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Semistable sheaves on homogeneous spaces and abelian varieties
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Abstract. In this paper we prove that semistable sheaves with zero Chern classes on
homogeneous spaces are trivial and semistable sheaves on abelian varieties with zero Chern
classes are filtered by line bundles numerically equivalent to zero. The method consists in
reducing mod p and then showing that the Frobenius morphism preserves semistability on the
above class of varieties. For technical reasons, we have to assume boundedness of semistable
sheaves in char p.
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Let X be a smooth projective variety of dimension d defined over an algebraically closed
field k and equipped with a very ample line bundle H. For a coherent sheaf F on X we
denote by F (n) the sheaf F®H" and by yr(n) the Hilbert polynomial of F, y(n)
= x[F(n)]. Let ¢, (F) denote the first Chern class of F. If F is torsion-free, then a
subsheaf E of F is defined to be a proper subsheaf of F if 0 < rkE < rk F. Define

¢, (F)-H"!
u(F) = i F
and
_xr(n)
pr(n) = rk F

A torsion-free sheaf V' on X is defined to be u-stable (resp. u-semistable) if for all
subsheaves W of V' we have (Takemoto [22])

k(W) < pu(V) (resp. u(W) < u(V))

Vis defined to be x-stable (resp. x-semistable) if for all proper subsheaves W of V we
have '

pw(n) < py(n) (resp. pw(n) < py(n))

for all n > 0 (Gieseker [6]; Maruyama [13]).
Fix a Weil cohomology X — H*(X) (cf.[10])and let & = {V,r,c, ... ,c,} denote
the set of all y-semistable torsion-free sheaves on X of rank r and fixed Chern classes c;
=¢(V), 1<i<d, where ¢(V)e H*(X). A basic problem which arises in the
construction of the moduli spaces of these sheaves, is the boundedness of & (cf.[13]).If
char k = 0 then the boundedness of % has been proved in [5]. If char k = p > 0, then
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2 ~ V B Mehta and M V Nori

the boundedness of & has been proved only in some special cases: dim X' = 2, rkV
arbitrary in [14], and dim X arbitrary and rk ¥ < 3 in[15].
In this paper we make the following assumption:

*{The set & is bounded for all values of dim X and rk v.}
Using * we prove

Theorem1: Let X beacomplete homogeneous space under a reductive algebraic group
and let ¥ be a y-semistable torsion free sheaf on X. Then if ;(V)=0forl <i<dwe
have V is trivial i.e. V ~ O%, where r =rk V.

Theorem 2: Let X be an abelian variety and ¥ a y-semistable torsion-free sheaf on X.
If ¢,(V) = 0 for 1 < i< d, then there is a filtration of V

O=V,cV,...c V=V

where each V,/V,_,,1 < i< risalinebundleon X algebraically equivalent to zero. In
particular V is locally free.
Combining theorems 1 and 2 we get

Theorem 3: Let G be a smooth algebraic group acting transitively on a smooth
projective variety X such that forany x € X, the canonical map G — X given by g — gxis
smooth. Let ¥ be a y-semistable torsion-free sheaf on X with ¢;(V)=0 for 1 <i
< dim X. Then the conclusion of theorem 2 holds for V, ie. V has a filtration by
subsheaves whose successive quotients are line bundles algebraically equivalent to zero.

Theorem 1 for rank 2 semistable bundles on PZ or on P! x P! has been proved by
several authors (Takemoto [22]; Maruyama [16]; Schwarzenberger [28]). These results
depend on the Riemann-Roch theorem for surfaces. For rank 2 semistable bundles on
P" in characteristic zero theorem 1 can also be deduced from the results of Ellencwajg-
Forster [4] and Maruyama [14]. :

Theorem 2 for rank 2 bundles on abelian surface has been proved by Umemura [29]
and Takemoto[22], and for bundles of arbitrary rank on abelian surfaces by
Mukai [25]. , ‘

Theorem 2 can be generalized as follows: (a) A vector bundle ¥ on an abelian variety
is called weakly-translation invariant (semi-homogeneous in the sense of Mukai [24]) if
T,V ~ V®L, for all xe X, where L, is a line bundle depending on Xx.

