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Introduction

Let H be the upper half plane and I'" a discrete subgroup of AutH. When i mod I’
is compact, one knows that the moduli space of unitary representations of I has an
algebraic interpretation (cf. [7] and [10]); for example, if moreover I acts freely
on H, the set of isomorphism classes of unitary representations of I' can be
identified with the set of equivalence classes of semi-stable vector bundles of degree
zero on the smooth projective curve H mod ', under a certain equivalence relation,
The initial motivation for this work was to extend these considerations to the case
when Hmod!I has finite measure.

Suppose then that H mod I has finite measure. Let X be the smooth projective
curve containing HmodI  as an open subset and § the finite subset of X
corresponding to parabolic and elliptic fixed points under I'. Then to interpret
algebraically the moduli of unitary representation of I', we find that the problem to
be considered is the moduli of vector bundles V on X, endowed with additional
structures, namely flags at the fibres of V at PeS. We call these quasi parabolic
structures of V at S and, if in addition we attach some weights to these flags, we call
the resulting structures parabolic structures on V at S (cf. Definition 1.5), The
importance of attaching weights is that this allows us to define the notion of a
parabolic degree (generalizing the usual notion of the degree of a vector bundle)
and consequently the concept of parabolic semi-stable and stable vector bundles
(generalizing Mumford’s definition of semi-stable and stable vector bundles). With
these definitions one gets a complete generalization of the results of [7, 10, 12] and
in particular an algebraic interpretation of unitary representations of I’ via
parabolic semi-stable vector bundles on X with parabolic structures at S (cf.
Theorem 4.1).

The basic outline of proof in this paper is exactly the same as in [ 12], however,
we believe, that this work is not a routine generalization. There are some new
aspects and the following are perhaps worth mentioning. One is of course the idea
of parabolic structures ; this was inspired by the work of Weil (cf. [16], p. 56). The
second is a technical one but took some time to arrive at, namely when one
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reduces the problem of constructing the moduli space of parabolic semi-stable
vector bundles to one of “geometric invariant theory”, the choice of weights should
correspond to the choice of a polarization. The moduli problem of parabolic
vector bundles gives a natural example of how the same moduli problem can have
many natural solutions (namely, corresponding to choice of different weights) and
this is reflected in geometric invariant theory by the choice of different polari-
zations. (This feature also occurs in getting compactifications of generalized
Jacobians associated to reducible projective curves with ordinary double points [8].)
One is also obliged to give a proof, different from that of [15], for the fact that the
moduli space of parabolic semi-stable vector bundles is complete (Theorem 3.1).

The notion of parabolic structures appears to be quite useful in many
applications. It is very much related to that of “Hecke correspondences” appearing
in the work of Narasimhan and Ramanan [6]. This has also been used to obtain a
desingularization of the moduli variety of semi-stable vector bundles, of rank two
and degree zero [14]. This was also responsible for suggesting in the general
setting of geometric invariant theory, a result (cf. [11], Theorem 5.1}, which states
that if a reductive group G operates, say on a projective space P given by a linear
representation of G, then there exists an ample line bundle on P x G/B (G/B-flag
variety associated to G) for which semi-stable points are in fact stable.

The results of this paper have been announced in [13].

Outline of the Paper

This paper is divided into 5 sections, we briefly describe their contents as follows:

Section 1 is devoted to the motivation for introducing the notion of parabolic
structures on a vector bundle. If I" is a discrete subgroup of PSL(2,IR) and
X =H"/I', we show how a unitary representation of I" gives rise to a vector bundle
on X with parabolic structures corresponding to the parabolic vertices of I'. We
also show that these unitary bundles are parabolic semi-stable, in a sense which is
made precise. It is also shown that the category of these parabolic semi-stable
bundles, with an appropriate notion of morphism, is an abelian category with
every object having a Jordan-Holder series.

Section 2 is quite short and is devoted to proving that for the moduli of
parabolic bundles, it is sufficient to cover those cases where the weights of the
parabolic structure are non-zero and rational.

Section 3 is devoted to proving that the parabolic semi-stable functor is
“complete” in the sense of Langton [3]. In other words, if we are given a family of
vector bundles on X with parabolic structure and the general fibre is semi-stable,
then the special fibre, if unstable, can be modified so as to become semi-stable, This
theorem follows very closely the proof given by Langton for proving the
properness of the functor of semi-stable sheaves in the higher dimensional case.

Section 4 gives the statement and method of proof for the existence of the
moduli space. We imbed the set of all parabolic semi-stable bundles in an open
subset of a suitable Hilbert Scheme, which has the usual properties, ie. non-
singular, irreducible and of a given dimension. We map this open set to a product
of Grassmannians and Flag varieties. It is shown that the image of a stable bundle
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is a stable point (in the sense of Mumford [5]) and that a similiar property holds
for semi-stable bundles. Hence by the methods of Geometric Invariant Theory and
the properness theorem of Sect. 3 we get the existence of a normal moduli scheme
which is projective. However as the “covariant” is not necessarily a closed
immersion, we do not know the identifications on the parabolic bundles, ie. we
still have to show that two bundles have the same image in the moduli space if and
only if they have the same associated graded.

In Sect. 4 the above problem is reduced to the existence of stable parabolic
bundles by the device of introducing parabolic structures at extra points. This
existence theorem, in turn, depends on computing the dimension of the moduli
space in question.

In order to compute the dimension, we proceed as follows: We construct the
moduli variety over a discrete valuation ring and show that the fibres are equi-
dimensional. The dimension of the general fibre is then computed by first
identifying the parabolic semi-stable bundles on X with the unitary repre-
sentations of I' and then computing, by hand, the dimension of the space of these
unitary representation. This is done in Sect. 5.

1. Representations of I' and Parabolic Structures

Let I be a discrete subgroup of PSL(2,R), acting on the upper half plane H such
that H mod I has finite measure and I acts freely on H. Let H™ denote the union
of H and the parabolic cusps of I'. Then X =H " mod[ is a compact Riemann
surface, containing Y=Hmod I If 0 :I'->GL{n,C) is a representation of I' in a
complex vector space E, the vector bundle H x E on E has the structure of a I'-
vector bundle the action given by y(z,0)=(z, o(y)v) for yerl, ze H, and ve E. The
quotient of H x E by the action of I' is a vector bundle of rankn over Y, whose
sections are in one-one correspondence with the I'-invariant sections of H x E. The
representation ¢ also defines a I'-vector bundle structure on H™ x E, which we
shall see also yields a vector bundle on X = H " modI". These I'-invariant sections
can be interpreted in terms of the geometry of the upper half plane by studying
their behaviour explicitly at the parabolic cusps. We are interested in the case
where the representation ¢ is unitary.

Let PeX — Y be a parabolic cusp. (We shall call a point of X a parabolic cusp if
it corresponds to a parabolic cusp of H*.) By supposing P to be the point at oo,
(which we can do without loss of generality) we may represent a suitable
neighbourhood of P by a set of the form U/I",,, where U={z=x+iy|y 26, da+ve
constant} and I, is generated by an element of the form z—z+o, « real, we may
take oo=1 for simplicity. We then make the following:

Definition 1.1. Let ¢:I'—=GL{E) be a unitary representation and V the I'-vector
bundle H x E on H {we shall call such a bundle a unitary I'-bundle). Then the map
F:H— H x E given by F(z)=(z, f(2)} is said to be a holomorphic I'-invariant section
in H if

a) F is holomorphic and I'-invariant in H, and

b) representing a parabolic vertex P as above. f is bounded in every region
of the form z=x+iy, x| <o, y=2>0 for all a and for all strictly positive 6. (We
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note that since f is I'-invariant, it suffices to assume the boundedness of f for some
o such that a=1, or the boundedness of f in the whole of the region
{z=x+1iy|y=6>0}; the conditions are clearly equivalent.)

To see that this definition is the right one for I'-invariance of a section in H™,
we study it closely in terms of its representation on E. Let o, be the restriction of ¢
to the isotropy group I', at . Then ¢ is determined by its value on 4= the
generator of I' | which is given by z-»z + 1. By choosing a basis for E, we can write

exp(2mio, ) 0
Joo{A) = ( ’ - ) ]
0 ‘exp(2nia,)

with 0o, <1, 1Zisn
Let f{z)=(f,(2), ..., f,{z)) be the representation of f with respect to this basis.
Since F is I'-invariant it is I, -invariant, and hence

(fl(g+1)> (exp(Znisz 0 )(fl(z))
Aeenl U0 expuin)/\ 12

flz+)=exp(2ria) f{z), 15j=n, or
fj(z) =€Xp (275i°(j2) g,('f) s

ie.

where t=exp(2niz) and g; is holomorphic in a punctured disc around P; 7 is the
local parameter at P on the compact Riemann surface X.

In terms of this representation of F, the condition b) in Definition 1.1 is
equivalent to saying that g; is bounded in a punctured disc C around P, which
implies that g; is holomorphic in C. Thus we have shown that the definition is
equivalent to saying that F corresponds to a section of the vector bundle on X
defined by the I'-vector bundle H* x E on H™.

This leads us to define the sheaf of sections of the vector bundle p{(V) on X as
follows:

On Y=HmodI the sheaf is given by pl(V), where p: H—Y is the canonical
morphism, with the usual meaning for pL(V); ie. the sections over Y of this sheaf
are the I-invariant sections of V= H x E. For any parabolic vertex PeX and a
neighbourhood U of P of the form H,/T,, where Hy={z=x+iy|y=6>0}, we
have pL(V)(U) = the “bounded” I'_-invariant sections of V on H,. From the above
considerations it follows that the I', -invariant sections z—exp(2zix;z)e; form a
basis for pl(V), as an 0, , module; here ¢; is a basis for E and hence also for the
sections of H x E, and o, the generator of I' acts on ¢; by o{e;)=exp(2rnix;)e;. In
fact these sections z—exp(2mix;z)e; generate pL(V)(U) for any suitable neigh-
bourhood U of P.

Let ET denote the I'-invariant points in E; then any point in E' defines a
T-invariant section of V in H*, namely the “constant section” defined by this
point.

Proposition 1.2. Let V be a unitary I'-vector bundle on H associated to a unitary
I'-module by 6 : I -GL(E). Then the canonical homomorphism j : E' - H%(pl(V),X)
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which associates to any I'-invariant point a I'-invariant section of V in H* ie. a
global section of pi(V), is an isomorphism.

