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Abstract

We obtain a new definition of creativeness for NP, called NP-
creativeness. We show that all NP-creative sets are NP-complete
and provide strong evidence that all known NP-complete sets are NP-
creative. We also show that all NP-creative sets are complete under
exponentially honest reductions and contain an infinite NP subset in
their complement (in other words, they are not NP-simple).

2



1 Introduction

The notion of creative sets plays an important role in the recursion theory:
it provides an alternative characterization of many-one completeness for the
class of recursively enumerable sets, and this characterization, in turn, helps
in demonstrating that all many-one r.e.-complete sets are recursively iso-
morphic [7]. Naturally then, the question arises: are there such alternative
characterizations of complete sets for bounded complexity classes as well?
And if yes, then do these characterizations help us to obtain new proper-
ties of complete sets for bounded complexity classes? The most obvious way
of obtaining such a characterization would be to translate the definition of
creativeness to the polynomial settings and then see if the complete sets are
equivalent to such creative sets (of course, one has to get a different def-
inition for every class). This approach has been taken in several papers,
e.g., [6, 5, 10] etc. In [10], definitions of creativeness for classes E, EXP,
NE and NEXP were obtained and it was shown that these creative sets are
equivalent to the complete sets for E, EXP, NE and NEXP respectively.
Thus, for these classes, creativeness indeed provides an alternative definition
of completeness and it has been used to obtain some interesting properties
of complete sets for EXP and NEXP in [11], and identify interesting con-
nections with the isomorphism question in [9] (also see the survey paper by
Selman [8]). For the class NP, Joseph and Young obtained the definition of
k-completely creative sets and showed that such sets are all NP-complete.†

In [10], Wang defined k-creative sets and showed that k-completely creative
sets are also k-creative. However, neither of the above two definitions, viz.,
k-completely creative and k-creative, have been able to successfully capture
NP-complete sets. In fact, most of the natural complete sets for NP are not
known to be even k-creative (one notable exception is the Bounded Tiling
problem, which was shown to be 1-completely creative by Homer [4]). Also,
it is not known if all k-creative sets are NP-complete.

Wang [10] has observed that the hardness of creative sets defined for
bounded complexity classes depends on the particular indexing chosen to
present the underlying language class. This observation helped him to obtain
the definitions of creativeness for EXP and NEXP in [10].

†Joseph and Young called these sets k-creative sets while Wang [10] called these sets
k-completely creative sets. We shall use Wang’s nomenclature throughout.
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In this paper, we extend this observation and propose a uniform scheme of
obtaining the definitions of creativeness for various time and space bounded
complexity classes. The definitions of creativeness, under this scheme, for
classes EXP and NEXP turn out to be equivalent to the existing ones. How-
ever, for NP, our definition, called NP-creativeness, is a more general one.
We show that all NP-creative sets are NP-complete and though the converse
is hard to prove or disprove (it relativizes both ways even under the assump-
tion P 6= NP), we show that all k-completely creative sets are NP-creative,
as well as provide strong evidence that all natural NP-complete sets are also
NP-creative. However, our definition appears incomparable to the notion of
k-creativeness defined in [10] as there are k-creative sets that are not known
to be NP-creative and vice-versa.

To show that natural complete sets are NP-creative, we define a stronger
notion of completeness, called strong completeness, such that all strongly
complete sets for NP are NP-creative and then observe that natural com-
plete sets are strongly complete. Strongly complete sets form an interesting
subclass of NP-complete sets: for any set B in NP and any strongly com-
plete set A, there is a reduction of B to A such that the TM computing the
reduction must output bits ‘regularly’.

We also prove an interesting analogue of a result about creative sets in
recursion theory: no NP-creative set is NP-simple, where NP-simple sets are
those sets in NP whose complements do not contain any infinite NP-subset.
Homer [4] showed that the complements of k-completely creative sets that
have honest productive functions contain an infinite NP-subset and asked
if the assumption of honesty can be eliminated. The above result answers
this in positive as all k-completely creative sets are NP-creative. On the
other hand, our result appears incomparable to a result shown in [11]: the
complements of all k-creative sets that have honest productive functions are
p-levelable and therefore, contain an infinite polynomial-time subset. Finally,
we show that all NP-creative sets are also complete under exponentially hon-
est reductions.

The paper is organized as follows. Section 2 contains some basic defini-
tions and notations used. In section 3, we define and study NP-creativeness.
In section 4, we define the strongly complete sets and show that such sets
in NP are NP-creative. We also observe that natural NP-complete sets are
strongly complete for NP. In section 5, we obtain some properties of NP-
creative sets and consider the question of all NP-complete sets being NP-
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creative. In section 6, we propose a uniform scheme of obtaining creativeness
and using it, obtain the definitions for various other classes which turn out
to be equivalent to earlier definitions. The last section, section 7, contains
some concluding remarks.

2 Preliminaries

2.1 Notations

Languages are defined over the alphabet Σ = {0, 1}. Sometimes we refer to
strings over {0, 1, #}, which should be taken as being over {00, 01, 11}. We
use a standard isomorphism between strings and natural numbers to remove
any distinction between them. For any string s, |s| denotes the length of s.

Multiple work-tape Turing machines (TMs) with a read-only input tape
and a one-way write-only output tape are our model for computation. Unless
otherwise stated, our machines are non-deterministic. We consider a fixed
encoding scheme of such machines into strings with the proviso that the
information bearing part of the code of a TM begin and end with a 1. This
property of the indexing scheme is formally stated as follows,

(∀i)(∀m)(∀n)[φi = φ0mi0n and (∀x)[TM0mi0n (x) = TMi
(x)]]

using the notation given below. We shall refer to this property as the
paddability property of the indexing scheme.

