to T$ (which is a *priori* not a morphism of group schemes). Let 1 denote the identity of G_m , which is a *k*-rational point of G_m , and let $\mu(1)$ be the *k*-rational point of *T* which is the image of 1. Let λ be the morphism $\lambda = \mu(1)^{-1}\mu : G_m \to T$ which is the composite of $\mu : G_m \to T$ and $\mu(1)^{-1} : T \to T$ (multiplication by $\mu(1)^{-1}$). Then it can be seen that $\lambda : G_m \to T$ is a group homomorphism. However, the *T*-bundle on \mathbb{P}_k^1 defined by λ is isomorphic to the bundle defined by μ , and hence the proposition. Q.E.D.

4. Let *k* be a field and *G* a reductive group defined over *k*. We have

Lemma 4.1. Let $E \to \mathbb{P}_k^1$ be a principal G bundle over \mathbb{P}_k^1 and let $G \to H$ be a homomorphism of reductive groups over k which maps the centre of G to the centre of H. Let E_H be the associated H-bundle. If E is a semistable G bundle, then E_H is a semistable H bundle on \mathbb{P}_k^1 .

Proof. Let $F : \mathbb{P}^1_k \to \mathbb{P}^1_k$ be the absolute Frobenius morphism on \mathbb{P}^1_k (if char k > 0). Then by Theorem 4.1(i) in [6], $F^{n^*}E$ is semistable for all $n \ge 1$, where F^n denotes the *n*th iterate of the Frobenius *F*. Hence, by Theorems 3.18 and 3.23 of [8], it follows that E_H is semistable. Q.E.D.

Lemma 4.2. Let H be a semisimple group over k and $E_H \to \mathbb{P}_k^1$ a principal H bundle on \mathbb{P}_k^1 . If E_H is semistable, then E_H is the pullback of a principal homogeneous space on Spec k by the structure morphism $\mathbb{P}^1 \to \text{Spec } k$. In particular, if E_H is trivial at the origin (which is a k-rational point of \mathbb{P}_k^1) then E_H is trivial on \mathbb{P}_k^1 .

Proof. Let $\rho : H \to SL(N)$ be a faithful representation of H and let $E_{SL(N)}$ be the associated SL(N) bundle. By Lemma 4.1 above, $E_{SL(N)}$ is a semistable SL(N) bundle. Let V_{ρ} be the vector bundle whose frame bundle is $E_{SL(N)}$. Then V_{ρ} is a semistable vector bundle on \mathbb{P}^{1}_{k} of degree zero. By an application of the Riemann–Roch theorem, it follows that V_{ρ} has N linearly independent sections. Since every nonzero section of a semistable vector bundle of degree zero on a projective curve is nowhere vanishing, it follows that V_{ρ} is the trivial vector bundle. Hence $E_{SL(N)}$ is the trivial SL(N) bundle. Therefore the principal fibre space $E_{SL(N)}/H$ with fibre SL(N)/H is also trivial, so

$$E_{SL(N)}/H = \mathbb{P}^1_k \times (SL(N)/H).$$

396 V B Mehta and S Subramanian

It follows that the reduction of structure group of $E_{SL(N)}$ to H is defined by a morphism $\mathbb{P}^1_k \to SL(N)/H$. Since SL(N)/H is affine, the morphism $\mathbb{P}^1_k \to SL(N)/H$ actually factors through a morphism Spec $k \to SL(N)/H$. It therefore follows that the principal H bundle E_H is the pullback of a principal homogeneous space on Spec k by the structure morphism $\mathbb{P}^1_k \to \operatorname{Spec} k$. Q.E.D.

We can now prove

Theorem 4.3. Let G be a reductive group over a field k of char $\neq 2, 3$ and let $E \to \mathbb{P}^1_k$ be a principal G bundle on \mathbb{P}^1_k , which is trivial at the origin. Then there is a reduction of structure group $E_T \subset E$ to a maximal torus T of G such that the T bundle E_T is trivial at the origin.

Proof.

Case (i). Suppose *E* is a semistable *G* bundle. Let *Z* be the centre of *G* (which is defined over *k*). Let E/Z be the G/Z bundle associated to the homomorphism $G \to G/Z$. Since *E* is trivial at the origin, E/Z is also trivial at the origin. Also, by Lemma 4.1 above, E/Z is a semistable G/Z bundle. Since G/Z is a semisimple group, we can apply Lemma 4.2 above to conclude that E/Z is the trivial G/Z bundle, and hence has sections. Any section of E/Z defines a reduction of structure group $E_Z \subset E$ of *E* to *Z*. Since *Z* is contained in a maximal torus *T*, we obtain a reduction of structure group $E_T \subset E$ to *T*. Let $c \in H^1(k, T)$ be the class of the principal homogeneous *T* space obtained by restricting E_T to the origin of \mathbb{P}_k^1 . Then *c* goes to zero under the map $H^1(k, T) \to H^1(k, G)$. We now twist E_T by the class c^{-1} to obtain a new *T* bundle E'_T which is trivial at the origin. The twisted *T*-bundle E'_T is contained in the twist of *E* by c^{-1} . However since the image of *c* in $H^1(k, G)$ is trivial, we see that the twist of *E* by c^{-1} is *E* itself. Hence we obtain a reduction of structure group $E'_T \subset E$ to a maximal torus *T* such that E'_T is trivial at its origin.