Proof. The map j is clearly a monomorphism. To show that it is surjective, we see
easily that if F: H—~H x E given by F(z)=(z, f(z)) is [ -invariant in H*, then f is a
constant i.e. f(2) is independent of z. For, if we define g(z) by

g@)=11*= Z{fk(Z){

then g is a real-valued positive function on H and since F is I'-invariant and E is a
unitary I'-module, we see that g is invariant under I'. Hence g descends to a
function h:Y—>R". We see also that g is continuous at oo owing to its
boundedness on any region of the form {z=x+iy|x<a, y=56>0} which repre-
sents a neighbourhood of a parabolic cusp. This implies that & can be extended to
a continuous function X »IR. Being locally a sum of functions of the form |f,|?, for
fi holomorphic, h is subharmonic. Now since X is compact h reduces to a constant
which in turn implies that f itself is constant. Hence F comes from a [-invariant
point of E, namely the constant value of f{z), showing the surjectivity of j.

Definition 1.3. Let V, and V, be two I'-vector bundles associated to unitary
I'-modules E, and E,. We say that F:V, -V, is a I'-homomorphisw in H* if

a} it is a holomorphic I'-homomorphism in H, and

b) at every parabolic vertex assumed without loss of generality to be oo,
F:HxE,—HxE, represented by F(z}=(z, f(z)) where each f(z):E,—~E, is a
homomorphism of E, into E,, satisfies the condition that f is bounded in the
region H;={z=x-iy|y=d>0} for every 60 (or even some §>0).

Looking closely at this definition, we see that the family f(z):E, »E,, ze H, of
homomorphisms satisfies {since F is a I-homomorphism) the following
properties :

S yv)=y[f(2)v] for yel,veE,

or

GG =0 f(2)y™ 1), vel,veE,

or

foa=yflay™".

In terms of the actions of I' on E, and E,, we see that the action of I' on
Hom(E, E,) is given by y(g)=7(g)y ', so that the above condition is equivalent to
the condition that f:H—Hom(E,,E,) be a I'-invariant map, ie., f(yz)="7f(2).
This means that F defines a I'-invariant section of I'-vector bundle (V¥ ®V,)
=Hom(V,, V,). Then the condition b) in Definition 1.3 states that the I'-invariant
section of V¥ ®V, defined by F is in fact bounded at oo, and is hence a I'-invariant
section of V¥ ®V, on H*. By Proposition 1.1 this reduces to a constant. Hence we
deduce:

Corollary 1.4. If V, and V, are two unitary I'-vector bundles associated to unitary
I'-modules E, and E,, then the map j:Hom(E,, E;)»Hom(V,,V,) is an isomor-
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phism. Thus the functor (Unitary I'-modules)— (Unitary I'-bundles) given by
E-V =the I'-vector bundle H* x E on H™, is full and faithful.

Looking at I'-homomorphisms on H* of V, into V, in terms of the vector
bundles p!(V,) and pl(V,) defined on X, we consider their behaviour in a
neighbourhood of PeX — Y coming from a parabolic vertex, say co. Let I', be
generated by y:z—-z+1, Uy=H;modl' =a punctured disc around O,
U=U,u(0); U represents a neighbourhood of P in X. We choose bases (e, ...e,)
and (d, ...d,) of E; and E, respectively, and set

e =exp(e*™)e;, 1<j<m,
ydy) =exp(e®™P9d,, 15k<n.
We order the «; and f, in ascending order,
0o, Z0,...Z0,<1, 0=h,58,...88,<1.

If U is sufficiently small, we have natural bases 0 J—z~—>exp(2moc z)e, 1<j<mand
Y, =z—-exp(2nif,z)d,, 1Sk<n for pi(V ) and p*(V ) in U respectively.
Representlng the I'-homomorphism F:HxE,—»HxE, by F(z)=(z f(2)),
f(z): E,—E, with respect to ¢; and d, is given by

= Z fjk(:)d
k=1
the f,(z) being a m x n matrix. The I'-homomorphism condition on F requires

fo)=yf(2)y’

or

Syz)exp(2rio))e ( i Jal2) exp(2ni[fk)dk)
that is,

fjk(VZ) =exp(— 2775i[°‘j ) fjk(z)
or

exp(—2mia,) 0 exp{2nif,) 0
fjk(z+l):( )(f,k(z))( .
0 exp(—2mzia,,) 0 exp(2nif,)

It follows that f,(z) =exp(—2ni[o;— f,]12) g ;4(1), where t=exp(2riz). The fact that
S is bounded in H;={z=x+ ly|y>5 >0} implies that g, is holomorphic at t=0
and in fact, if —o,+p, <0, then g¢,(0)=0. Thus g,(r) represents the
I-homomorphism of p(V,) into pi(V,) at P.

We see thus that a I'-homomorphism on H* of V, into V, is one which defines
a homomorphism of pi(V ) into pi(Vz) whose matrix g,(7) in a neighbourhood of
a parabolic vertex PeX — Y satisfies g;,(0)=0 whenever —«;+ f, <0, where the o,
B, and g, arise from the local representation of the bundles and the homomor-
phism at P. Conversely given a homomorphism of pi(V,) into p (V2) which
satisfies the condition g,(0)=0 whenever —a«;+f, <0, at parabohc cusps as
above, we get a I'-homomorphism of V, into V on H*.
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We can interpret the condition for a I'Thomomorphism on H™ [or for a
homomorphism of p.(V,) into pL(V,)] geometrically as follows. Take first the case
of a I'-isomorphism. Since F is a [-isomorphism, the modules E, and E, must be
equivalent. It then follows that m=n and «, =8,, x,=f, ...ac,,zﬂ,,, once we have
assumed the normalization 0=, So,...<1 and 0Zf,<p,...<1. Writing

ph(V,) and W,=pl(V,) as product bundles Ux W, and UxW, in a
neighbourhood of P, F induces the linear map:

g(0): (Wy)p—(W)p at P,

which we have written as the matrix (g;,(0)) in terms of the basis chosen for W, and
W, at P. The n x n matrix (g,;,(0)) has the property that g;,(0)=0 whenever —a;+o,
0 ie. o;>a,. Thus g,(0)=0 whenever a;>a,.

Let the («;) have distinct elements:

Consider the decreasing flag in (W), defined by
Fy(W)p=(W))p
F,(W,)p= subspace spanned by 0, .,,...,0,
F {(W))p= subspace spanned by 8, . ,,...,0, etc..
We see that the condition g;,(0)=0 whenever o;>a, means that

gO)LF(W))p] CE(W,)p,

or that g(0) preserves the flag structure at P. Hence a I'-isomorphism of V, to V,
on H™ is the same as an isomorphism of W, to W, which preserves the flag
structure at each parabolic cusp. We note that the flag structure is given by the
weights a; normalised in the order

0o, =...=0, <o, 4 =...=0,<1.

Now in the general case of a I'-homomorphism, the «; and f, will differ.
Introducing the flag structures on W, and W, at P, we see that a
I'-homomorphism is equivalent to a homomorphism G of W, into W, which has
the property that at P, denoting by g, the map (W,),—(W,),, we have
gplF (W)p] CF, . (W,)p whenever a;>f,, where o are defined as

Oy =0y ... =0 =0,
Ol 41 =0 =0, =0, etC.

and similarly for the ,. We have k; =dimF (W), —dimF,(W,)p, ..., k,
=dimF (W,),. This leads us to define parabolic structures:

Definition 1.5. Let X be a compact Riemann surface with a finite set of points
1. P, and W a vector bundle on X.
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1) A parabolic structure on W is, giving at each P,

a) a flag W,=F W, DF,W,. . DF W,

b) weights  o,,...,, attached to F,W, .., FW, -such that
0a, <a,...<a,<l.

We call k;=dimF W,—dimF,W,, ... k=dimF W, the multiplicities of
Oy vnny Oy

I1) A morphism G: W, —W, of parabolic vector bundles (i.e. vector bundles
with parabolic structures) is a homomorphism of W, into W, such that for any P,
denoting G on the fibre at P by g,, we have gp[F(W,),]CF;.,(W,), whenever
o> B

Ili) A quasi-parabolic structure is just condition a) above.

We note that since the definition of a morphism of parabolic vector bundles
depends on the weights, only isomorphisms of quasi-parabolic bundles can be
defined.

We also remark that the above definitions can be given for a smooth projective
algebraic curve over an arbitrary field k. However if k is not algebraically closed,
then quasi-parabolic structures on vector bundles on X will always be assumed to
be concentrated at k-rational points of X. Weights and multiplicities for a quasi-
parabolic structures are defined as in 1b) above.

Sub and Quotient I'-Bundles
Let V, and V, be unitary I'-bundles, given by unitary I'-modules E, and E,,

Definition 1.6. A I'-homomorphism F:V, -V, identifies V, as a I'-sub bundle of
V, if F is injective in H and F(co), its value over any parabolic cusp, is also
injective.

Thus V, is a I'-sub-bundle of V, if it is a sub-bundle of V, through a
I'-homomorphism F. Representing F(o0) at a parabolic cusp on H* as a matrix
f{o0) and applying the I'_ -invariance criterion we get,

exp(2nif,) 0 exp(— 2min,) 0

Suloo)= )(f;k(oo)}< .
0 exp(2nif,) 0 exp(— 2mia,,)

Thus the (m x n) matrix f;(c0) must have rankm, and from the above equation we
deduce that f;(c0)=0 whenever a;=f,. This means that {a;} is a subset of {8,].
Let G: W, —>W, be the homomorphism of bundles on X given by F: V, -V, As F
is a I'-sub bundle homomorphism, we see that

a) G is a sub bundle homomorphism,

b) given j, and taking the greatest k, such that G[F; (W )] CF (W,)p, we
have the weight of the flag F, (W), = the weight of the flag F; (W), ie. a; =f, .

Hence we define the notion of parabolic subbundle;

Definition 1.7. A parabolic vector bundle W, on X is a parabolic sub bundle of a
parabolic vector bundle W, on X, if

a) W, is a sub bundle of W, and

b) at each parabolic vertex P, the weights of W, are a proper subset of those of
W,. Further, given 1=£j,=m, and taking the greatest k, such that
F,(W,)pCF, (W,) p, the weight o, = the weight f, .
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We have a similar description, leading to a similar definition for quotient
parabolic bundles.