Remark. Although we make use of this property extensively, the proofs
do not critically depend on this indexing scheme. It has been chosen only
because it makes many proofs simpler. All the theorems in this paper would
hold for any reasonable indexing scheme as the required property can be
established by padding the index by non-reachable states also.

TMs are indexed by the strings that encode them. For any string i,

• Mi denotes the TM whose code is i.

• TMi
(x) is the computation time (as defined in [1]) of Mi on input x

(TMi
(x) = 0 if Mi does not halt on x).
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• T k
Mi

(x) denotes the time taken by Mi to output k bits on input x (if the
length of the output of Mi on x is less than k, then T k

Mi
(x) is assumed

to be zero).

• SMi
(x) is the space taken by Mi on the work tape(s) during the com-

putation on input x.

• Wi is the subset of Σ∗ accepted by Mi (Mi accepts input x if it halts
in an accepting state on x). Clearly, {Wi}i∈N is an enumeration of all
r.e. sets (N is the set of natural numbers).

• φi denotes the partial function from Σ∗ to Σ∗ computed by Mi.

For a set of TM indices I, let L(I) = {Wi | i ∈ I}. L(I) is called the
class of languages presented by I.

p1, p2, p3, . . . is the sequence of polynomial functions with pi(n) = n|i| +
2|i|. Note that this definition is different from the standard one which defines
pi = ni + i. This definition was first used by Wang [10] to ensure that pi does
not grow faster than exponential in the length of i.

2.2 Basic Definitions

Set A is hard for class C under polynomial-time reductions (or simply, C-
hard) if for every B ∈ C there is a polynomial-time many-one function f
such that for every x, x ∈ B iff f(x) ∈ A. A is complete for class C under
polynomial-time reductions (or simply, C-complete) if A is hard for C under
polynomial-time reductions and A ∈ C.

Classes P, NPk (k > 0), NP, E, EXP, NEXP are defined in the usual way

with NPk = NTIME(nk), E = DTIME(2O(n)) and EXP = DTIME(2nO(1)
).

The following TM index sets present classes P, NP and NPk (k > 0)
respectively.

PM = {i | Mi a DTM and (∀x)[TMi
(x) ≤ pi(|x|)]},

NPM = {i | Mi a NDTM and (∀x)[TMi
(x) ≤ pi(|x|)]},

NPM k = {i | Mi a NDTM and (∀x)[TMi
(x) ≤ |i| · |x|k + |i|]}, for any k > 0.

Productive sets over a language class C are those sets that have a function
witnessing the fact that the set does not belong to the class C. Creative
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sets are defined to be the complements of productive sets. While defining
creativeness for bounded complexity classes, one encounters the following
problem, as first noted by Wang [10] — depending on the index set chosen
to present a language class, the complexity of the creative set defined over
this class may vary, e.g., while Ko and Moore [6] show that there are no
creative sets over P in EXP, Wang [10] shows, using a different indexing of
polynomial-time languages, that there are creative sets over P in EXP (in
fact, even in E). Therefore, we use the index set, instead of the language
class, to define creativeness and productiveness.

Definition 2.1 For a given set of functions F and a set of TM indices I,
language A is (F, I)-productive if there is a function f ∈ F such that for
every i ∈ I, f(i) ∈ Wi iff f(i) ∈ Ā. Function f is called (F, I)-productive
function for A.

Definition 2.2 Set A is (F, I)-creative if A is r.e. and Ā is (F, I)-productive.

It is clear by the above definitions that if A is an (F, I)-productive function
then A does not belong to the class L(I). Thus such sets can be viewed as
effectively diagonalizable sets over the class L(I). When the meaning is
clear by the context, we shall refer to (F, I)-productive functions simply as
productive functions. When F is the class of polynomial-time functions, we
shall write (p, I)-creative for (F, I)-creative.

Following are the standard definitions of creativeness for some classes in
our notation.

• For the class r.e. [7]: (rec,N)-creative (referred to as completely creative
in [7]), where rec is the class of total recursive functions and N is the
set of natural numbers.

• For the classes EXP and NEXP [10]: (p,PM)-creative and (p,NPM)-
creative (referred to as completely creative over P and completely cre-
ative over NP in [10]) respectively.

• For NP [5]: (p,NPM k)-creative (referred to as k-creative in [5] and
k-completely creative in [10]) for k > 0.
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Remark. Our notions of creativeness and productiveness are referred to
as completely creativeness and completely productiveness in [7] and [10]. Ac-
cording to [7], set A is (F, I)-productive if there is a function f ∈ F such
that for every i ∈ I, Wi ⊆ A ⇒ f(i) ∈ A − Wi. Creative sets are, as usual,
complements of the productive sets. For the classes EXP, NEXP and r.e.,
the two different notions of creativeness are known to be equivalent (see [7]
and [10]). For NP, as far as k-creativeness is concerned, the question of their
equivalence is open although it has been proved that under certain conditions
k-creativeness implies k-complete creativeness [10]. However, surprisingly, for
our definition, they are different if P 6= NP (as shown in the next remark).

For our definition of creativeness, we shall require the class of languages
recognized by TMs working in constant time.

CONST = {Wi | (∃c)(∀x)[TMi
(x) ≤ c]}.

The following proposition lists some basic properties of the class CONST.

Proposition 2.3 1. CONST is the smallest class of languages contain-
ing all finite sets and closed under union, complementation and right
concatenation with Σ∗.

2. CONST is a strict subclass of regular languages.

3 NP-creative sets

As we shall see, by considering different index sets presenting CONST, one
can obtain complete sets for widely different classes: for NP as well as r.e.
In this section, we obtain and study the definition for the class NP. We can
make use of any of the following presentations of CONST for NP.