(b) A vector bundle ¥ on X is said to be special if there exists an isogeny: f: Y— X such
that f* (V) has a filtration: f(¥)=V,> ¥,_; > ... 2 ¥, =0 with V,/Vi_,€PicY
for all i and V,/V,_, algebraically equivalent to V/V,_, foralliand f

(c) A vector bundle ¥ on X is said to be semistable with projective Chern classes zero if
¢(V), the total Chern class of V, is equal to [1+c¢, (V)/n]", where n =rk V, and V is
semistable for some polarization of X.

Mukai [24] proved that (a) is equivalent to (b) and that (b) = (¢). That (c) = (b) for
abelian surfaces has been proved by Oda [30] and Takemoto [22]. We sketch a proof
below that (b) = (c) for abelian varieties of any dimension. So let V' be semistable with
e(V) =[1+¢, (V)/n]". Let ny: X — X be multiplication by n and put L = ¢, (V). Then
ni(L) ~ L"®@M for some M in Pic® (X). Hence there exists N ePic(X) with
N ®n} (V) semistable and with zero Chern classes. By theorem 2, nf (V)®N has a
filtrationn? (V)®N = W, > W,_, ... o W, = Owith W,/W,_, e Pic’ (X)foralli. It
follows that n% (V') has the desired filtration.
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Mukai [24] has proved that a vector bundle ¥ on an abelian variety X is stable and
semi-homogeneous if and only if there exists an isogeny f: Y— X and a line bundle L on
Ywith K (L) nker f= 0 such that V = f, (L). However, neither f nor L is uniquely
determined. It can be proved (Mehta and Nori [31]) that such vector bundles on X are
in 1-1 correspondence with pairs (g, L), where g: Z — X is an isogeny, L is a line bundle
on Z with ker g = K(L) and ¢%/K non-degenerate.

We first prove theorems 1 and 2 in the case where k is the algebraic closure of a finite
field. If X is a homogeneous space or an abelian variety then H® (X, Ty) generates T,
where Ty is the tangent bundle of X. This implies that for any semistable sheaf ¥ on X,
n* (V) is also semistable, where 7: X — X is the Frobenius morphism (cf. Proposition
1.1). We note that this is false unless Ty is generated by H® (X, Ty) (Gieseker [7]). Now if
X = G/P then we invoke [3] and [11, theorem 1.4] to assert that any ¥ as in theorem 1
becomes trivial on some étale cover of X and hence on X itself as n28(X) = 0.

If X isan abelian variety, then we show that for any ¥ as in theorem 2, there exists an
integer n such that n¥ (V) is trivial on X, where ny: X — X is multiplication by n. From
this the existence of the desired filtration for ¥ follows at once. The case where the ground
field k is arbitrary is handled by the now standard method of reduction mod p. In § 1 we
establish some notations and recall some known results and then prove theorem 1.
Theorems 2 and 3 are proved in §2. “Stable” and “semistable” will always mean “x-
stable” and “y-semistable” unless stated explicitly otherwise.

1. Semistable sheaves on homogeneous spaces

Let E be a torsion-free sheaf on X and define rational numbers h;(E) by

d
1) = ¥ h(ENT,

and for any subsheaf F of E define numbers B;(F), in analogy with [12], by
Bi(F) = h;(F)yrkE —h;(E)yrkF, 0<i<d.
If0 — F, — F, - F, — 0is an exact sequence of subsheaves of F, then we have f;(F,)

=B,(F)+B:(F3),0<i<d. ‘
The Hirzebruch-Riemann-Roch formula gives

(deg XrkE)®  [c, (E)-H* ' + (rk-E/2)c, (X ) H4~1]nd 1
xe(n) = al + -1

+ terms of lower degree in n.
Hence we see that E is y-semistable (resp. x-stable)if and only if, for any subsheaf F of

E,if B;(F)= ...Bs_p+1(F)=0then B,_.(F) <O (resp. <0)for1<r<d.
Now let E be a y-unstable (i.e. not semistable) sheaf on X. Hence there exists F = E
with B,(F) = ... B,_,+,(F) =0but §,_,(F) > 0. We may assume r to be minimal with

respect to this property. We have two cases:

Case (i) r = 1: Then Langton [12] establishes the existence of a unique subsheaf B of E
with the following properties: (i) E/B is torsion-free. (i) f,-,(B) = sup {B,_(F)}.