Definition 1.8. A homomorphism G : W, —»W, of parabolic bundles makes W, a
quotient parabolic bundle of W, if

a) W, is a quotient bundle of W, under the homomorphism G, and

b) at every parabolic vertex P, for 1<k, <n, let j, be the largest j such that
GLF, (W )pl=F, (W,), [thatis G(F; . (W,)p)* F; (W,)p]. Then the weight o, of
F(W,), = the weight §, of F, (W,),.

We remark that if W, is a parabolic vector bundle or X and W, a sub-bundle
of W, in the usual sense, then we can define a canonical parabolic structure on W,
which makes it a patabolic sub-bundle of W,. This is possible because we get a
canonical “induced” flag in (W,), from that of (W,), and we attach the same
weights to the induced flag. We proceed similarly in the quotient situation. Thus,
given an exact sequence of vector bundles 0-W, —»W-W, -0, with W parabolic,
we get a parabolic structure on W, and W, which makes it an exact sequence of
parabolic vector bundles. (We call 0-W,->W->W,—-0 an exact sequence of
parabolic vector bundles if it is an exact sequence of vector bundles, W, is a
parabolic sub-bundle of W and W, a parabolic quotient bundle of W}

Parabolic Degree

Let L be a complex line bundle on X. Its first Chern class determines an element of
H*(X ;Z) which is canonically isomorphic to Z. The integer associated to L in this
fashion is called the degree of L. The degree of L can be computed by taking a non

zero meromorphic section s of L and taking the algebraic sum Y Ord,s of the
PeX
orders of s at point of X.

It is well known that this sum is independent of the meromorphic section s.

Now if V is a vector bundle on X of rank n, we define degV=deg( /\ V), where
/\'V is the nth exterior power of V.

Let now V be a unitary I'-line bundle on H* defined by ¢ : I'>GL(l) for a
character ¢. Let f§,, be the generator of the isotopy group I Qrat a parabolic cusp Q.
Then o(B,)=exp(2nif,y) for some 0,, 0=6, <1. Put W =p,(V).

Proposition 1.9. DegW=— 3 0, where the summation is taken over all the

parabolic cusps Q in X.

Proof. Let f be a meromorphic section of V in H ™. (Such a section exists because a
meromorphic section of W exists.) Then f is a meromorphic function such that
f(sz)=0(s) f(z) for sel. Then df/f is a 1-form which is I' invariant and hence
defines a meromorphic 1-form on X. Now for any point Qe H,

Resl,g:Orde, where Q—PeX.
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For any Qe H" — H, f =1"g(0) where 1 =exp(2niz) is the local parameter at PeX
corresponding to Q. Hence we get

d
Res, (7[) =d[1°g(0)]/g(r) =Ord,pg(r)+ 6.
At a point PeX such that P comes from Qe H, the section g of W on X is the same
as f and Ord,, f =Ord,g, whereas at a parabolic cusp P, we have

Ord, f=Ordpg +86.
Now ' Resy(df/f)=0. Hence Y 8p+ ). Ord,g=0.But } Ord,gis
PcX

PecX . QﬂP,Qpa‘ra'bolic PeX
the deg of W, which proves the proposition.

Corollary 1.10. Let V be a unitary I'-bundle, W=pl(V) whose weights at a
parabolic vertex P are «,, ...,a, with multiplicities k,, ..., k,. Then

degW+ Y (ko +...+ka)=0.

P parabolic

Proof. This is immediate from Proposition 1.9 and the definition of degW as

deg( A W).
The above corollary leads us to define the parabolic degree of a parabolic
vector bundle.

Definition 1.11. Let W be a parabolic vector bundle on X, with weights at a
parabolic vertex PeX given by «, ...,, whose multiplicities are k, ...k,. Then the
parabolic degree of W is defined by

pardegW=degW+ Y (Z kioc,.> :
P\

Thus if W comes from a unitary I'-bundle, then par degW ==0. Note that parabolic
degree is defined even if the curve X is defined over a field which is not
algebraically closed.

Proposition 1.12. Let V be a TI'-vector bundle on H* associated to a unitary
[-module E. If W is a I'-subbundle of V on H* which is locally unitary (cf.
Definition 1.13), then we have pardegpi(W)g(}. If E is an irreducible unitary
I-module, then par degpl(W)<0.

k k
Proof. By taking /\ WC /\ V, where k=rkW, we can assume that rk W= 1. Now

m " w

RWCXYVY and (X)V is again unitary. Assume that pardegp,(W)>0.

¥ f is a T-invariant meromorphic section of W, then

pardegpl(W)= Y Ord,f+ 3 0, where R is any subset of H* mapping
PeR P parabolic

bijectively onto X and 6, is defined at each parabolic vertex P by f(z)=1%#g(z), *

being the local parameter for PeX. It follows that as f™ is a I'-invariant

meromorphic section of () W, we have par degp’ (@ W) =m par degpL (W) for all
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positive m. So replacing V and W by X)V and (X)W, we may assume that

par degp’(W)>0. Hence degpL(W)>0 and consequently pL(W) has a non con-
stant section s which vanishes at least at one point of X. But then s is a global
section of pi(V) which is identified with E, and hence § is a constant, which is a
contradiction. Hence pardeg pi(W) =0

We now show that par degpl{W) <0 if E is irreducible as a I'-module. Again
we may assume that W is a I'-line bundle on X. If pardegpl(W)=0, then a
generalisation of Abel’s theorem enables us to conclude that pi(W) is obtained
from a unitary character of I'. Without loss of generality we may assume W is the
trivial I'-line bundle on H™. This implies that we have a I'-invariant section s of

/k\W which is non zero every where, which can be identified with an every where
non zero ['-invariant section s of ﬂ V. As /k\V is unitary, s is given by a
[-invariant element of /k\ E. It is easy to see that s is a decomposable element of
/k\ E because at each point P of H, s(P} is a decomposable element of < /k\ W)r as all

k
clements of ( A W) are decomposable. Hence s(P) is a decomposable element in

k k
(/\ V),, = /\ E for each P. Let s=sA ... As,, with s,€ E. Now s being I'-invariant,

the subspace F of E spanned by the s, is s stable under I'. This contradicts the
irreducibility of E as a I'-module, unless F=E. Hence par degpi(W)<0. This
proves Proposition 1.12.

As a consequence of Proposition 1.12 and following Mumford (cf. [4]), we
make the following

Definition 1.13. 1) Let V be a locally unitary I'-bundle on H* (i.e. V is a I'-vector
bundle on H* defined at each parabolic cusp P by a unitary representation of I},).
Then V is I'-stable (I-semi stable) if ¥ I'-sub bundle W of V in H* we have

par degpl(W) _par degpk(V)
rk pL(W) tkpl(V)

(resp. <).

ii) Equivalently, a parabolic vector bundle V on X is said to be parabolic stable
( parabolic semi-stable) if for every parabolic sub-bundle W of ¥ we have:
par degW par degV
rkW kV

Proposition 1.12 shows that a unitary I'-bundle V is parabolic semi-stable and is in
fact parabolic stable if the I'-module E is irreducible.

(resp. <).

Remark 1.14. If V is a parabolic vector bundle on a curve X which is defined over
an arbitrary field k, then V is defined to be stable (semi-stable) if for some
algebraically closed overfield @ of k, ¥, is stable (semi-stable) over X, where

Vo=VX Q and X,=X X Q. Note that the parabolic structure on V' extends
k k
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uniquely to a parabolic structure on V),. Note also that the definition of stability
{semi-stability) given above is independent of the field 2 (cf Proposition 3,
Sect. 2, [3]).

We shall prove in Sect. 5 that a stable parabolic vector bundle on X =H*/I'
comes from an irreducible unitary representation of I". The category of unitary
I'-vector bundles is isomorphic to the category of unitary I'-modules, and is hence
abelian. The following proposition confirms this result.

Proposition 1.15. Let S be the category of all parabolic semi-stable vector bundles
on X of parabolic degree 0. Then S is abelian. Over C, the category S of I'-semi
stable vector bundles on H" is abelian and every homomorphism f:V,—~V, inSis of
constant rank at every point of H™.

Proof. We shall only prove the first statement. Let f:V—W be a morphism in S.
Then f can be factored as

0-V,-V-oV,-0
1J (1)
0W,«W<W, 0

k
where j is of maximal rank, ie. /\ j#+0 where k=rkV,=rkW,.

Now as pardegV=0 and V is semi-stable, we have pardegV, <0 and hence
pardegV,>0. Similarly, par degW, <0. Now the weights of V,=weights of W,
and hence pardegV,=pardegW,, which forces pardegV,=pardegW, =0 and
degV,=degW,. It easily follows now that j is an isomorphism. In particular f is of
constant rank at every point of X and f has both a kernel and cokernel. It also
follows from (1) that V, =0 if V is stable and that W, =W if W is stable. In
particular f is an isomorphism if both V and W are stable and every non zero
endomorphism of a stable object in S is an automorphism.

Remark 1.16. Let the category S be as above. If VeS8, then it is easily seen that
there exists a filtration of V,

V=V,5V,_ ,>..V,2V =0,

where each V, is a parabolic sub-bundle of V and each V,/V, | being a stable
parabolic bundle on X of parabolic degree 0. Thus for VeS8, we can define

grv= 6—) V,/V,_,, where (V) is a filtration of V as above. It follows easily from the

Jordan-Holder theorem that grV is unique upto isomorphism.

Remark 1.17. Let V be a parabolic vector bundle on X with parabolic structures at
P,, ..., P,. We call the parabolic structure at one of the points, say P, special if the
flag at P, consists only of F,V, =V, . Let a be the weight of F,V}, . Let V' be the
parabolic vector bundle obtained from V by forgetting the parabolic structure at
P,. Then the functor V— V" is fully faithful and pardeg V' =pardegV—rk V-a. This
gives a method of altering the parabolic degree by introducing special parabolic
structures at extra points.
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2. Variation of Stability for Vector Bundles
with Fixed Quasi-Parabolic Structures

Let ¥~ denote the category of all parabolic vector bundles of rank r with fixed
quasi-parabolic structure at a point PeX, fixed ordinary degree d,, fixed parabolic
degree O and varying weights 0Zo, <o,...<a,<1, with fixed multiplicities
my,...,m, so that we have

2 moy+d; =0.