CMNP (r) = {i | Mi a NDTM and (∀x)[TMi
(x) ≤ |i|r+1]} for r ≥ 0.

Of these, we choose the set CMNP (0). We make the zero implicit and write it
as simply CMNP. It shall be shown later (Lemma 3.5) that this choice does
not change the class of creative sets.

Definition 3.1 Set A is NP-creative if A ∈ NP and A is (p,CMNP)-creative.
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We take NP-creativeness to be the definition of creativeness for NP. For
this definition, we immediately note that

Proposition 3.2 If A is NP-creative then A /∈ CONST.

Remark. If we use the definition of creativeness (and productiveness)
given in the previous remark, then some trivial sets in P can be shown
(p,CMNP)-productive. An example is the set TALLY = {1n | n ≥ 1}, which
is (p,CMNP)-productive with productive function h(i) = 1|i|+1—Given any
index i ∈ CMNP, it is easy to see that either Wi is not a subset of TALLY or
Wi contains strings of size at most |i|. We need not bother about the first
case and if the second case is true then h(i) ∈ TALLY −Wi.

3.1 NP-creative sets are NP-complete

At a first glance, the NP-creativeness defined above appears to be a trivial
definition since the (p,CMNP)-productive sets diagonalize only over the class
CONST which is a very trivial class. However, it is the chosen indexing of
the language class over which creativeness is defined that makes the creative
set difficult or easy, not the language class itself. In fact, using a different
indexing of the class CONST (see section 6), it can be shown that creative sets
over this indexing are r.e.-complete! The reason for this seemingly strange
behavior is not too difficult to see. It shall be made clear by the following
theorem which shows that NP-creative sets are NP-complete.

Theorem 3.3 Every NP-creative set is NP-complete.

Proof. For B ∈ NP, let MB be the NDTM recognizing B with running time
bounded by pi(n) for some polynomial pi. Define NDTM Mg(x) as—

On input z, run MB on x for at most pi(|x|) steps and accept if
MB accepts x.

Note that the function g can be computed in polynomial-time and that Mg(x)

works independently of all inputs. It is clear by construction that, TMg(x)
(z) ≤

pk(|x|) for some polynomial pk.
Let q(x) = g(x)0pk(|x|). From the paddability property of the indexing

scheme we have that,

φq(x) = φg(x) and (∀z)[TMq(x)
(z) = TMg(x)

(z) ≤ |q(x)|].
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Therefore, q(x) ∈ CMNP. Further,

Wq(x) =

{
∅ if x /∈ B
Σ∗ if x ∈ B

(1)

Let set A be NP-creative with h the productive function for Ā. Since q(x) ∈
CMNP we have, by the definition of creativeness,

h(q(x)) ∈ A ⇔ h(q(x)) ∈ Wq(x) (2)

Now using (1) & (2) we get, x ∈ B ⇔ h(q(x)) ∈ Wq(x) ⇔ h(q(x)) ∈ A.
Therefore, f = λx. h(q(x)) reduces B to A.

To reduce any language in NP to the given NP-creative language, the
above proof constructs a TM index for each instance of the NP language
and then uses the productive function on these indices to yield a reduction.
TMs coded by these indices work independently of the input and therefore
these TMs need work only for a constant time. This is the reason why
the creativeness over such trivial class of languages yields NP-complete sets.
Moreover, it is easy to see that if we increase the bound on the time of TMs
in CMNP from linear in index length to, say, exponential, the corresponding
creative language can be shown NEXP-complete. Thus, a variation in the
bound on the time of TMs would vary the complexity of the corresponding
creative language, while the language class over which creativeness is defined
remains the same, i.e., CONST. This gives us a uniform scheme of obtaining
definitions of creativeness for various classes. In section 6, we consider it in
more detail.

Remark. Our definition of NP-creativeness fails to satisfy an important
property of creative sets: the complements of creative sets (i.e., the produc-
tive sets) must diagonalize over an ‘interesting’ class of languages. However,
our motivation is to obtain a definition that characterizes NP-complete sets;
and our definition succeeds in this to a large extent.

There exist NP-creative sets in NP. The following ‘universal’ sets are the
most fundamental NP-creative sets.

Kr = {i | Mi is an NDTM and accepts i in at most |i|r+1 steps}, for r ≥ 0.

For these sets we note that,
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Proposition 3.4 For every r ≥ 0, Kr ∈ NP and is NP-creative with identity
productive function.

One may wonder as to why have we chosen (p,CMNP)-creativeness as
the definition for NP instead of (p,CMNP (r))-creativeness for some r > 0.
Theorem 3.3 holds for (p,CMNP (r))-creative sets as well and such sets do exist
in NP (the set Kr is, in fact, (p,CMNP (r))-creative with identity productive
function). The following lemma shows the robustness of our definition by
proving that every (p,CMNP)-creative set is also (p,CMNP (r))-creative for any
r > 0.

Lemma 3.5 For any r ≥ 1, A is (p,CMNP)-creative iff A is (p,CMNP (r))-
creative.

Proof. (⇐). trivial.
(⇒). Let A be (p,CMNP)-creative with productive function h. Define func-
tion hr as—hr(i) = h(i0|i|

r+1
). Now, by the paddability property of the index-

ing scheme, for every i ∈ CMNP (r), i0|i|
r+1 ∈ CMNP. So, for every i ∈ CMNP (r),

hr(i) ∈ A iff h(i0|i|
r+1

) ∈ A iff h(i0|i|
r+1

) ∈ Wi0|i|r+1 iff hr(i) ∈ Wi.

3.2 K-completely creative and NP-creative sets

In this subsection, we compare our notion of creativeness with k-complete
creativeness defined in [5]. The following result is immediate.

