
Reductions in Circuit Complexity:

An Isomorphism Theorem and a Gap Theorem.

Manindra Agrawal� Eric Allendery

Department of Computer Science Department of Computer Science

Indian Institute of Technology Rutgers University

Kanpur 208016 P.O. Box 1179

India Piscataway, NJ 08855-1179

USA

manindra@iitk.ernet.in allender@cs.rutgers.edu

Steven Rudich

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

USA

rudich@cs.cmu.edu

Abstract

We show that all sets that are complete for NP under non-uniform AC0 reductions
are isomorphic under non-uniform AC0-computable isomorphisms. Furthermore, these
sets remain NP-complete even under non-uniform NC0 reductions.

More generally, we show two theorems that hold for any complexity class C closed un-
der (uniform) NC1-computable many-one reductions. Gap: The sets that are complete
for C under AC0 and NC0 reducibility coincide. Isomorphism: The sets complete for
C under AC0 reductions are all isomorphic under isomorphisms computable and invert-
ible by AC0 circuits of depth three.

Our Gap Theorem does not hold for strongly uniform reductions: we show that there
are Dlogtime-uniform AC0-complete sets for NC1 that are not Dlogtime-uniform NC0-
complete.

1 Introduction

The notion of complete sets in complexity classes provides one of the most useful tools
currently available for classifying the complexity of computational problems. Since the
mid-1970's, one of the most durable conjectures about the nature of complete sets is the
Berman-Hartmanis conjecture [BH77], which states that all sets complete for NP (under

�This research was done while visiting the University of Ulm under an Alexander von Humboldt
Fellowship.

ySupported in part by NSF grant CCR-9509603.

polynomial-time many-one reductions) are p-isomorphic; essentially this conjecture states
that the complete sets are all merely di�erent encodings of the same set. (Two sets A and
B are considered p-isomorphic if there is a 1-1 function from A onto B that is polynomial-
time computable and polynomial-time invertible.) Although the isomorphism conjecture
was originally stated for the NP-complete sets, subsequent work has considered whether the
complete sets for other complexity classes C (and under other notions of reducibility) collapse
to an isomorphism type. In this paper, we prove such an analogue of the Berman-Hartmanis
conjecture in a very natural setting: all sets complete for NP under AC0 reductions are
isomorphic under AC0-computable isomorphisms. (Most of the results in this paper concern
non-uniform AC0 and NC0 reductions. In all instances, AC0 and NC0 refer to non-uniform
circuits unless otherwise indicated.) One major ingredient of our proof of this result is
a `gap' theorem: we show that all sets complete for NP under AC0 reductions are also
complete under NC0 reductions.

In full generality, the two main theorems of this paper can be stated as follows.

For any class C closed under uniform NC1-computable many-one reductions:

Isomorphism Theorem: The sets complete for C under AC0 reductions are all isomorphic
under AC0-computable isomorphisms.

Gap Theorem: The sets that are complete for C under AC0 and NC0 reducibility coincide.

The remainder of the introduction will present a more detailed description of these
theorems and previous related work.

1.1 The Isomorphism Theorem

The Berman-Hartmanis conjecture has inspired a great deal of work in complexity theory,
and we cannot review all of the previous work here. For an excellent survey, see [KMR90].
We do want to call attention to two general trends this work has taken, regarding (1)
one-way functions, and (2) more restrictive reducibilities.

One-way functions (in the worst case sense) are functions that can be computed in
polynomial-time, but whose inverse functions are not polynomial-time computable. Be-
ginning with [JY85] (see also [KMR95, Se92, KLD86], among others) many authors have
noticed that if worst case one-way functions exist, then the Berman-Hartmanis conjecture
might not be true. In particular, if f is one-way, nobody has presented a general technique
for constructing a p-isomorphism between SAT and f(SAT), even though f(SAT) is clearly
NP-complete. (Rogers [Ro95] does show how to construct such isomorphisms relative to an
oracle. However, the focus of our work is on non-relativized classes. Note also that it has
been shown in [KMR88, JPY94] that there are (non-complete) degrees where isomorphisms
can be constructed; however the focus of our work is on complete degrees.)

An even stronger notion than one-way functions is that of average case one-way func-
tions: these are polynomial-time computable functions whose inverse can be e�ciently
computed only on a negligible fraction of the range. Advances in the theoretical founda-
tions of cryptography have shown that average case one-way functions can be used to con-
struct \pseudo-random" functions that are computable in polynomial-time [HILL90]. (For

2

an excellent distillation of the most important results in this area we recommend [Lu96].)
Intuitively, if f is a polynomial-time, random-like function, f(SAT) is NP-complete, but
has no apparent structure to facilitate the construction of an isomorphism to SAT. Kurtz,
Mahaney, and Royer [KMR95] are able to make this intuition technically precise in the
random oracle setting. They show that when f is a truly random function, f(SAT) is not
isomorphic to SAT even when f is given as an oracle. This suggests that a pseudo-random
f might similarly guarantee that no isomorphism to f(SAT) is possible. As we argue below,
the results in this paper greatly undermine our con�dence in this approach to resolving the
Berman-Hartmanis conjecture.

Our Isomorphism Theorem negates the above intuition in two important special cases.
Firstly, it is easy to observe that there are worst-case one-way functions in uniform NC0

if there are any one-way functions at all. Thus, if the worst-case one-way functions are
su�ciently easy to compute, the intuition that worst-case one-way functions cause the
isomorphism conjecture to fail is incorrect.