We denote by @ the subspace of R” formed by these a={«,, ...,2,) and call it the
weight space associated to ¥". It is clear that Q is a bounded convex subset of R".
We have

Proposition 2.1. Given weights (&), there exists a neighbourhood U of a, such that
for all Ve ¥~ one has the following :

Vis (o) stable (i.e. Vis parabolic stable with respect to the weights o, )=V is (o)
stable for all ac U.

Proof. Let Ve Then if WCV, the condition for a-stability is:

degW 2%,

k j—
KW + W <O=pardegV.

Let x(V, W,a) denote the negative of the left hand side above. Then there exist
constants C, and C, such that

degW=C =V, Wa)<0

and
deg W C,=1(V, W) 20
for any ae Q. Hence assume,
C,=degW=C,. (A)

Then y(V, W,a) varies only over a finite number of linear forms in a. Hence there
exist a constant 6 >0 and a neighbourhood U’ of &, such that for all Ve 7", V being
o, stable and WV satisfying condition (A), we get:

wWV.Wa)y=5 forall aclU'.
Now for any Ve¥” and WCV,

IV, W)=V, W) SOl ~a]"
where 8 is an absolute constant.

Hence |a——a’|<2% implies that yx(V, W,a)2d, which in turn implies that

W, Wa)z —g.

1 || denotes here the Euclidean norm in R”
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Choose an open set U C U’ with age U and such that jo —og|<0/20 whenever
é
ae U. Hence if Ve ¥, the (a,) stability of V implies that x(V, W,a) 2 3 for WCVand

W satisfying condition (A). If deg W= C, then V would not be (a,) stable. If degW
< C, then in any case V is (&) stable. The proposition follows.

Definition 2.2. Let k be a positive integer, 1 <k <r and choose integers n; , ..., n;
such that n; <m, ,...,n, <m, , where m,, ..., m, are the multiplicities of the quasi-
parabolic structure on ¥". Choose a positive integer d with d < —d,. Then consider

the set of all @eQ with Y n, o, =d and let D be the union taken over all possible
k

Tk Tik

integers d with 0<d < —d, and over all {n, ,...,n, } withn, <m, ,...,n, <m, . We
call D a distinguished subset of Q.

Proposition 2.3. Let K be a compact subset of Q—D. Then there exists § >0 such
that for any Ve ¥, WC V and ac K, we have |x(V, W,a)| 2 8. Hence for any Ve ¥, if V
is a-stable of any aeK then there exists 6>0 such that y(V,W,e)=9>0 for all
acKCQ~D.

1
Proof. We have y(V, W,a) = — W(deg W+ n,-kocik>. As aeK and KC Q- D, the
k
expression Znikocik is never an integer. Therefore the linear form represented by

k
2V, W,a)+0 on K. Now there exists C>0 such that:
idegW|z C={y(V, Wa)=1.

Now as V ranges over ¥~ and W ranges over all parabolic sub-bundles of V with
the condition that |[deg W] < C, the set of linear forms in a represented by (V, W, &)
is finite. Each such form does not vanish on K. This finishes the proof.

Proposition 2.4. Let (— D), be a connected component of Q—D. Then for any
Ve ¥, we have that the a stability of V implies the a, stability of V whenever both a
and &, both belong to (Q— D), Moreover, if Ve?" and acQ—D, then o semi-
stability of V implies the o stability of V.

Proof. We have seen that there exists an absolute constant 8 such that
Ix(V, W,a)—x(V, W,a)| <Ol —at,].
Further, there exists d >0 such that y(V, W,a) =6 >0 whenever Ve ¥ is & stable and
a belonging to any compact subset K of Q— D. Hence we deduce that if & and a;
d . . e .

belongto K and jo—a, | < 55 then Vis & stable if and only if Vis a, stable. Now if
a, and a, are two points of a connected component of Q— D, then we can join o,
and a, by a finite sequence of open subsets ¥, such that V; is open in (2 D); and

each V is relatively compact and is contained in a disc of radius 3% Hence it

follows that V is a stable if and only if V is o stable. The second part of the
proposition is obvious from the definition of the set D.

Definition 2.5. Given weights ae £, denote by Z, the set of all couples (V, W) with
WCV, Ve and gV, W,a)=0, or equivalently parabolic degree of W with respect
to a0
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Lemma 2.6. Let K be a compact subset of  such that F_ is independent of ac K.
Then

1) pardegW with respect to a=0 if and only if par degW=20 with respect to §
whenever o, pe K and for any Vev', WCV.

2) There exists an absolute constant 6>0 such that |y(V, W,&)| =6 whenever
WV, W0, for ac K, Ve ¥ and WCV.

Proof. 1)1s clear from the assumption. Now {y(V, W,a)| =1 for any ae Q whenever
|deg Wi 0. Hence there exists C >0 such that |y(V, W,a}j = | for any ae Q whenever
|[deg W| = C. The set of all linear forms y(V, W, &) with |deg W| < C is finite, denote it
by S. Hence there exists &' such that |¢(V, W,a)| 26" whenever yeS, aecK and
(V, W)e #,. Hence if 6 =inf(1, &"), we get |x(V, W, a)| 2 6 whenever (V, W)e #_ for any
ac K.

Corollary 2.7. Let K be a compact subset of Q. Then we have the following :

1) For any a in a connected component of K and for any (V, W)e Z,, the sign of
the form y(V, W,a) is the same.

2) Let K, be a connected component of K. Then for Ve ¥, V is a-stable if and
only if V'is B-stable for a,pe K,. Similarly, V is o semi-stable if and only if Vis B
semi-stable for a, e K. Further, if Vis o semi-stable, the family of sub-bundles W of
V such that pardegW=0 is independent of acK, so that if Ve¥" and V is o semi-
stable grV is independent of ac K.

The proofs are immediate.

Recall that if d is any positive integer less than —d, and n <m,,
n,<m,..,n, <m_are positive integers, where m,, ..., m, are the weights of ¥/,
then we have defined (Definition 2.2) a subset of Q as consisting of those weights o

with Zn‘ o, =d. Call this subset (distinguished subset) D. Now we have
%

e

Lemma 2.8. Let a,cQ. Let E, be the intersection of all the distinguished subsets D,
passing through a,. Then there exists a compact neighbourhood U of &, such that if
K=UnE,, then %, is independent of acK.

Proof. Since there exist only a finite number of distinguished subsets, we can find a
compact neighbourhood U such that U does not meet any distinguished subset D;
with &, not in D, It follows that for K=UnE,, ae D,<pe D, for o, pe K and any
distinguished subset D,. It follows now that if we define G, to be the family of
distinguished subsets passing through a, for any ac K, then G, is independent of a
for e K. Let now Ve¥” and WCV be such that a pardegW=0 if and only if
2V, W,ay)=0. But y(V, W, &) =0 defines a distinguished subset. Hence for any ae K,
x(V, W,a)=0 implies that & pardegW=0. Hence it follows that for ek, a,
pardeg W=0 if and only if & pardeg W=0, for a,, ae K. This proves the Lemma.

Corollary 2.9. Let acQ. Then there exists o such that

1) o is rational, i.e. has rational components.

2) For Vev', Vis a stable (semi-stable) if and only if V is o stable (semi-
stable ).
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3) If Vis a semi-stable, then its subbundles of par deg( with reference to & are
the same as those for «'. In particular g —gr V=o' —gr V.

Proof. This is a consequence of the fact that the distinguished subsets are defined
over Q. If aeQ and E_ is the intersection of all distinguished subsets passing
through a, then there exists &' in E, with o rational. This o' has the required
properties.

Remark 2.10. By Corollary 2.9, for the construction of the moduli of parabolic
vector bundles, we could have assumed that the components (x;) of & are all
rational. We now show that the components can be taken to be non-zero. Assume
we are given weights at a point PeX,

0o, <a,...<a, <1,

Choose a real positive constant f such that if o=+, 1<i<r, then O0<o)
<,... <o Let S be the category of all parabolic semi-stable bundles of fixed rank
and fixed ordinary degree and parabolic degree O with respect to a. Let ' denote
the same category, but with respect to o, Now pardegV >0 for any VeS. We
assume that ff was chosen such that the pattern of stability and semi-stability is the
same in S and §". Now take a line bundle L such that deg(V®L)<0 for any VeS.
Let S, be the category {V®L}, VeS. Again S, and §' have the same pattern.
Choose a point Q # P and introduce a special (cf. Remark 1.17) parabolic structure
at Q so that the new parabolic degree is zero, say for the new category S,. Once
again it follows that S, and S, and hence S, and S have the same pattern of
stability and semi-stability.

3. Properness of the Variety of Parabolic Semi-Stable Bundles on X

Let X be a smooth projective curve over an algebraically closed field k. Let PeX be
a fixed point. We consider the category of all parabolic semi-stable bundles on X
with fixed rank, weights O<a, <o,...<a, <1 and fixed parabolic degree. The
quasi-parabolic structure at P is given by:

Vo=F (Vp)dF,(Vy)...DF (V).

We put k,=dimF{(V,}—dimF, ((V,), 1 Sigr—1 and k,=dimF(V}).

If Wis a finite-dimensional vector space over k, we denote by F{W), or just £,
the set of all flags of type as above, i.e. the set of all flags W=W, D W,...DW, with
dimW,—dimW,,, =k, 1Sisr—1 and dimW, =k,.

By a family of parabolic vector bundles on X, parametrized by a k-scheme S, we
mean:

i} a vector bundle Von X x §, and

k
i) a section of F(V)/P x §, where #(V) is the flag variety on X x S and PeX is
the point where the parabolic structure is situated.

Let R=k[[T]] with quotient field K, We shall prove:
Theorem 3.1. Let V be a parabolic semi-stable bundle on X ;=X x K. Then there
k
exists a parabolic bundle W on X=X x R such that the generic fibre of W is
x

isomorphic to V and the special fibre of W is semi-stable on X, x k=X.
R
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Before the proof, we recall the notions of “f sub-bundles” according to
Langton [3] and “strongly contradicting semi-stability” (S.C.S.S.) according to
Harder-Narasimhan [2]. Let E be a parabolic vector bundle on X of rank n and
parabolic degree d. For any subbundle F of E, we define

pardegF
Fy=———-.
WF)=———

Similarly, we define
B(F)=(par deg F)(rk E)— (par deg E) (rk F)
=npardegF —drkF.