Proposition 3.6 If A ∈ NP and is k-completely creative then A is NP-
creative.

Proof. Since a k-completely creative set is (p,NPM k)-creative and CMNP is
contained in NPM k, the result follows.

However, the converse does not appear to be true. To prove an NP-
creative set k-completely creative for some k > 0, one seems to require con-
straints on the length of the productive function. The following theorem is
the best we could obtain.

Theorem 3.7 If A is (p,CMNP (r))-creative with productive function h such
that for some t ≤ r, |h(x)| = O(|x|t), then A is br/tc-completely creative.
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Proof. Let k = br/tc. Define TM Mg(i) as—

On input x, accept iff Mi accepts x in |i| · |i|2·t·k+1/2 + |i| steps.

Function g can be chosen such that |i|2 ≤ |g(i)| = O(|i|2). Clearly g is a
polynomial-time function and TMg(i)

(x) = O(|i|2·t·k+3/2) ≤ |i|2·t·k+2(a.e. i) ≤
|g(i)|t·k+1(a.e. i). Therefore, g(i) ∈ CMNP (r) (a.e. i). Further, |h(g(i))| =
O(|i|2·t) ≤ |i|2·t+1/(2k)(a.e. i) and therefore, for almost all i ∈ NPM k, TM
Mg(i) accepts h(g(i)) iff Mi accepts h(g(i)). Therefore, we have that for
every i ∈ NPM k and i > i0 for some large enough i0,

h(g(i)) ∈ Wi ⇔ h(g(i)) ∈ Wg(i) ⇔ h(g(i)) ∈ A.

Thus h′ = h ◦ g is a productive function for all i > i0 and this can be easily
modified to yield a total productive function. E.g., h′′ = λi. h′(i0i0)) is a
total (p,NPM k)-productive function.

As for the notion of k-creativeness defined in [10], our notion appears
to be incomparable to it. There are k-creative sets, given in [10], that are
neither known to be NP-creative nor NP-complete while natural NP-complete
sets like SAT are NP-creative (see next section) but are not known to be k-
creative.

4 A strong version of NP-completeness

Are all NP-complete sets NP-creative? The answer to this question appears
difficult as it relativizes both ways (see section 5). The goal of this section
is to see what subclass of NP-complete sets is NP-creative. We develop a
new notion of completeness, called strong completeness, and show that all
such complete sets for NP are NP-creative. In the subsection 4.2 below,
we show that this notion is possibly general enough to capture all natural
NP-complete sets.

We begin by trying to prove that all NP-complete sets are NP-creative
using a standard method (see, e.g., [7], [10]) and explain why it does not
work.

Let A be NP-creative with productive function h and for some
B ∈ NP, A ≤p

m B via f . Given any i, construct TM Mg(i) as—On
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input x, compute first |i| bits of f(x) and accept iff Mi accepts
these |i| bits in |i| steps.

Now, since for all i ∈ CMNP, Mi works only for |i| steps on every input and
Mg(i) provides it with the first |i| bits of f(x), Mi would accept these |i| bits iff
it accepts f(x). So, for x = h(g(i)), h(g(i)) ∈ Wg(i) iff f(h(g(i))) ∈ Wi. If we
can ensure that g(i) ∈ CMNP then by creativeness, we shall have h(g(i)) ∈
Wg(i) iff h(g(i)) ∈ A and by reduction, h(g(i)) ∈ A iff f(h(g(i))) ∈ B.
Combining these, we get, f(h(g(i))) ∈ Wi iff f(h(g(i))) ∈ B and therefore,
f ◦ h ◦ g would be the required productive function for B̄, showing B to be
NP-creative. But to have g(i) ∈ CMNP, Mg(i) must be able to compute the
first |i| bits of f(x) for x = h(g(i)) in at most |g(i)| steps. This imposes
restrictions on f and/or h that are not likely to hold in general.

The above discussion makes us look for a more restricted class of reduc-
tions for which the method might work. It is immediately clear that the TM
Mg(i) needs to generate only the first |i| bits of f(h(g(i))). If this can be
done quickly without computing all of f(h(g(i))) then the proof would go
through. This motivates the following definition.

Definition 4.1 Function f is a k-bounded function, for k ≥ 0, if there is
a polynomial-time DTM M computing f , a constant c and a polynomial p
such that

(∀x)(∀b)T b
M(x) ≤ c · |x|k + p(b).

The idea behind k-bounded functions is that the DTMs computing them
would have to output bits regularly after c · nk steps, i.e., if c · nk + t steps
of computation are over then the number of bits written on the output tape
must be at least p−1(t) for some polynomial p. Of course, every polynomial-
time computable function is k-bounded for some suitable k. The interesting
use of these functions is in the definition of strong completeness.

Definition 4.2 Set A is k-strongly complete for the class NP if A ∈ NP and
every set in NP reduces to A via a k-bounded reduction. We say that A is
strongly complete for NP if there is a k, k ≥ 0, such that A is k-strongly
complete for NP.

Now one can see how the k-bounded reductions are used to restrict the
definition of NP-completeness: to a usual NP-complete set, different sets in
NP are reducible via k-bounded reductions with different k’s.
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There are sets that are k-strongly complete for NP, in fact, as we show
in the subsection 4.2 below, all the natural NP-complete sets appear to be
0-strongly complete. As an example, we show that Kr is 0-strongly complete.

Proposition 4.3 For any r ≥ 0, Kr is 0-strongly complete.

Proof Sketch. Function q, as defined in the proof of Theorem 3.3, is a

reduction of set B to Kr. We modify it as: q̃(x)
def
= 0|x|q(x). The function q̃

also reduces B to Kr (by the paddability property of the indexing scheme)
and is a 0-bounded function.