FcE
(111) B is the subsheaf of smallest rank with properties 1 and 2. (iv) Hom O, (B, E/B)
= 0.
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Case (ii) r > 1: (This case has been treated in [17], but we recall the results for the sake
of completeness). Let '

S={G<E/B:(G)= ... Bs-r+1(6) =0}
Asr > 2and forany GeS wehave 1 <rkG < rkE, it follows from [8, 221-307] that S is
a bounded family of sheaves on X. In particular we can define B,_, = sup B,-,(G) and
GeS ~
T ={GeS/By-,(G) = By, }- Let Bbean element of T of smallest rank and define B by:

"~ ~

B c B c Eand E/Btorsion-free. Then f, (B) = 0 (thisis true for any suPsheaf of E)and
since B < B we have hy_; (B) < hy_ (B), hence B;_; (B) > 0.1f B, (B) > O, then this
contradicts the minimality of r. Hence B,-,(B)=0. Similarly Bi_,(B)
= ...B4eps1(B)=0.S0BeS.Andas f,_,(B) < B,_,(B), by maximality of B, (B) we
get By, (B) = B, (B). So we may assume B = B and hence we get that Bisa subsheaf of *
E of smallest rank with Be S and E/B torsion-free and Bi-,(B) = Bi—, ‘

Further, we assert that B is the unique subsheaf of E of smallest rank with B€ S, E/B
torsion-free and B,_,(B) = B,-,. For, let F < E be another such. Then we claim that
both F A B and F + B belong to S. Taking F n B first, we have B,(F nB) =0 and
B, (FAB)<0.IfB;_y(FnB) <O, then in the isomorphism B/F N B ~ F + B/F we
get B, (B/F n B) > Oand hence ., (F + B/F) > O which in turn implies that Ba-1(F
+B) >0, a contradiction. Hence B, (F A B)=0. Similarly p;_,(FNB)= ...
= B;-p+1(F nB)=0 and also, by the same reasoning, we get Bi-i(F+B)=...
= B,-,+1(F + B) = 0. Hence both F n B and F + B belong to S. Now we claim B,_,(F
A B) = B,_,(B). In any case we have f;_ . (F N B) < B,_,(B). Suppose strict inequality
holds. Then, B,_,(B/F nB)>0=§, ,(F+B/F)> 0=p,_,(F+B)> B, (F)
= f,_,,a contradiction. Nowrk B N F < rk B and so by the definitionof B, BN F = B
or F o B. The uniqueness of B is hence established. ‘

Now we can prove that Hom O x (B, E/B) = 0. If not, let f: B— E/B be a map with
image G/B and kernel K, where B < G < E. From the two exact sequences

0—B-G—GJB—~0 )
0-K—B-G/B-0 )

 we get

() B.(G)=Pi(G/B) for d—r+1<i<d
@ B(G/B)+B(K)=0 for d—r+1<i<d

Hence B,(G)+ B;(K) = Oford —r+1 < i< d.But then we must have f,(G) = B;(K)
=0 for d—r+1<i<d, because if one of them, say B;(K)>0, then B4(K)
=f;1(K)...= B (K)=0, B;(K) > 0,a contradiction. Hence both G and K belong
to S. From (2) we get 28,_,(B) = B, .(K) + B4, (G). Hence at least one of §,_,(B) and
B.-,(G) must be greater than or equal to B,_,(B). By our assumptions
on B it now follows easily that G = B and f = 0. In what follows we shall call B the

~ subsheaf of E.

" Now we have

Proposition 1.1:  Let ¥ be a semistable torsion-free sheaf on X with X as in theorem 1
or theorem 2. Assume both X and ¥ are defined over a finite field F, andletm: X — X be
the F-linear Frobenius. Then n* (V) is also semistable on X,

Proof: If n* (V)is not semistable on X then let B be the B subsheaf of V. Consider
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Dery(X,, X,), where X, =X is considered as a scheme over X via n. Every
D eDery (X,, X,) induces a Ox-linear map D: n* (V') —» n* (V). We compose D with
the projection n* (V') — n* (V' )/B. This induces a map B — n* (V)/B which can be seen
to be Oy,-linear. We have observed that such a map must be zero. Hence D takes B to B.
Now the assumptions on X and [9, 190-23] imply that B descends to a subsheaf, say B
of V. We have to show that B contradicts the y-semistability of ¥ and this follows from

Lemma 1.2: Let V' be a torsion-free sheaf on a smooth projective variety X, both being
defined over a finite field F,. Let n: X — X be the F-linear Frobenius and define g; for
subsheaves of ¥ and n* (V) as before. Let B < V with B =n* (B) = n* (V)and assume
that 8,(B) = ... B,;_,+,(B)=0. Then B,_,(B) = q'B,(B).