It is easily seen that E is semi-stable (stable) if and only if u(F) < w(E) (u(F) < (E))
for all F CE. Equivalently E is semi-stable (stable) if and only if S(F) <0 (B(F) <0)

for all FC E. Now assume E is unstable, i.e. not semi-stable. Let y, = sup u(F) and
FCE
Bo= sup B(F). Define
FCE

S={F CE|u(F)=po}
and
T={FCE|B(F)=B,}-

It is clear that if F belongs to ST, we have
i) F is semi-stable, and
ii) for every F,CE with F SF L CE, we have p{F)> u(F,), or equivalently, for

E
every QC B we have Q) < u(F).

Now we claim that S~ T consists of a single element. To show that SN T has at
most 1 element, we quote

Lemma 3.2 (cf Harder-Narasimhan [2], Lemma 13.5). Let F, and F, be
subbundles of E such that F, is semi-stable and p(F,)>u(G) for every G with

F, CGCE. Then if F, is not contained in F,, we have u(F,)> i(F ).

Now any element of S of maximal rank belongs to T and any element of T of
minimal rank belongs to S. Thus SN T consists of only 1 element, say B. It follows
that B is “S.C.S.S.” in E according to Harder-Narasimhan [2] and that B is the
“B-subbundle” of E according to Langton [3]. We list the properties of B that we
shall need:

1) B(G)<B(B) for all GCE with GgB.

2) If FCE and B(F)=B(B), then FDB.

Now let X, k, and R be as above and let £ be the generic point of X considered
as a closed subscheme of X 5. Let z be the generic point of X . If E is a rank r vector
bundle on X, then E, is a free module over Oy, . of rank r and ECE,, which is a
vector space of rank r over Oy, ..
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We have

Proposition 3.3 (cf. Langton [2], Proposition 6). Let Ep be a vector bundle on X
and M CEy . a free module over Oy . of rank =rank E, =r say. Then there exists a
unique torsion-free sheaf E on Xy such that the generic fibre of E is E, and the
special fibre of E is torsion-free on X, =X with M=E,.

Note that E and the special fibre of E are vector bundles on X, and X
respectively. Note also that if we are given a parabolic structure on E, we can
extend it uniquely to a parabolic structure on E. Locally, E is obtained as follows ;
assume X affine, then E is defined to be the sheaf associated to the module MAN,
where N is I'(X g, Ex) and M is a free module of rank r over Oy, ., and MCN,.

Now let E be a vector bundle on X . Then E, is a free module over Oxg e Let
E, be a sub-sheal of E, locally free and such that the sheaf C, given by
O—-»E - E-»C—0, is a vector bundle on X. Then if (e,, ...,e,) is a basis for E, it is
easy to see that (e,, ...,e,, me, 4, ..., me,) is a basis for E, ,, where r=rank Candn
is a parameter for R. Conversely, starting from a basis (e, ...,¢,) for E,, let E, be
the vector bundle on X determined by the free module which has for a basis
(€1, ..nep T, 4, .., me,) over Oy .. Then E, is a subsheaf of E and the co-kernel of
E,—Eis a vector bundle on X of rank r. Thus given a vector bundle E on X, there
is a canonical bijection between:

1) quotient sheaves C of E which are vector bundles on X, and

2) sub sheaves E, of E which are locally free and a basis for E, , is given by
ey, ...e, me, . 4, ..., 1e,), where (e,, ...,e,) is a basis for E,.

Now suppose that E is a parabolic semi-stable vector bundle on X of rank n.
Extend E to a parabolic vector bundle E on X by choosing any sub-module of
Eg . whlch is free over Oy .. Assume that E = restriction of E to X is unstable. Let
BCE be the -subbundle of E and look at the sequences

0-B—E-F, -0, (1)

0—E,~E—F,~0. )
Tensor (1) with ¢, and as Tor%*«(0,, F,)=F,, we get

0-F,»E,—»E—-F 0. 3)
Split (3) into

0—»F,»E,»B—~0 and 0-B—E-F, 0.

Proposition 3.4. If G,CE,, then P(G,)<P(B), with equality holding only if
G,UF,=E,.

Proof. From 0—>B—>E——»F -0 we get ﬂ(B)+ ﬁ(F J=PB(E) and as B(E)=0 and
ﬁ(8)>0 we get ﬁ(F <0 Flrst assume that G, CF,. Then as E/B~ F,,we > get that
G, corresponds to a bundle G with B CGC E and G/B ~G,. Thus B(G )< B(B).
Hence ﬂ(G )=p(G)— ﬁ(B)<O<B(B) So assume that G, ¢ F,. PutJ =G,UF, and
I ——GlnF Then I,CF,cJ,. Since T CFl, B(I )<0 by the above argument;
hence A(G,)<(G,)— A(T,). But B(G,)— BT, < AUT,)— B(F ). Now with E,/F, ~ B,
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J,OF, corresponds to a subbundle JCB with JxJ 1/F Consequently B,
—B(F 1) B(J)< B(B), with equality holding only if J=B, ie. only if J, =E,.

Now we proceed to the proof of Theorem 3.1, Let E, be a semi- stable
parabolic bundle on X , extended to a bundle E on X . If E :restriction of Eto X,
is semi-stable, we are through. If E is unstable, define E(*’ to be the kernel of the
map E—F,—0, where F, is defined by the sequence 0—B—E—~F,, B being the
B- subbundle of E. Contmue in this fashion to get a sequence of bundles E™ on X,
all of which are generically 1somorphxc If E™ is semi-stable on X for some m, we
are through. Assume that E® is unstable on X for all m and we derive a
contradiction. Denote by B™ the p-subbundle of E™ and put 8, = p(B™). We
have f,,>0 for all m and by Proposition 3.4, the {8,} form a strictly decreasing
set. Since the set {f,} is discrete, we must have f, =8, ., = =B+, from some
integer onwards. Thus B™UK™=E™, where K™=kerE™-E™ VD So
rank B™ + rank K™ > r=rankE. But rank K™ =r—rankB™ D, so rankB™
>rank B™~ Y for all m>0. Now as rank B <r for all m, we get that rank B™
stabilizes. Thus rank B™ +rank K =r for all m> 0. Hence B™ K™ =0 for all
m> 0, which means that the canonical map E™—E™~ maps B™ into B™~V
injectively. Further, as f(B™) and rank B"™ are constant, we get that degree B™ 1s
constant for all m»0. In particular the canonical map B™—-B™ ! is an
isomorphism for all m> 0. Without loss of generality, we may assume that the
isomorphism holds for all m.

The proof of the next lemma is taken from Langton (cf. [ 3], Sect. 5, Lemma 2).
We include the proof here for the sake of completeness. Note that although the
discussion in [3] applies only to ordinary vector bundles, the extension to
parabolic vector bundles is immediate.

Lemma 3.5. Suppose we are given an infinite sequence of inclusions of bundles on
X .
R

EM* UL E™ L EO),

where each E™ has degree 0 and the maps induce isomorphisms generically. Assume
that if E' is free with basis (e, ..., e,) over the ring Oy _ ,, then E™ is free with basis
(e, ..y, e, 4y, .. Te,) OVEY (GX . Denoting by F™ the image of E™* 1 in E™,
assume further that the induced maps F™ — F™~1 gre isomorphisms for all m. Then
BF©) <0.

Note that all the assumption hold in our previous considerations.
Proof. For any integer m, denote by X,, the infinitesimal neighbourhood of X of

order (m—1) in X, ie X, = % If G is any sheaf on X,, denote by G,

reduction moda™ Denote by (¢, ...,¢,) a basis for F(éo) and extend it to a basis
(€15 .8 8,4 4, .. &,) for E,. This lifts {0 a basis (€1, ....e,) for E). Hence E{™ is a
free module onfe,,...,e, ", 4, .., "e,). Reduce the mcluswn EMCE@ 10X, to
get a map EW—ED. Let F,, denote the image of this map. In particular F, =F FO),
Now for any 20, E? is a torsion free sheaf on X, ie. for all U open in X,,
EQ(UYCEY .. This is obvious as both E® and E® are torsion free on X and X

respectlvely Moreover, F,,CE,, is a subbundle, ie. F nU)=E (UNF, ; for any
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UCX open. Now define sheaves @, by
EM-E —Q, —0.

1t is easy to see that the inclusion E™— E also has Q,, as its cokernel. Hence we get
an exact sequence

0—-E™->E-Q, 0. 1

Tensor (1) by ﬁfg;n to get
0-0,~Ey>E,~Q,-0, 2
which breaks up into
0-Q,—~E"-F_ -0 and 0-F,—E,—Q,—0.

Let j, . be the closed immersion X, X, for m'<m. Pull the homomorphism
EM—F_—E, to X, toget

ER = mF )= Epy - &)
The sequence (3) can be factored as follows:

EM——E™——E

N/
JmlF)

So there exists a map:

7k w(F ) Image(EQ—E, yCImage(ES—E,,).
Putting m'=1 and j}, | =j, we get

JHF,)~Image(E™—E)CF.

Hence we have Image(E™—E)=F and so j¥F,)—F-—0. Further, in
E,—E—Q,—0, compose E®—F,—0 with F, CE,, to get the canonical map
E™E . Reducing to X we get

E

] @

E——E™——j*F,)—0
Denote by K™ the kernel of E™— E™~ Y, As F™~ D F"=2) js injective, K™ is
also the kernel of E™— E. Going back to the inclusion E™CE™ Y CE™™2 | we

have
0—EMEm- D, [M_0 say, ©)

where L™ is a line bundle over X. This results from the basis of E® and E™ D as
modules over @y .. Reduce (5) to X to get

0= LM S Fm _Fm—1)_,1m_,q
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Hence we get a backward map E™~Y— E®™ whose kernel is precisely the image of
E™ 5 Em=1 or Fm=1 But, recalling that K™~ is the kernel of E™~V—E™~2
and that Fm~ Y Fm=2) js injective, we get F™" VK™ V=0 or that the map
K™=D_, K™ is injective for all m. By degree and rank considerations, we get
K™ K™*1 is an isomorphism for all m. Hence, in the diagram (4), we get that
the kernel of E™ to E, which is K™ by the above argument is also the image of
E—E™. Thus the map j%(F,)—F, which was surjective, is also injective for all m.
Consider j}  (F,)—F,., for any m'<m. Let W be the cokernel, we get
im A F )= F,,—»W—0. Reduce to X to get ju(F,)—jr(F, )= (W)—0. But the
first arrow being an isomorphism, we get that j*(W)=0 and hence W=0. We
want to show now that j% (F,)-F,. is injective. We have j%(F,)CE for all m,
hence for xeX,, (F,).nmE,).Cn(F,),. We will show that
(F,)"™(E,), Cn™(F,), for all m'<m, which will prove that j¥ .(F,)-F, is
injective. Assume by induction that (F,),n=z"(E,), Ca"(F,), for all n with n<m'.
Let ae(F,) ™ (E,),. Then aen™ ~!(F,), and consequently a=n""'b=n"c,

where be(F,), and ce(E,),. It follows that 7™~ }(b—nc)=0 in (E,),= nmlfg) ,

X

hence b—ncen™ ™ *Y(E), or b—nc=n""""1g, where ge(E,),. Thus
b=n(c+n" " g)e(F,) . "(E,), Cn(F,),.