K-bounded functions do not appear to be closed under composition. Is
there a fixed l such that a composition of any two k- and k′-bounded functions
is l-bounded? The answer to this is also probably no. However, a very weak
form of closure does hold for these functions.

Lemma 4.4 Let f1 be a 0-bounded and f2 be a k-bounded function. Then
f1 ◦ f2 is also a k-bounded function.

Proof. Let M1 and M2 be the DTMs computing f1 and f2 respectively.
We define the DTM M , computing f1 ◦ f2, such that, on input x, it starts
computing f1 on f2(x) and generates bits of f2(x) as and when required. We
know that T b

M1
(x) ≤ p(b) and T b

M2
(x) ≤ c · |x|k + p(b) for some polynomial

p and constant c. Therefore, to compute b bits of f1(f2(x)), M needs to
simulate at most p(b) steps of M1. This implies that at most p(b) bits of f2(x)
need be generated and given as input to M1. To compute p(b) bits, M2 takes
at most c · |x|k +p(p(b)) steps. Therefore, T b

M(x) = O(|x|k +p(p(b))+p(b)) ≤
d · |x|k + p′(b) for some polynomial p′ and constant d. Therefore, f1 ◦ f2 is a
k-bounded function.

4.1 Strongly complete sets are NP-creative

Our motivation in defining strongly complete sets was to show that they are
all NP-creative. The following theorem accomplishes this.

Theorem 4.5 If A is strongly complete for NP then A is NP-creative.
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Proof. The proof proceeds along the lines of the method outlined at the
beginning of the section. Let A be k-strongly complete. Let f be the k-
bounded reduction of the set Kk to A. Let M be the DTM computing f
such that it halts within pr(.) steps and T b

M(x) ≤ c.|x|k + pr(b). Define TM
Mg(i) as—

On input x, if |x| > pr(|i|) then reject. Otherwise, compute first
|i| bits of f(x) and accept iff Mi accepts f(x) within |i| steps.

Therefore, TMg(i)
(x) = O((pr(|i|))k + pr(|i|)). Choosing g and pr such that

|g(i)| = pr(|i|) for every i, we get, TMg(i)
(x) = O(|g(i)|k) ≤ |g(i)|k+1 (a.e. i).

Now, by the definition of Kk, we get that for large enough i ∈ CMNP,
g(i) ∈ Wg(i) iff g(i) ∈ Kk. By the definition of Mg(i), we have that g(i) ∈ Wg(i)

iff f(g(i)) ∈ Wi. Combining the two we get, f(g(i)) ∈ Wi iff g(i) ∈ Wg(i) iff
g(i) ∈ Kk iff f(g(i)) ∈ A for large enough i.

Thus f ◦ g is the required productive function for sufficiently large inputs
and from this a productive function that is correct on all inputs can be easily
obtained, as was done in the proof of Theorem 3.7.

4.2 Strongly complete and NP-complete sets

Several questions arise concerning the relationship between NP-complete and
strongly complete sets. We consider the following three.

• Are all natural NP-complete sets strongly complete?

• Are all NP-complete sets strongly complete?

• Is there a k such that all NP-complete sets are k-strongly complete?

In this subsection, we provide evidence that the answer to the first ques-
tion is positive and to the other two questions, negative. We begin with
showing that several natural NP-complete sets are 0-strongly complete. To-
wards this, we first define a new padding function, then show that every
NP-complete set possessing this function is 0-strongly complete and finally
show that standard natural complete sets do posses this function.

For every set A, define

LPA = {y#x | y ∈ {0, 1, #}∗ ∧ x ∈ A}
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Definition 4.6 A is left-paddable if there exists a 0-bounded reduction lpA

of LPA to A.

The following Lemma gives some elementary results about left-paddable
sets.

Lemma 4.7 1. LPA ≤p
m A.

2. For every B, if B ≤p
m A then B ≤p

m LPA via a 0-bounded function.

3. A is left-paddable iff for every B, if B ≤p
m A then B ≤p

m A via a
0-bounded function.

4. A is NP-complete and left-paddable iff A is 0-strongly complete for NP.

Proof. 1. & 2. Immediate.
3. (⇒) Let B ≤p

m A via f . Define, f̃ as: f̃(x) = lpA(1|x|#f(x)). By
Lemma 4.4, function f̃ is 0-bounded as it is a composition of two 0-bounded
functions: lpA and g with g(x) = 1|x|#f(x).

(⇐) Immediate from 1.
4. Immediate from 3.

Corollary 4.8 Every left paddable NP-complete set is NP-creative.

Remark. We cannot prove the above corollary using the symmetric coun-
terpart of left-padding functions. In fact, every set has a right-padding func-
tion which is 0-bounded: rpA(x#y) = x. This asymmetry arises because we
are using TMs that start scanning from the left of the input. It can be elim-
inated by using random access machines, however, it makes the definition of
k-bounded functions and the related proofs messy. Therefore, we have pre-
ferred the asymmetric way though it suffers from the defect of being strongly
dependent on the computational model.

Left-paddability provides a nice way of exhibiting NP-creativeness of NP-
complete sets. For example,

Proposition 4.9 The following sets are left-paddable.
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1. SAT, the set of all satisfiable boolean formulas.

2. HAM, the set of all directed Hamiltonian graphs.

3. CLQ, CLQ = {x$r | graph x contains an r-clique } ($ 6∈ Σ).

4. KNP, KNP = {n1$n2$ · · · $nk$m | there is a subset of first k numbers
whose sum is m} ($ 6∈ Σ).

Proof.

1. lpSAT is defined as follows —

On y#x, initially output |y| + |x| trivial clauses, clause i
having the form: vi ∨ v̄i, vi being the ith variable and then
output clauses of x.