Proof of Lemma 1.2: We use the H-R-R formula
1V (n) = [ch ¥ (m)z (X )], |
where ch V'(n) is the Chern character of V (n), T(X) is the Todd class of X and [ ],
d d

denotes the homogeneous component of degree d. Let ©1(X) ) w,andchV =Y 1I.
i=0 i=0

4
Then ch ¥ (n) = ch (V) ch (H") = ( y li>(1+H"+ .. .4 (H"/d). Tt follows that

i=0

—— — d —
h(V)y= 3  (w;)H*/k!. Similarly, for B< ¥, if ch(B)= ¥ t; then h,(B)
i=0

i+tj=d-k

d d
=( Y tiwj)H"/k!. Now ch(z* (V)= ) ¢'; and ch(B)= ) ¢'t;. So
i=0

itj=d—k i=0

h@* (V)= 3 (¢'lw))H*/ktand e (B)= Y  (¢t;w;) H*/k!. It now follows,
itj=d—k itj=d—k
Cafter a short calculation, that if B,(B)=...=B,_...(B)=0 then B,_,(B)

= ¢ B,-,(B), which completes the proof of Lemma 1.2 and hence that of Proposition
1.1 Q.ED.
Remark 1.3: Proposition 1.1. in the case of rk2 sheaves on P" has been proved by
Barth [2]. _

We now take up the proof of theorem 1. We first assume that k = F,. Let X be asin
theorem 1 and let = {V,r, ¢, .., c,} be the set of all torsion-free semistable sheaves
of rkr on X with ¢;(V) = 0,1 < i < d. By our assumption () it follows that there exists
a scheme T of finite type over k and a coherent torsion-free sheaf ¥ on X x T flat over T
such that if V€% then there exists a closed point t €T with ¥; ~ V. There also exists an
integer n, such that for all n > n,, we have

(i) H°(V (n))generates V' (n) for all Ve &
i) H'(V () =0 forall i>0,forall Ve.

Fix an n > n,. Let P be the Hilbert Polynomial of V' (n), V'€ & and E be a trivial vector
bundle on X of rank = dim H° (V' (n)), Ve &. Let Q = Q(E/P) be the Quot scheme of
coherent quotients of E with Hilbert polynomial P. For any V' € &, we may assume the
existence of a finite extension F, > F, with X, Q and V all being defined over F,, which
gives us a F-rational point of Q. As Q has only finitely many F,-rational points, we get
the important consequence that there are only finitely many isomorphism classes (over
k) of elements of & which are defined over F,. Let m: X — X be the F,-linear Frobenius,
we get n* (V)e & by proposition 1.1. Hence we infer the existence of an infinite
sequence of integers (1) ; with (n%) (V') = (z™) (V). Now we deduce V'is locally free:
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Lemma 14: Let M be a finitely generated module over a regular local ring in char
p > 0 and assume that n* (M) ~ M. Then M is free.

Proof: Let
9 ¢
0—F,—>F,_,...F,—>F,>M=0

be a minimal resolution of M. Then by [20, theorem 1.13], the minimal resolution of
n* (M) is
q

4 4 .
Oqu———;Fd_l.--Fl—-—;Fo“')n (M)“‘}O

If M ~ n* (M) then these two complexes are also isomorphic and hence it follows by

comparing their minors for instance, that M is free.
, Q.ED.

So now each Ve & is a vector bundle on X and there exist integers m, n withm > n
and (z™)* (V) =~ (n")* (V). Putting (z")* (V) = Vand m —n = t, we get (n')* (V) ~ V.
Now we quote

Proposition 1.5:  (Lange and Stuhler [11, theoremn 1.4]) Let V be a vector bundle on a
scheme X in char p > 0. Then (n")* (V) is isomorphic to V for some t if and only if ¥
becomes trivial on an étale cover of X.

So it follows that ¥ is trivial on an étale cover of X.

Proposition 1.6:  Let X = G/P be a homogeneous space in char p > 0 with G reductive
and P parabolic. Let ¥ be a vector bundle on X such that (n")* (V) is trivial on X. Then
V itself is trivial.