So b=mnh, with he(F,), and a=n""'b=n""*(nh)=n"h with he(F,),. Hence
aen™(F,),.

Thus we have a sequence of bundles F, on X,, withj,  (F, )~ F,. for any m,m’
with m’ $m. By [E.G.A,, 111, 5.1.5 and 5.1.3] there exists a locally free subsheaf F of
E with F =lim F, , where lim F,, is the completion of F along X and j*(F)= F, where
jis X -X . Now F is a subsheaf of E, and hence inherits a parabolic structure,
which extends uniquely to a parabolic structure on F. Now as E is semi-stable, we
must have par deg F <0, which implies that par degj*(F)=F <0, or that f(F)<0,
which completes the proof of Lemma 3.5. But j*(F)=F has positive parabolic
degree, which is a contradiction. Hence E, extends to a semi-stable parabolic
vector bundle E on X, thus completing the proof of Theorem 3.1.

X

4. Existence of the Moduli Space

Let X, as usual, be a smooth projective curve of genus g =2 over an algebraically
closed field k. Consider the set of all parabolic semi-stable bundles of rank k, fixed
quasi-parabolic structure at a given point P, fixed weights 0<a; <a,... <o, <1
with all («,) rational, fixed degree d and parabolic degree 0. Denote this set by

S(k,a,d,0) or just 5. Recall that if VeS, then gr(V) is defined to by €D Vy/V,_,,

where V=V,>V,_,...DV,=0is a filtration (cf. Remark 1.15). Define V' and V" to
be equivalent if grV=grV".

We shall prove the following theorem:
Theorem 4.1. 1) On the set of equivalence classes of S, there exists a natural

structure of a normal projective variety of dimension kHg— 1)+ 1+dim&F, where F
is the flag variety of type determined by the quasi-parabolic structure at PeX.
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2) Let X=H*/I" as in Sect.1 with QeH" the parabolic vertex of H*
corresponding to the point PeX. Let I}, be the stabilizer. Then the above variety is
isomorphic to the equivalence classes of unitary representations of I' with the image
of the generator of I, being conjugate to the diagonal matrix (exp2mia,,
explnia,, ...,exp2mnia,), each o, being repeated k; times, where (k) are the multipli-
cities of (a;).

Further, in 2) the parabolic stable bundles correspond precisely to the irreducible
unitary representations of I'.

Proof. As the statement of the theorem refers to parabolic structures at only one
point of X, at the end of the proof we shall indicate the changes that have to be
made in order to handle the case of parabolic structures at more than one point.

We first note that the set S is bounded, i.e. there exists m, such that for all
mzm,, we have H'(V(m))=0 and H°(V(m)) generates V(m) for all VeS. This
follows from observing that the degrees of all indecomposable components of Ve §
are bounded both above and below and then by applying a lemma of Atiyah [1].
Furthermore, by the same reasoning, it follows that for any real number 6, the set
of all subbundles W of elements of S with degree W=9 is also bounded.

Choose an integer m such that:

Iy mzg+1

2) HY(W(m))=0 and H°(W(m)) generates W(m) whenever WeS(k,a,d,0) or
WCV, VeStk,a,d,0) and degW=(—g—8)k.

) 2n6 ) . .
Choose an integer N with N> —;L, where 6 is a positive constant with
1
degW(m)<6 for any WCV, VeS(k,a,d,0) and »n is the common dimension of
N
H%V(m)), VeS(k,a,d,0). Also choose = pry Let E be a vector space over k of

dimension n, also denote by E the trivial bundle over X of rank n. Denote by
Q(E/™), or just Q, the Hilbert Scheme of coherent sheaves over X which are
quotients of E and whose Hilbert Polypomial is that of V{m), Ve S§. Denote by R
the open subset of Q consisting of those points ge @ such that if E—»# —0 is the
corresponding quotlent then H'(#)=0, HY(¥)~E and Z_ is locally free. It is
known (cf. [107]) that R is a non- smgular variety of dimension kz(g D+1+n*—1.
If the sheaf G on X x Q is the universal quotient, denote its restriction to X x R by
", which is a vector bundle on X x R. Denote by #(¥") the flag variety over X x R
and use the same letter to denote the restriction of #(¥7) to (P) x R. Call the total
space of this flag bundle R, with projection m: R—R.

We see that R has the local universal property for parabolic bundles, ie. if # is
a parabolic vector bundle on X x T with H'(#)=0 and H%(#,) generating ¥, for
all te T, the Hilbert Polynomial of #,= P for all re T, then for every t,€ T there is a
neighbourhood U of ¢, and a map f U-R such that #  is the pull-back via f of
the universal bundle on X x R. Further f i is unique upto an action of SL[H )]

Denote by R”(Rs) the set of points ge R such that the corresponding parabolic
bundle on X is semi-stable (stable). We shall prove that R and R°® are open subsets
of R.

Denote by G the group SL(E). Then G acts on @ and it is easy to see that Ris a
G-invariant subset of Q. G also acts on R.
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If PeX is the point where every Ve S{k,a,d,0) has a flag
Vo=F VoD F,(Vp)...DF (Vp),

define t;=dimF,V,—~dimF;V}, 2<i<rand t, =k. Let H, ,(E), or just H, , denote
the Grassmannian of kdim quotients of E and denote by Z the product space

¥
N
Hn,k x l_[ Hn,l, .
13

=1
In order to define a linear action of G on Z, we have to define a polarizationof Z. In
general if a variety X is a product []X,; with each PicX,;=Z, then by choosing an

H
ample generator for PicX,;, we can write an ample line bundle on X by (a,), where
each a, is a positive integer. Hence we can define a polarization on X by (g;), where
each g, is a positive rational number. We give Z the polarization:

“’Jaﬁ,’e;“} x {e(l—a, ), elo, —~ay), ..nelo,—a, )}

We require a characterisation of stable and semi-stable points of Z for this
polarization, In fact, more generally if

N
w= ][] H, . (E)
k=1

and W carries the polarization (d,,...,dy), then we sce easily from the com-
putations of (§4, Chap. 4, [5]), that a point w of W represented by

¢ E-V.,, 1£iEN, dimV,=k

is stable (resp. semi-stable) if and only if for any proper linear subspace M of E, we
have

N N
(*) dimE{ > 5,.-dimgoi(M)} >dimM{ Y 5iki}(resp. >).
=1 i=1

We define a map T:R—Z as follows:
If geR, then by writing E—%,-0, we get Ep—(#)p,—~0, 1 =i< N, where the
P, are N arbitrarily chosen points on X, different from P. This gives the

“co-ordinates” of T(g) in H, (E) and for the co-ordinate in [] H, , (E) we take

i=1

the quotients

F1(VP) Fl(VP)

ey E— .
Fao(Ve) F(Vp)
It is easy to see that Tis a G-map from R to Z. With this map 7, we have

E—-Vy,=F,(V,), E-—

Proposition 4.2. 1) qe R®=T(q)e Z*.
2) qeR*=T(q)e Z".
3) qeR,q¢R*=>T(q)¢ Z*.
4) geR™,q¢R*=T(q)¢ 2"
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Note that 3) and 4) will prove that R* and R* are open subsets of R. Here Z*°
and Z° are the semi-stable and stable points of Z for the action of G on Z and the
polarization defined above.

Proof. For every subspace M of E, denote by M, the images of M in V(m),, 1 <i

) . F,(V,)  F(V,

<N and by N, the images of M in F (V},), =12 L P
® N XTARR A

If dim M = p, we have to prove that [because of () preceding Proposition 4.2]

N v
n( dimM;+&(1—o,)dimN, +¢ ) (oai—ai_l)dimNi>
i=1 i=2

I

I gp(Nk+s

(I—o)k+ Y tio;—o;_ )
i=2

and > holds if V is stable.

Now for any V, wtV=wtV, is defined by
wtVp=o,(dimF,V,~dimF,V,)+a,(dim F,V, —dim F, 1)
+oa,dimF V.
Hence
dimV,—wtV,=(1 —a,)(dimF, —dimF,)+(1 —a,)(dimF, —dim F,)
+(1—a,)dimF,
=(1—o)(dimF, ~dimF,)+(1—a,)[(dimF, — dim F,)
—(dimF, —dimF,}]
+(1—o,_ )[dimF,—dimF,)—(dimF, —dimF,_ )]
+(1—o,)(dimF,)
=(1—a)dimF, + (o, —a ) (dimF, )+ ...+ (a0, J{dimF . )

after re-arranging the terms.
Hence, we have

ef(l—a)dimF, + Y (,—o,_ )| =¢[dimV,—wtV,].
i=2

Similarly,

(1—a)dimN + ¥ (o, —a;_,)dimN,=dimN, —wtN,.

i=2
Thus condition (I} of semi-stability (stability) becomes
N
n| Y dimM;+e(dimN, —wtN,)| 2 p[Nk+ ek — wt V)]
i=1

(> for stability).
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Now for any subspace M of E, denote by W(m) the vector bundle generated
generically by M. We have W(m)C V(m) for all V&S and M C H°W(m). For any
M CE, define

N
Gy =n _Zl dimM;+edimN, —wtN,)

—p[Nk+elk—wtV)], where dimM=p.
Define
L =PIN sk W etk W—wt W)
—dimHW(m) [Nk + stk V—wtV)].
We have to show ¢,,20(>0) for V semi-stable (stable).
Case 1. Assume that M =H°W{m), M generates W(m) and H' W(m)=0

Then we have o), = ).