2. lpHAM is defined as follows —

On y#x, initially output a directed path containing |y|+ |x|
vertices. Then output the following modified version of the
graph x: pick some vertex v of x, split it into two vertices v1

and v2, replace all edges 〈u, v〉 by 〈u, v1〉, all edges 〈v, u〉 by
〈v2, u〉, and finally, add an edge from v1 to the first vertex of
the above path, and an edge from the last vertex of the path
to v2.

3. lpCLQ is defined as follows —

On y#x$r, initially output |y| + |x| + |r| isolated vertices
followed by graph x and then $r.

4. lpKNP is defined as follows —

On y#n1$n2$ · · · $nk$m, output l1$l2$ · · · $lr$n1$ · · · $nk$m,
where li = 0 for all 1 ≤ i ≤ r and r = |y|+ |n1|+ · · ·+ |nk|+
|m|.

It is easy to see that all the above functions are 0-bounded and preserve the
membership in their respective languages.
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Corollary 4.10 For any L ∈ {SAT, HAM, CLQ, KNP}, L is NP-creative.

For natural NP-complete sets the left-padding function seems to be di-
rectly obtainable from the normal padding function of the set. And since all
natural NP-complete sets are believed to be paddable, it is not unreasonable
to assume that they are left-paddable as well. Are all paddable NP-complete
sets left-paddable? The answer is no (see Corollary 4.14). Conversely, are all
left-paddable NP-complete sets paddable as well? There is no apparent rea-
son to believe so. The left-padding function need not be one-one or invertible
in polynomial-time. However, it is not too difficult to see that left-padding
functions of NP-complete sets can always be made size-increasing.

Proposition 4.11 Any left-paddable NP-complete set A has a size-increasing
left-padding function.

Proof. Let lpA be the left-padding function for A. It can be made size-
increasing very simply: lp′A(y#x) = lpA(1p(|y|+|x|+2)#x) where polynomial p
is such that the first b bits of lpA(z) are computable within p(b) steps. The
new function is clearly size-increasing as lpA while scanning the sequence of
1′s in the prefix would output at least |y|+ |x|+ 2 bits.

Corollary 4.12 If A is a left-paddable NP-complete set then A is complete
for NP under 0-bounded size-increasing reductions.

There are NP-complete sets that are not 0-complete. We show this by
constructing a set whose first few bits are very difficult to compute. For this,
we need the definition of p-immune sets: a set is p-immune if it is infinite
and does not contain any infinite polynomial-time subset [1]. The following
p-immune set B will be used in the proof: x ∈ B iff for every i ≤ log |x|, x
is not the lexicographically smallest string of length |x| that is accepted by
DTM Mi in pi(|x|) steps. One can easily show that B ∈ E, is p-immune, and
contains at least one string of size n for every n.

Theorem 4.13 There is an NP-complete set A which is not 0-complete.

Proof. Let B be the set defined as above. Define set A as:

A = {y#x | |y| = dlog |x|e ∧ y ∈ B ∧ x ∈ K0}
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Clearly, A ∈ NP and K0 ≤p
m A via f , where f(x) = y#x, y is the smallest

string of length dlog |x|e in B (such a y can be generated in polynomial-
time by enumerating all elements of B up to length dlog |x|e). Suppose
A is 0-complete for NP. Let g be the 0-bounded reduction of K0 to A
and j be the index of a TM that accepts all strings in a single step. So,
{j0n | n ≥ 0} ⊂ K0. Function g can be taken to be size-increasing by
Corollary 4.12. Let g(j0n) = y#x with y ∈ B and x ∈ K0. DTM Mg,
on input j0n, would output y within p(|y|) steps (for some polynomial p)
and since g is size-increasing, there would be infinitely many such y’s. This
gives an infinite polynomial-time subset of B which is not possible as B is
p-immune. Therefore, A is not 0-strongly complete.

Corollary 4.14 There is a paddable NP-complete set which is not left-paddable.

Proof. Set A constructed above is paddable, since K0 is. The corollary
follows.

Remark. We could have proved Theorem 4.13 more easily by utilizing the
fact that a 0-bounded function must output a large number of bits without
knowing the length of the input. One may find this condition very restrictive
and may generalize the 0-bounded functions by supplying the length of the
input at the beginning of their computation. Our proof goes through for this
more general definition as well.

Is the set A constructed above k-strongly complete for some k > 0? We
do not know an answer to this. Is it at least NP-creative? The answer is yes
which is shown by the following proposition.

Proposition 4.15 Set A defined in the proof of Theorem 4.13 is NP-creative.

Proof. Define TM Mg(i,y) as: on input x, accept iff Mi accepts y#0|i| within
|i| steps. Choose g such that |g(i, y)| = c · (|i|+ |y|) for some constant c. Let
m(i) be the smallest number such that m(i) = dlog(|i| + c · (|i| + m(i)))e.
Clearly, m(i) = O(log |i|).

Define function h as: h(i) = yi#0|i|g(i, yi), where yi is the smallest string
in B of length m(i). Function h is polynomial-time computable as m(i) =
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O(log |i|) and B ∈ E. We now show that h is the required productive function
for Ā. For every i ∈ CMNP, h(i) ∈ Wi iff yi#0|i| ∈ Wi iff 0|i|g(i, yi) ∈ Wg(i,yi)

(by the definition of Mg(i,yi)) iff 0|i|g(i, yi) ∈ W0|i|g(i,yi) (by the paddability

property of the indexing scheme) iff 0|i|g(i, yi) ∈ K0 iff yi#0|i|g(i, yi) ∈ A (by
the definition of A) iff h(i) ∈ A.

Are all NP-complete or at least all NP-creative sets strongly complete?
It does not appear to be so. Consider the following class of k-creative sets
defined in [5].