Proof: We first assume P is a Borel subgroup of G. Then by [3] there is a sequence
Je S
Z=2,52,52,...»2,=P!

with all the f; locally trivial P! fibration and f: Z — X a birational morphism. Let g,: Z
— Z, be the projection and assume that we have proved that g7 (W) ~ f* (V) for some
Won Z,.1tis clear by induction that for any P! < Z,, thereis a sections : P* — Z so that
g;os is the inclusion of P! in Z,. Consequently W | P! ~ s* f* (V') and this bundle has
the property that a high power of its Frobenius is étale-trivialisable, and is therefore

easily seen to be trivial by writing it as a direct sum of line bundles. In particular Wis

trivial when restricted to all the fibres of £, showing that W ~f* £, (W). Putting

" fig (W)= W,, we find that g, ,(W,) ~f* (V). By induction, f* (V') is trivial, and

because f, f(V)* V, V itself is trivial. Now assume that P is an arbitrary parabolic
subgroup of G and V is a vector bundle on G/P such that (n")* (V') is trivial. Let B < P
be a Borel subgroup of G and let f:G/B— G/P be the canonical map. We have a

commutative diagram: T

G/8 G/B
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If (z")* (V) is trivial on G/P, then f* (x")* (V) = (=")* f* (V') is trivial on G/B. So
f#(V) is a bundle on G/B with (n")* f* (V) trivial on G/B. By the first part of this
proposition, it follows that f* (V) is trivial on G/B and smce V is isomorphic to
fe f*(V), V is trivial on G/P.

Now suppose X = G/P is defined over an arbitrary algebraically closed ﬁeld kand V
is a semistable torsion-free sheaf on X with ¢;(V)=0, 1 <i<d We may assume
(i) There exists a subring 4 of k which is finitely generated over Z, with quotient field K,
such that X, V and G are defined over K. (ii) There is a smooth reductive group-scheme
G,— A whose general fibre is G. (iii) P, = G, is a parabolic subgroup scheme with
quotient G 4| P, denoted by X ,. (iv) There is a sheaf V, on X , flat over 4 with V,® ,(€2)
semistable and torsion-free on X, ® ,(€) for every geometric point Q of A and
V2,0 =0,1<i<dand V,®,K=V.

Now for every maximal ideal m of A, F, = 4/m is a finite field and by propositions
1.1-1.6, V,® AF is a trivial vector bundle on X ,® AF It easily follows that ¥y is trivial
on Xy and hence V is trivial on X. Q.E.D.

If we work instead with u-stability and p-semistability we have the following
improvement of proposition 1.1:

Proposition 1.7: Let X be a projective space or a Grassmannian in char p > 0 and let
V'be a u-stable sheaf on X. Then n*(V') is also p-stable.

- Proof: In any case, by the proof of proposition 1.1 we infer that n* (V) is u-

semistable. According to [26, theorem 3.23], for any smooth variety X in char p > 0
with n* (V) u-semistable whenever V is u-semistable, we have that V,®V, is u-
semistable if both V; and ¥, are u-semistable. Now we prove that n*(}') is u-stable. Let
W be a subsheaf of n* (V) with u(W) = u(n*(V')). Now if Ty is the tangent bundle of X,
we get a O y-linear homomorphism f:7y - Hom (W, n*(V)/W). If X is a projective
space or a Grassmannian, then T is u-semistable with u(Ty) > 0, as can easily be
checked (see below and [12]). But Hom (W, n*(V')/W) is u-semistable and of degree
zero and hence f = 0. Hence W descends to a subsheaf W say, of ¥ with u( W) = u(V),
contradicting the p-stability of V.

Remark: The tangent bundle of the Grassmanian is a homogeneous bundle, from
which it follows that each member of the Harder—Narasimhan flag is also homo-
geneous. Now the Grassmanian is S!(n)/P and the action of P on Lie (SI(n))/Lie (P) is
irreducible, and therefore there are no proper non-zero homogeneous subbundles of the
tangent bundle. Thus the tangent bundle is semi-stable. Note that its u is positive
because its determinant is in fact very ample.

2. Semistable sheaves on abelian varieties

We now turn to the proof of theorem 2. X is an abelian variety over an algebraically

 closed field k and ¥ is a semistable torsion-free sheaf on X with¢;(¥) = 0,1 < i < d. We
first assume that k = F Now propositions 1.1,1.2, 1.4 and 1.5 remain valid for X and V'
and so we have

(i) V is a vector bundle on X.