Further,
X h°V(m) wtWl  hOW(m) wtV
PPN v e—e - Nte—gorl |,
kW Tk N T T aw | T

As pardeg V=0, we have degV+wtV=0, and as pardegW <0, we have wtW=
—degW.
Consequently,

I (fzo Vim)y h° W(m)) N (ho Vim) wtW K Wim) th)
%

krkW —\ tkV kW kV kW kW 1k
degV  degW WoV(m) degW KOW(m) degV
>|—= - —
:(rkV rkW)(N+8)+8( k¥ ww |\ Tkw v )

Now the R.H.S. above

degV degW W (deg V)
= - 1
=(N+e )(rkV rkW)+( m+l= g)< aow ) A=\ Ry

_ degV  degW B degW deg}/)

=N+ )<rkV rkW)+8(m+1 )( kW kv
Hence,

Has degV_degW) N—elm—

k-rkW(rkV o | W —elm=4D)-
But

N M
= >0. 2
& et hence krkW*O 2

Further, from the above calculation, it follows that V' is stable, the inequality in (2)
is strict. If V is semi-stable but not stable, then by taking M = H®(W(m)), where
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WV and par deg W=0, we get that n =0. And if V is unstalbe and WV with
pardeg W=>0, we get xM<O where again M = H°(W(m)).

Thus the proposition is proved in case (1) and the assertions about R* and R*
being open subsets of R are established.

We continue with the proof in the other cases.

Iu
k-rkWwW

Proof. We have
1 wtW 1
kw (N+m—g—(rka—gﬂ
deg W(m) 1 wtV 1
{1+ —=——| N{1l4+ — —— .
( rtk W +m—grkVn1—g)]

[For this inequality, we use R—R and the fact that dim HOW(m)<deg W(m)
+rk W]
Now the R.H.S. in the first sentence above

1 (1—wiW\|[degV d
:N[1+ ( d )Heg m—g+1— egW—m—l}

Lemma 4.3.

23N if degW=(—g—8)k.

2
X

=

Pl ]

k-

]

-+

m—g\ rkV rkV rkW

+ N degV g+ 1 wtV th
rkV kV kW

1 wtV\||degV  degW

=N|1 1—: - -
[ +m—g< rkV)HrkV rk W }

4 N (m— )+1+degV wtV  wtW
m—g 9 tkV [{tkV kW

wtV th

STkv T rkW -
than or equal to 4N. Likewise, the first summand is greater than or equal to

N(degV B degW_g>.

—2, the second summand in the above expression is greater

rkV rk W
Hence,
v degV degW
krkW=N(rkV w974
As we have assumed that degW=(—g— 8)k, we have
degWSdegV_g_T
tkW =~ rkV

Hence we get the assertion of Lemma 4.3.
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We now assume that degW=(—g—8)k. Now 0, =y + (04— 1) and

Oy~ Am="

N
Y dimM,+ &tk N, —thl)} —dimM[Nk+ ek —wtV)]

i=1
—n[Ntk W+etk W—wt W)+ dimM'[ Nk + ek —wt V)],
where we have put M’ = HOW(m).
Hence

N
Y dimM,— Ntk W} +n[e(tk N, —wtN,)

i=1

O-M_XM:n[

— etk W—wtW)]+(dimM' —dim M) [Nk + (k—wtV)].

So we get
N
Oy~ A Zh ZdlmM NrkW]—n[s(rkW wtW)].
Hence
Om XM _h _WtW
krkW“krkW[ZdlmM N kW k[ (1 kWﬂ

Now, we have
N
0< (Nrk w— Y dimMi) <rkW
i=1

[number of points on X where M does not generate W(m)], which in turn is less
than or equal to rk W-deg W(m).
Hence

We get M fu 5 1 —2N.
e ge kW = kdegW(m) 2N

Now by Lemma 4.3, we have p )rCM

So,

k-tk W zN kdeg m)
5 kN —ndeg Wim)
- k

ndeg W(m)
>N-— N
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Now degW(m)<6 and N =nf, so —"— >0, which means that g,,>0.

k- k
So to finish the proof of Proposition 4.2, we have to treat the case where
deg W>(—g—8)k. But by our choice of m, we have H'(W(m))=0 and H%(W(m))
generates W(m). So if M = H°(W(m)), then a,, = x,, and we are through by Case 1.
So, finally, assume that M C H ‘Wimy=M'.
Now 04, =(0y— ta) + dnr and X = xne >0 by Case L. So it suffices to prove
that o, — x,, >0.

We have
N
Opr— A =" .; (dimM,—tk W)+ e(tk N, — wtN ) — e(tk W—wt W)
— (dimM — dim M) (Nk+e[k— wt V]).
So
O =AM _ (i M — di k=wtV\  n S v
N =(dimM d1mM)<k+ N + N :Z (rkM,—rtk W)

+ - kN, —WtN,)— —— (tk W—wt W).
m—g m—g

Sub-case 1. Assume that N, =W,. In this situation, we have rkN, =tk W and

wWIN =wtW.
Then
MM _ (dim M’ — dim M) (k+ Eﬂ)
N m—g

n N .
+ 5 L (kM 1k W),

i=1
The absolute value of the second summand in the R.H.S. above is
< ndegW(m)rk W
= N .
Hence

n X ndeg W(m)rk W
— PR MAYLALSA
N'rkv,.gl(rkM' rkW)l =T NtkV

and

k—wtV

(dirnM’—dimM)(k+ >>k=rkV.

Hence

Oy — X  N—nb
k-tkV = n

Sub-case 2. N, cWp

>0.




Moduli of Vector Bundles 233

Then

wz(dimM'—dimM)(k+k_WtV)+ kN, —wtW)
N m—g m—g

n n N
+ m—:E(Wt W—wtN )+ N.-; (rk M~k W).

Now 0<(tk W—1kN,)<{dimM’' ~—dim M), which follows from

H°W(m), —» W(m), - 0
u U
M - N, -0

Hence

Ou " Xu g(dime—dimM)(1+

k—wtV 1
N-kVv

m—g k
o 1
—{dimM' —~ d1mM)< 7 g)
n th—th1>_EQ

tkV N’

m—g
Now,

n_ h'Vim) degV
kv rkV — tkV

14degV 1—wtV
__f_,e_gL, 1+—W_

+(m+1-—g)),

1+

n 1 rkV k
hence —- = =
k m—g m—g m—g
So, 1—wtV
T e

tV )
As wtV<k, we have 1— —Wk— =0 and (WtW—wtN,)Zu,. So gy, — 20, — %

2n6 9
But N> oci’ which implies that —23 . So we get that o, — yxp % — oz2_1 = %1- >0,
i

which proves Proposition 4.2.

Remark 4.3. We should like to point out the changes in the above proof if a
parabolic structure is given at another point QeX. Similar considerations hold if
parabolic structures are given at several points. So let the parabolic structure at Q
be defined by

Vo=F VoD F,V,..0F¥,,

and the weights are given by 0<f; <f,...<f;<1.
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In this case R is a fiber-space over R of fiber-type # x &, where & is the flag
variety of type given by the quasi-parabolic structure at Q. The range variety for
the map T is

Hn,k(E)ZNX H Hn,tl x l_[ H 1
= j=1
where [, =k and [;=dimF,V,— F V,, 25j<s.

The constants are chosen as follows:

M has the properties 1) m=g+1 and 2) H' W(m)=0 and H(W(m)) generates
W(m) whenever W(m)e S(k, a, B, d, 0) or WCV, VeS(k, o, B, d, 0) and degWz=(—y¢
and ¢= L

ay+py m—g
Here S(k, a, B, d, 0) denotes the set of parabolic semi-stable bundles of rankk,
ordinary degree d, parabolid degree 0 and weights («;) and (8;) at P and Q
respectively.

We now continue with the proof of Theorem 4.1. From Proposition 4.2 we
know now that T maps R* into Z*. By standard methods in geometric invariant
theory, we also know that a good quotient Z%/G exists. Let M be the image of R*
in Z%/G. By the completeness theorem (cf. Theorem 3.1), M is a closed sub variety
of Z*/G. Let M be its normalization. Then, we contend that M is the variety we are
looking for. We have only to prove that two points V and V" of R* are equivalent if
and only if they have the same image in M. For this it suffices to prove

—14)k, 8 is the same as before and N is chosen so that N =

Proposition 4.4. If C, and C, are two closed disjoint G invariant subsets of R*S, their
images in M are disjoint.

Before the proof we need an auxiliary construction. Choose a point QeX,
distinct from P and consider the set S=S(k, &, d, 0) defined before. On each VeS,
define a parabolic structure by choosing a full flag at V), i.e. a flag of the form ¥,
=F V4D F,V,...0FV, Choose weights 0< 8, <f,... <, <1 so small such that
the foliowing properties are satisfied:

1) If VeSS is semi-stable for the (a, §) structure, then it is stable.

2) If V is (o, f) semi-stable then V is (x) semi-stable.

3) Vis («) stable implies that V is (a, f§) stable for any choice of full flag at Q.

We construct the Hilbert scheme Q, for the new category of parabolic vector
bundles on X with parabolic structures at P and Q and denote by Rs the open
subset of all stable parabolic bundles. We map Rs into the correspondlng product
of Grassmannians and Flag varieties and compose it with the canonical map onto
the quotlent variety. Let the image of Rs in the quotient variety be denoted by W.
Now W is a set-theoretic orbit space for RS, ie. two bundles V, and V, in Rf, are
G-equivalent if and only if they have the same image in W. By the results of [11,
Proposition 6.1], a geometric quotient of RS mod G exists, say M Although the
“forgetful” map Rs — R is not globally deﬁned by the local unlversahty of R*, for
all te Rs there is a neighbourhood U of t and a map f:U—R*, which is unique
upto G- translatlon

Now we can prove Proposition 4.4. Assume that C, and C, are two disjoint,
closed, G-invariant subsets of R*® whose images in M intersect, say
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xefC)Nn#C,), where n: R“—»M Now the “inverse” images of C, and C, under
the family of local maps R;—»R“ are still closed, disjoint G«mvarlant subsets of Ry,
say D, and D,. Look at ny(D,) and ry(D,), where m;: R -»M Now ny(D,) and
nl,(Dz) are closed disjoint subsets of My By G- tr1v1allty, the local maps patch
together to give a global map p:M,—M. Now p is a projective morphism of
normal varieties. Assume the existence of a stable bundle in M. Then the generic
fibre of p is a Flag-variety and hence connected. Thus the special fibre of p is also
connected. But as xe i(C,)n#(C,), we have ﬁ“(x)Cn,}(Dl)unﬁ(Dz) and p~Hx)
intersects both ny(D,) and n,(D,), contradicting the connectedness of p~ (x), Thus
the images of C, and C, in M are disjoint, completing the proof of Proposition 4.4.