Kf
k = {f(i) | Mi accepts f(i) within |i| · |f(i)|k + |i| steps}

There is no apparent way of showing Kf
k to be l-complete for some l with

f being an arbitrary polynomial-time function except when f is 0-bounded.
As is shown by Theorem 4.13, there are polynomial-time functions that are
not 0-bounded. So, the sets Kf

k for such f ’s may be the sets that are not
l-complete for any l. However, all of these sets are NP-complete as well
as NP-creative. Thus the answer to the last two questions raised at the
beginning of the subsection is probably negative.

One may wonder about the usefulness of the concept of strongly com-
plete sets apart from the fact that they are all NP-creative. We feel that
they provide a further insight into the difference between the two kinds of
NP-complete sets defined in the literature, viz., natural complete sets (all
such sets are probably 0-strongly complete) and complete sets defined by
structural considerations, e.g., k-creative sets (many of these may not be
strongly complete at all).

5 NP-creative and NP-complete sets

So far, we have defined the notion of NP-creativeness for the class NP and
seen that all the known NP-complete sets appear to be NP-creative. Proving
that all NP-complete sets are indeed NP-creative would be difficult as it
immediately implies P 6= NP (follows from Proposition 3.2). Can we at least
say that all paddable NP-complete sets are NP-creative? This question turns
out to be as difficult as the previous one.

Proposition 5.1 If all paddable NP-complete sets are NP-creative then all
NP-complete sets are NP-creative.
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Proof. Suppose that all paddable NP-complete sets are NP-creative. Let A
be any NP-complete set. Consider set RPA = {x#y | x ∈ A∧y ∈ {0, 1, #}∗}.
RPA is a paddable NP-complete set and therefore NP-creative. RPA reduces
to A via function f , f(x#y) = x. Define TM Mg(i) as: on input x, compute
the first |i| bits of f(x) and accept iff Mi accepts these bits within |i| steps.
We can choose g such that TMg(i)

(x) ≤ |g(i)|. Let h be the productive

function for RPA. Now, f ◦ h ◦ g would be the productive function for Ā as
f(h(g(i))) ∈ Wi iff h(g(i)) ∈ Wg(i) iff h(g(i)) ∈ RPA iff f(h(g(i))) ∈ A.

This is an interesting property of NP-creative sets showing that if the
property of NP-creativeness is invariant under polynomial isomorphism then
it is also invariant under polynomial-time many-one equivalence.

Are there relativized worlds where the class of NP-creative sets is equal to
or properly contained in the class of NP-complete sets? Such oracles already
exist in the literature, though they were not constructed for this purpose. We
first note that all our definitions and theorems relativize. To make the two
classes equal, we choose the oracle A for which NPA = EXPA, and then since
all EXP-complete sets are EXP-creative (see Proposition 6.1 below), and
therefore NP-creative, the result follows. Using the following theorem one
can exhibit an oracle that separates these two classes while also separating
P and NP (if P = NP then obviously the two classes do not coincide).

We say that the function f is exponentially honest if there is a polynomial
p such that

(∀x)p−1(|f(x)|) ≤ |x| ≤ 2p(|f(x)|).

Remark. This definition is slightly different from the one given by Ganesan
and Homer [2], who define exponentially honest functions as satisfying the
property

(∀x)p−1(|f(x)|) ≤ |x| ≤ 2|f(x)|.

Theorem 5.2 Let A be an NP-creative set. Then A is complete for NP
under exponentially honest reductions.

Proof. Since A ∈ NP, there is a DTM MA recognizing the set A in O(2p(n))
time for some suitable polynomial p. Define NDTM Mg(x) as: on input z, if
p(|z|) ≥ log |x| then accept z iff x ∈ K0 else accept z iff z /∈ A (using MA).
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It can be seen that TMg(x)
(z) ≤ pr(|x|) for some polynomial pr. Choosing

g such that |g(x)| ≥ pr(|x|), we get that g(x) ∈ CMNP for every x and

Wg(x) =

{
{Ā}<n ∪ Σ≥n if x ∈ K0

{Ā}<n otherwise

where n = p−1(log |x|). Now, let h be the productive function for Ā. By
creativeness we have, h(g(x)) ∈ Wg(x) iff h(g(x)) ∈ A. If for some x,
|h(g(x))| < p−1(log |x|) then h(g(x)) ∈ A iff h(g(x)) ∈ Wg(x) iff h(g(x)) ∈ Ā,
a contradiction. Therefore for every x, |h(g(x))| ≥ p−1(log |x|) and then we
have that x ∈ K0 iff h(g(x)) ∈ Wg(x) iff h(g(x)) ∈ A. Since K0 is complete for
NP under size-increasing reductions (recall that it is 0-strongly complete),
it follows that A is complete for NP under exponentially honest reductions.

In [3], Hartmanis and Hemachandra have constructed an oracle A such
that PA 6= NPA and NPA contains complete sets that have arbitrarily large
‘gaps’. In other words, there are complete sets that do not contain any
string of length between n and 22n

for infinitely many n’s. Such sets cannot
be exponentially honest complete for NPA and therefore there are complete
sets in NPA that are not NPA-creative.

Theorem 5.2 is a rather weak result about the honesty of reductions to
NP-creative sets. Can one show that all NP-creative sets are complete under
size-increasing reductions? We do not have an answer to this, however, what
we can show is that the complements of all these sets have infinite NP subsets.
Note that if NP-creative sets were complete under size-increasing reductions,
the result would immediately follow.

Theorem 5.3 If A is NP-creative then Ā contains an infinite subset in NP.