(ii) (')* (V) ~ 7, where ¥ = (n")* (V') and m and n are such that (7™)*
(V)= @* (V).
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Again by [11, theorem 1.4] there exists an étale covering f* Y— X with f* (V) trivial
on Y. By [18, §18] Y is an abelian variety, f is a homomorphism and there is a
commutative diagram

X = X
Jx

where jyand jx are multiplication by j on X and Yrespectively. Hence (j;)* (V) is trivial
on X. Now multiplication by p': X — X (p = char k) induces the zero map on the
tangent spaces at all the points of X hence there is a commutative diagram

X ‘——--D'————- X

h

Xe— X

N4

where h: X — X is some homomorphism. We therefore get that m* (V) is trivial on X,
where m = p'j. Let X, be the group-scheme kernel of m: X — X. Then m: X —» X is a
principal bundle with structure group X ,,. As m* (V)is trivialon X, Vis the bundle on X
associated to a linear representation of X,, on a finite dimensional vector space say W. As
X,, is a commutative group scheme there is a filtration on W

0=WOCW1...CH/'=W

with each W, a X,,-subspace of W and dim W, , /W, =1 for 0 < i< r—1. It follows
that V has a filtration

0=V,cVy...cV.=V

with each V;, , /¥, a line bundle on X, say L;, ,. Now m* (L,, ,)is trivial on X for all i
and hence by [18, page 75] each L, is algebraically equivalent to zero, i.e. each
L;,,ePic®(X). ‘
Now assume k to be arbitrary. Asin § 1 we may assume (i) There exists a subfield K of *

k which is finitely generated over the prime field such that both X and V are defined over
K. (ii) There exists a Noetherian subring 4 of K with K the quotient field of 4 such that
there is an abelian scheme X , over A and a sheaf ¥, on X , flat over A with general fibres
X and V respectively and V, x ,Q semistable torsion-free with zero Chern classes for
~every geometric point Q of A4.
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Letf: X , — A bethe structuralmap andlet f: X, — A4, where X , isthe dual of X ,. Let
L be a Poincare bundle on X ,® ,X,. Consider W = Hom[L, p} (V,)] on X ;x, X,
where p, : X ,x, X, - X , is the first projection. Define D = (te X ,|H°(W,) 2 1). Disa
closed subset of X ,. Giving it to the reduced structure we have

Proposition 2.1: The restriction of fto D is a surjection: D — A.

Proof: If A —f(D) # ¢ then there exists g € A4 and a maximal ideal m with gm # 0.
But for any suchm, 4 /mis a finite field, which contradicts what has been proved earlier.
Hence f: D — A is surjective Q.ED.

So after restricting A suitably we may assume that D — 4 and hence X, — 4 has a
section o: A— X ,. We get a line bundle M = (id, x 6)* (L) on X and we consider
Hom (M, V)on X. We have H® [Hom (M, V)] > 1 for every closed point x of A and
hence for every point of 4. Again by restricting A if necessary we may assume
H°[Hom (M_,V,)] = 1 for every xe A. Then f, [Hom (M, V)] is a line bundle on 4
and we consider the composite

M®f* f,[Hom (M, V)] —» [M®Hom (M, V)] -V

- which we know to be an inclusion of bundles for every closed point of A. Hence M is a
line subbundle of V, at least up to a line bundle coming from 4. Now P, (n) = P, (n)and
both M and V are semistable, hence V/M is semistable with zero Chern classes. By
induction ¥'/M has a filtration

O=V,cV,...cV,=V/M
where each V;/V,;_,ePic®(X),1 <i < r. Hence V has a filtration
O=VocVy=McV,...clV =Vwith
Vi/Vi_, ePic®(X), 1 <i<r. Q.ED.
Now we can deduce theorem 3 from theorems 1 and 2. We are given a smooth

surjective map f: G — X where G is a smooth algebraic group. Now there ex1sts a
maximal linear subgroup L of G and an exact sequence.

0>L->G->G/L-0

with G/L being an abelian variety. We also get a map G/H — G/L + H with all fibres
isomorphic to L/L n H, and a map G/L — G/L + H with fibres L + H/L. So finally
there is a map, also denoted by f, from X to G/L + H, which is an abelian variety, which
we denote by A. We also have f~!(a)~ L/L n H for all ac A.

Let V' be a semistable torsion free sheaf on X with ¢; (V) = 0,0 < i < d. Then, by what
has been proved earlier, we get

(1) V is a vector bundle on X,
(i) (@")* (V)= (z")* (V).
Then (z™)* (V)/f " (a) =~ (=")* (V)/f " ! (a) for all ae 4 and hence V'/f ~!(a) is trivial
forall ae A.