Case (ii). Now suppose E is not semistable. Then by \$2, there is a canonical reduction $E_P \subset E$ to a parabolic P in G. We first observe that since the map $H^1(k, P) \to H^1(k, G)$ is injective (see Corollary 15.1.4 in [11]), the P bundle E_P is trivial at the origin. Now let L be a Levi factor of P. The L bundle E_L associated to E_P by the projection $P \to L$ is semistable (see §2 above) and since E_P is trivial at the origin, so is E_L . Let U be the unipotent radical of P. Let P act on U by the inner conjugation. Then the bundle $E_P(U)$ associated to E_P by this action on U is a group scheme over \mathbb{P}^1 . Further, the P/L bundle E_P/L is a principal homogeneous space under the group scheme $E_P(U)$ over \mathbb{P}^1 (see Lemma 3.6 in [10]), and hence E_P/L determines an element of $H^1(\mathbb{P}^1, E_P(U))$. However, U has a filtration $U_0 = U \supset U_1 \supset U_2 \supset \cdots \supset U_k = e$ such that U_i/U_{i+1} is a direct sum of irreducible L-modules for the natural action of L, and if M is an irreducible Lmodule which occurs as a factor of U_i/U_{i+1} for some *i*, then degree $E_L(M) > 0$, where $E_L(M)$ is the vector bundle associated to E_L by the action of L on M (see §2 above). Since E_L is semistable, $E_L(M)$ is a semistable vector bundle by Lemma 4.1. Thus $E_L(M)$ is a semistable vector bundle on \mathbb{P}^1 of positive degree and hence $H^1(\mathbb{P}^1, E_L(M)) =$ 0. Inducting on the filtration $U_0 = U_1 \supset U_2 \supset U_3 \cdots \supset U_k = e$, we obtain that $H^1(\mathbb{P}^1_k, E_P((U)))$ is trivial, and hence E_P/L is the trivial principal homogeneous space. This defines a reduction of structure group $E'_L \subset E_P$ of E_P to the Levi factor L. However, since the composite $L \subset P \rightarrow P/U = L$ is the identity, it follows that E'_L is isomorphic to E_L . Thus we have obtained a reduction of structure group $E_L \subset E$, where E_L is a semistable L bundle which is trivial at the origin. Let Z denote the centre of L. Then arguing as in Case (i) above, we obtain a reduction of structure group $E_Z \subset E$ to the centre Z of L, such that E_Z is trivial at the origin. Since Z is contained in a maximal torus T of G, we have obtained a T bundle E_T trivial at the origin, and a reduction of structure group $E_T \subset E$ of E to the maximal torus T. Q.E.D.

Proof of main Theorem. This follows from Theorem 4.3 and Proposition 3.1 above.

Acknowledgements

We thank M S Raghunathan for some useful discussions.

References

- [1] Behrend K A, Semistability of reductive group schemes over curves, *Math. Ann.* **301** (1995) 281–305
- [2] Gille P, Torseurs sur la droite affine, preprint, unpublished
- [3] Grothendieck A, Sur la classification des fibres holomorphes sur la sphere de Riemann, *Am. J. Math.* **79** (1957) 121–138
- [4] Harder G, Halbeinfache Gruppenschemate über Vollständigen Kurven, Invent. Math. 6 (1968) 107–149
- [5] Harder G and Narasimhan M S, On the cohomology groups of moduli spaces of vector bundles on curves, *Math. Ann.* 212 (1974) 215–248
- [6] Mehta V B and Subramanian S, On the Harder–Narasimhan filtration of principal bundles, to appear in Proceedings International Colloquium on Algebra, Arithmetic and Geometry (TIFR) (2000)
- [7] Raghunathan M S and Ramanathan A, Principal bundles on the affine line, Proc. Indian Acad. Sci. (Math. Sci.) 93 (1984) 137–145
- [8] Ramanan S and Ramanathan A, Some remarks on the instability flag, *Tohoku Math. J.* 36 (1984) 269–291
- [9] Ramanathan A, Moduli for principal bundles in: Algebraic Geometry, *Proc. Copenhagen*, Springer Lecture Notes 732
- [10] Ramanathan A, Deformations of principal bundles on the projective line, *Invent. Math.* 71 (1983) 165–191
- [11] Springer T A, Linear algebraic groups, second edition, Prog. Math. (Birkhauser) (1998)
- [12] Azad H, Barry M and Seitz G, On the structure of parabolic subgroups, *Comm. Alg.* 18 (1990) 551–562