~ localmaps

D,.D,CR, 5 R¥OC,.C,
g i>M
Mﬁ ; M

The existence of a stable bundle in M is proved in Sect. 5.

Remark 4.5. One could ask whether as in [15] the morphism T:R%—Z* could be
proved to be proper and hence a closed immersion (for a suitable choice of m, N
etc.). If this were the case, the proof of Theorem 4.1 would have been a more direct
application of Geometric Invariant Theory and would not require Sect. 3 and
considerations of Sect. 5. One could extend T to a multivalued mapping T" Q—»Z
where 0 is a complete variety containing R and what is required for properness is
to show that if ge 0 and T{(g)e Z*, then ge R*. Unfortunately, we are not able to
prove this.

Remark 4.6. We now show that the variety M is a coarse moduli scheme in the sense
of [5, Sect. 1]. Evidently, we only have to show that Mi is the categorical quotient of
R* in the sense of [11, Definition 1.4]. So let Ve RN be any G- invariant
morphism with I as its graph. Since f is constant on the fibres of n: RS>M, |
induces a set theoretic map f: M— N with graph T". Consider zx id: R»x N-M/N.

This is a surjective map which is also closed as R*x NmodG is complete in the
sense of [11, Definition 4.1]. Thus = x id maps I' onto I" and hence I' is a closed
subset of M x N. Endow I' with the reduced structure. Then I’ is birationally
isomorphic to M as the map f induces a morphism on the stable points of M. The
normality of M ensures that the canonical projection of I' onto M is an
isomorphism and hence f: M—N is a morphism.

5. Existence of Stable Parabolic Bundles and Computation of the Dimension
of the Moduli Space

We keep the notations of Sect. 4 for the curve X, the point PeX, the category of
parabolic vector bundles on X with parabolic structure at P, and M the moduli
variety constructed in Sect. 4. In order to prove the existence of a stable parabolic
bundle in M, we construct the moduli variety over a discrete valuation 4, compare
the dimensions of the special and general fibres and then use representation
methods in characteristic zero to complete the argument.
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First, let the curve X be defined over an algebraically closed field k of
characteristic p>0. Let A be a complete discrete valuation ring of characteristic
zero with residue field k and field of fractions K. Now X lifts to a scheme X , which
is smooth and projective over spec A. The point PeX can be regarded as a section
o :Spec(k)—X, which also extends to a section ¢ ,:Spec(4)—X ,.

Consider the category S ,(k, a,d,0) of all parabolic semi-stable vector bundles
on X , of rankk, weights «, degree d and parabolic degree 0. We have the same
vanishing theorems as in the geometric case and so we can define the quotient
scheme Q ,(E|P), and also the open subset R ,. Similarly we also define R 4 Which is
a fibre bundle over R, with fibre &, and the open subset R” of R, correspondmg
to the semi-stable bundles on X ,. We have the map T,:R%5—Z,, where Z , is the
product of Grassmannians and Flag varieties over Spec(A) Let M, be the image
of Rss in Z ,/G. By the extension theorem of Sect. 3, any semi- stable bundle on the
general fibre extends to a semi-stable bundle on the special fibre. So the canonical
map R“ to Spec(A4) is surjective which implies that the map from M , to Spec(A) is
surjective. As M , is an integral sub-scheme of RSS/G M ,is hence ﬂat over Spec{A),
with equl-dlmensmnal fibres. So we have that dimM, —dlmM

Let us assume now that dimM is “correct”, ie. dimM k=kg-1+1
+dim#. Then it follows easily that there must exist a stable bundle in M. If not,
then every point of M, would have a non-trivial filtration by stable bundles, which
would mean that M, is a finite union of the images of varieities of strictly smaller
dimension, a contradiction. So we have only to prove that dimM, =k*g—1)+1
+dim#. To that end we may assume that X =H"/I" as in Sect. 1 with PeX
corresponding to the parabolic cusp of I in H™, which may be assumed to be oo,
Let I, be the stabilizer of co and ¢:I'—>U(k) a unitary representation of I, with
Be U(k) the image of the generator of I', . Define ¢ = Rank(Id-B). Then we have the
following (cf. [9])

dimg Hp, (I, 0)=2kig— 1)+ 2dimg[H(I',0)] +e.

Let U(k) be the Lie algebra of U(k), the space of all kx k skew-hermitian
matrices. Let AdB be the map Uk)—-U(k) given by

M->BMB™ !, MeU(®K).
Assume that
exp(2miot ) 0
B=A . ATt
0 exp(2mict,)

where Ae U(k) and let k,, ..., k, be the multiplicities of a,, ...,a,. Then we have

Rank(Id-AdB)=k* - z k}=27% kk;.
iFj
Let U(k) act on itself by inner conjugation. The isotropy group at B has real

dimension Y kZ. Hence the dimension of the orbit through B has real dimension

i=1

— Y k7. So we get that Rank(Id-Ad B)=dimension of the space of all matrices
i=1
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conjugate to B. It is easy to check that the above number is equal to twice the
complex dimension of the flag-variety %, which consists of all flags
(V=V¥,0V,...0V) in a k-dimensional complex vector space V with dimV]
—dimV,_ =k, 1Sisr—1 and dimV =k,

Now let R be the set of all representations t:I"— U(k) such that if C is the
generator of I, then ©(C) is conjugate to B. We know that a presentation of I is
given by:

2g+1 generators (X, Y;, X, Y,,....X, Y, Z) with one relation:
g

XXX HZ=1d.
=1

Denoting by W the conjugacy class of B, we define a map
x:Uk)*? x W—U(k)
by:

g
M,N.. .M, N, P I:[l (M,N.M;'N;Y)P,

where M, and N;e U(k) and Pe W
Then R is precisely ¥~ }(Id) and thus acquires the structure of a real analytic
space. We want the smooth locus of R and we first quote.

Lemma 5.1 (cf. [12]). If teR, then the kernel of the differential map dy at © can be
identified with Z}_(I', Ad, 7).

Par

Thus we find
dimZ}, (I',Ad 1)
=dimH,, (I', Ad 1)+ dim

Par

of space of coboundaries
=dimH}, (I',ad 1)+ dim[Uk) — dim H(I', Ad 1)].
In particular,

dimZL (I, Adt)=2k*(g— 1)+ k* +dim H(I", Ad7) + dim W.

Par
Now H(I', Adt)=I-invariants of U(k). But dim H%(I", Ad 1) is always bigger than
or equal to one as the scalar matrices of U(k) always belong to U(k)". Hence by
semi-continuity and implicit function theorems, it follows that the set of all zeR
with HO(I', Ad7)=1 is open and smooth. Now H(I', Adt)=1if and only if 7 is an
irreducible representation. So we get:

Theorem 5.2. The set of all irreducible unitary representation of I' of rank k and fixed
conjugacy class of the image of T, is a complex manifold of dimension 2k*(g—1)
+(k2—1)+2+dimZ.

Now U(k) acts on R and the irreducible subset R, of R is U(k) stable. The
scalars in U(k) operate trivially and hence PU(k) acts on R,. This action is free and
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hence R,/PU(k) is a complex manifold of dimension 2k*g—1)+(k*—1)+2
+dim.% —dimPU(k). Consequently, we have

Theorem 5.3. The equivalence classes of irreducible unitary representations of I' with
fixed conjugacy class of the image of I, is a complex manifold of dimension k*(g— 1)
+1+dim&.

So to complete the proof of Proposition 4.4, we have only to show that a
parabolic bundle is semi-stable (stable) of degree zero if and only if it is a unitary
(irreducible unitary) I-bundle. Note that the “if” part has been proved in
Proposition 1,12, Let T™, T¥ and P be the set of irreducible unitary, unitary and all
representations of I' respectively with fixed conjugacy class of I',. Recall the
varieties R, R, R® and R® constructed in Sect. 4. Now the analytic space P
parametrizes a_family of parabolic vector bundles on X and so by the local
universality of R we get a family of local maps P—R with T mapping into R* and
T* mapping into R®. Let M* and M® be the (invariant-theoretic) quotients of R
and R® by G. We get well defined maps

"o PUN)

e

"PUGK)
Ty 15 an injective map between complex manifolds of the same dimension and this
T, is an open map. On the other hand, Image of 7, =(Image of 7)mM* and hence
Image of = is also closed. So n, maps onto M* and consequently z also maps onto
M?*. Now for the group I', with generators and relations as given before, it is easily
seen that the space T™ is non-empty. Thus M*® is non-empty, which proves the
existence of stable parabolic bundles on X in characteristic zero and hence in any

characteristic. This completes the proof of Proposition 4.4 and also the proof of
Theorem 4.1.

— M

8

Remark 54. Let V be a vector bundle on X, a smooth projective curve, of rank two
and degree zero. Suppose we are given a parabolic (or just a quasi-parabolic)
structure at a point PeX defined by a 1-dimensional subspace F,V, of V.. Let T be
the torsion 0y-module defined by

To=VolFoVp,Ty=0 if Q~P.

We have a homomorphism of V onto T {(or Oy-modules); let W be the kernel of
this map. Then the subsheaf W of V is locally free of rank2 and degree —1.
Conversely such a subsheaf W of V determines a quasi-parabolic structure on V at
P.If V and W vary say over schemes M and N respectively, then pairs (W, V) as
above determine a correspondence between M and N. This is essentially the
definition of a Hecke correspondence in the sense of [6c].

Let M denote the variety of parabolic stable bundles of rank 2, degree zero and
sufficiently small weights. Then it can be shown (cf. {6al) that M is in fact a
correspondence variety between the moduli space of semi-stable vector bundles of
rank?2 and degree 0 and the moduli space of stable vector bundles of rank2 and
degree —1.
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