_Hence V' =f7" (W) with W being a vector bundle on A. Put V = (n*)* (V) and
W= (n')* (W) where t = m—n. Then (n°)* (V) ~ ¥V and (n)* (W) is a bundle on
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A with f*@)* (W) = (@of)* (W) = @) 1* (W) = ()" (V) = V =f*(W). So
(71:’) (W) =~ W on Aand hence m* (W )is trivial on A for some integer m. It follows that
W has a filtration. '

O—WOCWI-..Cmr—W

with W,/W,;_,ePic® (4), 1 <i < r. Hence V has a filtration
O=VycV,...c V=V
With V/ Vi 1 PiCo (X), < i < r. Q.E.D.

Remark 2.2: Theorem 2 generalizes a theorem of Atiyah [1, theorem 5] in the case
where dim X = 1.

Remark 2.3: Let V be a semistable sheaf on P" in Characteristic zero. Then Spindler
[21, theorem 3.2] has proved that the instability degree of the restriction of V' to a
general P* « P"is bounded above only by the rank of ¥ and not by the Chern classes of
V. Theorem 1 shows this result to be false in char p. Take a semistable ¥ on P" with V/P!
" not semistable for a general P! < P". Then (n°)* (V') is semistable on P" for all ¢t but the
instability degree of (n*)* (V)/P* goes to infinity.

Remark 2.4: Ellencwajg and Forster [4] have proved the following

Take the set S of semistable sheaves on P" in characteristic zero with a fixed rank and
¢, and ¢,. Then S is bounded. If the same result is true in char p one gets an interesting
consequence: take S with ¢; = ¢, = 0, Then (n")* (V)€ S for all Ve S and ¢t > 0 hence
every Ve S must become trivial on every P! — P". This easily implies that each V€S
must be trivial on P".

Remark 2.5: Assume V is a vector bundle on an abelian variety A such that ' has a
filtration

O=V0CVI... = I/’,zV
with V,/V;_,ePic® (4), 1 <i < r. We can classify such V as follows
k

(i) Let V= @& W,, with each W, indecomposable. Then for each i, 1 < i <k, thereisa
i=1

unique line bundle L; e Pic® (4), such that L,® W, has a filtration by subbundles with

each successive quotient trivial. (cf. [19], Chp. 4, [23] Thm. 2.3). (ii) Vector bundles ¥ on

A admitting filtrations with trivial quotients as in (i) are in canonical 1-1 correspon-

dence with the isomorphism classes of finite length modules over the local ring at the

identity of the dual abelian variety 4. (cf. [19], Chp. 4, [24] Thm. 4.19, [25] Ex. 2.9).

Remark 2.6: Let X bea homogeneous space or an abelian variety. Then it is easy to see
that all the results of this paper remain valid for u-semistable torsion-free sheaves on X if
one makes the following assumption:

The set V of all u-semistable sheaves on X is bounded for fixed values of rk V and

(1), 0<i<dimX.

S Ramanan has pointed out to us the following application of theorem 2.

Proposition 2.7: Let V be a stable vector bundle on an abelian variety X of dim 3 in
char zero. Assume that NS (X') ~ Z. If Bogomolov’s inequality is not strict, then there
exists an isogeny f: Y— X and a line bundle L on Ywith f_(L) ~ V.
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Proof: By [26, theorem 3.18] End ¥ is semistable. By our assumption on NS(X),
¢, (End V)= aH? in H*(X; Q) for some rational number. « and Bogomolov’s
inequality says that c¢,(End V). H > 0 (here H denotes the polarization on X). If the
inequality is not strict, then ¢, (End V) = 0. In any case, c;(End V) =0 foroddi.

Hence it follows from theorem 2 that E € Pic® (X ) with E = Ad V < End V inducing
¢:E®V - V. As V is stable, ¢ is an isomorphism and as E < Ad V, E is not the trivial
line bundle. By taking determinants we get E” ~ O, wheren =rk V. Now letf: Y—> X
be the isogeny of least degree such that f*(E) is trivial. It is easy to see that there is a
bundle W on Ywith f, (W)~ V (See, for example, [32], Lemma 2.5). Repeating the
above argument for (¥, W) in place of (X, V'), the result follows. Note that the entire
argument is valid in char p is one knew Bogomolov’s inequalities for an abelian three-
fold in char p.
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