Proof. Let h be the productive function for Ā. Define TM Mg(x) as: on
input z, if |z| ≥ |x| then reject; otherwise, accept if x ∈ A. As in the
proof of Theorem 3.3, one can choose a polynomial-time computable g such
that TMg(x)

(z) ≤ |g(x)|. Consider the sets T = {x | |x| ≤ |h(g(x))|} and
S = {z | (∃x)x ∈ T ∧ z = h(g(x))}. It is clear that T ∈ P and S ∈ NP.
Further, since Wg(x) contains strings of length less than |x| only, for every
x ∈ T , h(g(x)) 6∈ Wg(x), and therefore, by creativeness of A, h(g(x)) 6∈ A.
Thus we get that S ⊆ Ā.
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We now show that if S is finite then P = NP. First of all, we note that if
S is finite then T is also finite. Now the following polynomial-time procedure
recognizes the set A.

1. Input x.

2. y = x.

3. while y 6∈ T do: y = h(g(y)).

4. Accept iff y ∈ A.

The above procedure works in polynomial-time since in every iteration of
the while loop, the length of y decreases by at least one and since T ∩ A
is a finite set. We now show that y ∈ A iff x ∈ A after every iteration of
the while loop. If y 6∈ T then |h(g(y))| < |y|. Now by the definition of TM
Mg(y), h(g(y)) ∈ Wg(y) iff y ∈ A. And by creativeness, h(g(y)) ∈ Wg(y) iff
h(g(y)) ∈ A. Combining these we get: if |h(g(y))| < |y| then h(g(y)) ∈ A iff
y ∈ A. This proves the correctness of the above procedure.

Thus, if P 6= NP, then S must be infinite and then it would be an infinite
NP subset of Ā. On the other hand, if P = NP, then Ā would itself be an in-
finite polynomial-time set as no co-finite set can be NP-creative (Proposition
3.2). Therefore, Ā contains an infinite subset in NP.

From the above theorem, it follows that no NP-creative set can be NP-
simple, a set whose complement does not contain any infinite subset in NP.
This result is analogous to the one for creative sets in recursion theory [7]
and answers a question posed in [4].

6 A uniform scheme of defining creativeness

As observed in subsection 3.1, the creativeness definitions for the higher
classes can be obtained by simply changing the bound on the time of TMs in
the set presenting the class CONST. So, the general scheme of obtaining the
definition of creativeness for any class C is: identify a suitable TM presenta-
tion CMC of CONST and a suitable class of functions F ; define a set A to be
C-creative if A ∈ C and A is (F, CMC)-creative. The suitable presentation of
CONST for a class containing languages recognized in time (space) T (nO(1))
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(S(nO(1))) would be the set of TMs Mis with T (|i|) (S(|i|)) being the bound
on their time (space).

Using this scheme, we obtain the creativeness definitions for the classes
PSPACE, EXP, NEXP and r.e. For EXP, NEXP and r.e. the definitions
we obtain are equivalent to the ones already defined in the literature. For
PSPACE, our definition is the only one available, and for this we show the
equivalence between creative and complete sets (under logspace reductions).

We first define the suitable TM presentations of CONST for classes EXP,
NEXP, r.e. and PSPACE.

CME = {i | Mi is a DTM and (∀x)TMi
(x) ≤ 2|i|}

CMNE = {i | Mi is an NDTM and (∀x)TMi
(x) ≤ 2|i|}

CMRE = {i | (∀x)(∀y)TMi
(x) = TMi

(y)}
CMPSPACE = {i | Mi is a DTM and (∀x)SMi

(x) ≤ |i|}

We shall choose the class of polynomial-time functions for EXP and NEXP,
the class of recursive functions for r.e. and the class of logspace functions for
PSPACE and define the creative sets for these classes as explained above.

For the classes EXP, and NEXP, our definitions can be seen as obtained
from those in [10] by dropping the non-constant term in the time bound.
Exactly the same proof as in [10] can be used to show that all EXP-creative
(NEXP-creative) sets are EXP-complete (NEXP-complete). The equivalence
of the two definitions follows as all creative sets in the sense of [10] for EXP
and NEXP are equivalent to respectively EXP- and NEXP-complete sets.
The same can be shown to hold for r.e. sets as well as for logspace complete
sets for PSPACE using the same proof idea. Therefore, we have

Proposition 6.1 1. A is r.e.-creative iff A is (rec,N)-creative iff A is
r.e.-complete.

2. A is NEXP-creative iff A is (p,NPM)-creative and A ∈ EXP iff A is
NEXP-complete.

3. A is EXP-creative iff A is (p,PM)-creative and A ∈ EXP iff A is
EXP-complete.

4. A is PSPACE-creative iff A is complete for PSPACE under logspace
reductions.
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7 Concluding remarks

Our aim was twofold: first to obtain the definition of creativeness for NP
that characterizes the complete sets and then, using such creative sets, study
the properties of the complete sets. Although we have given a new, and more
general, definition of creativeness for NP, we have not been completely suc-
cessful on either accounts. Firstly, we could not show that all NP-complete
sets are NP-creative and secondly, we have not been able to obtain very
significant new results about NP-complete sets. Nevertheless, our definition
appears to cover all known NP-complete sets and provides some interest-
ing new results, e.g., complements of all k-completely creative sets contain
infinite NP-subsets.

An interesting aspect of our definitions is that all the presentations of
CONST that we have considered in this paper are productive over them-
selves. For example, the set CMNP is (p,CMNP)-productive, CME is (p,CME)-
productive, CMRE is (p,CMRE)-productive. We do not know if this property
of ‘self-productiveness’ has any deeper reasons behind it.

One can see, therefore, that there is much we do not know about creative
sets. We believe, and there are strong reasons to do so, that a study of these
sets would increase our understanding of complete sets.

Acknowledegment: We thank two anonymous referees for many helpful
suggestions and improvements.
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