Secondly, we prove that all sets complete for NP under AC0 reductions are complete
under reductions that are computable via depth two AC0 circuits, and these sets are all
isomorphic to SAT under isomorphisms computable and invertible by AC0 circuits of depth
three. But it is known that there are functions computable in AC0 that are average-case
hard to compute for AC0 circuits of depth three, and that this allows one to produce output
that appears pseudorandom to AC0 circuits of depth three [Ni92]. Using these tools, one
can construct one-one functions f , many of whose output bits look random to depth three
circuits. Although one might believe that for such a function f , f(SAT) should appear
random to AC0 circuits of depth three, there is nonetheless a reduction from SAT to f(SAT)
computable in depth two, and an isomorphism computable and invertible in depth three.

Nevertheless, we refrain from concluding that our results indicate that the isomorphism
conjecture is true. What is true in the AC0 settings need not hold for the much more general
polynomial-time settings.

There has been previous work on versions of the isomorphismconjecture for more restric-
tive reducibilities (see e.g., [Ag94, ABI93]). In fact, in [Ag94] a class of reductions, 1-NL, was
presented such that the 1-NL-complete sets in natural (unrelativized) complexity classes are
all 1-NL-isomorphic. However, all such reductions can be inverted in polynomial time. (For
instance, the 1-L and 1-NL reductions in [Ag94, Ag95] and earlier work, and the �rst-order
projections considered in [ABI93] have this property.) A possible exception is the so-called
\1-omL reducibility" considered in [Ag94], which shares the non-invertibility property of
NC0 and AC0 reductions considered here. However 1-omL reducibility is a rather contrived
reducibility invented solely for the purpose of proving the \collapse" result in [Ag94], and
the proof of that result relies heavily on the invertibility of the related 1-L and 1-NL reduc-
tions. That is not the case with the results presented in this paper. Additionally, we show
that the sets that are complete under the reducibilities considered in [Ag94] are in fact com-
plete under NLOG-uniform projections, and hence are also complete under NC0 reductions.
Thus the complete sets considered in [Ag94] are a subclass of the sets for which we present
isomorphisms.

One of the major goals of the work presented here is to correct a shortcoming of the
results presented in [ABI93]. In [ABI93], it is shown that, for essentially any natural
complexity class C, the sets complete for C under �rst-order projections are all isomorphic

3

under �rst-order isomorphisms. The shortcoming of [ABI93] to which we refer is this: the
complete degree under �rst-order projections is properly contained in the isomorphism type
of the complete sets. In order to improve the result in [ABI93] to obtain a true analog of
the Berman-Hartmanis conjecture [BH77] it would be necessary to show that the complete
degree under �rst-order reductions coincides exactly with the �rst-order isomorphism type
of the complete sets. Since �rst-order reductions are precisely the functions computable by
uniform families of AC0 circuits [BIS90], the result we present here can be seen as correcting
this defect in [ABI93], except for the question of uniformity.

Note that, since �rst-order projections are a very restricted sort of NC0 reduction, our
result showing that the sets complete under AC0 reductions are all AC0-isomorphic would
be a strict improvement of [ABI93] if not for the question of uniformity. ([ABI93] works
in the Dlogtime-uniform setting; our results are known to hold only in the less-restrictive
P-uniform setting (in some cases) and in the non-uniform setting.) We believe that the
result for non-uniform reducibilities is interesting in its own right, and that the technical
aspects of the argument lend additional interest to this work.

1.2 The Gap Theorem

A curious, often observed fact is that all sets known to be NP-complete under polynomial-
time, many-one reductions remain NP-complete under many-one, AC0 reductions (or, even
weaker reductions). This is interesting because AC0 is known to compute a much smaller
class of functions than polynomial-time. It is not known if each polynomial-time reduction
to an NP-complete set can always be replaced by an AC0 reduction. In this paper, we
prove that such a gap in the power of reductions does exist between AC0 and NC0: any
set that is NP-complete under non-uniform AC0 reductions remains NP-complete under
non-uniform NC0 reductions. As is the case for polynomial-time versus AC0, the di�erence
in computational power between AC0 and NC0 is enormous. For example, each output of
an NC0 computable function can depend on only �nitely many inputs. Thus, NC0 can't
even compute an AND of all its inputs (in contrast, the unbounded fan-in AND is an
AC0 function). Nonetheless, our theorem shows that AC0 and NC0 are equivalent from the
point of view of performing NP-completeness reductions. It follows that all known NP-
complete problems are complete under NC0 reductions. The fact that in an NC0 reduction
each output bit depends on only �nitely many of the input bits means that NC0 reductions
are local and simple by nature. Intuitively, NC0 reductions correspond to a radically simple
form of \gadget reduction."

It is instructive to consider the standard reduction from 3SAT to CLIQUE. For each
clause i, for each of its literals L, we create a node (i; L). Place an edge between nodes
(i; L) and (j;M) if and only if i 6= j and L is not the negation of M . The resulting graph
contains a clique of one third its size if and only if the original 3SAT formula is satis�able.

We �x a particular choice of encoding a 3SAT formula with n clauses. Each literal will
be encoded as a 1+ dlog 3ne bit string. The �rst bit indicates whether the literal is positive
or negative; the remaining bits index the name of the variable. (Since there are n clauses
there will be at most 3n di�erent variable names.) The encoding for a given 3SAT instance
will be the concatenation of the encodings of each of its literals.

This is a very simple reduction to compute; it is in AC0. The reducing circuit takes a

4

3SAT formula with n clauses and produces
�3n
2

�
outputs, one for each edge of the 3n node

graph produced by the reduction. Each output bit that is associated with two identical
clauses is set to 0. Each other output bit depends on two of the input literals; it should
output 1 if and only if the literals are not negations of each other. This is clearly in AC0.
However, this is not computable in NC0. Why not? To check if two literals are negations
of one another is not possible without considering all of the relevant 2(1 + dlog 3ne) bits of
input. But an NC0 reduction can only consider a constant number of the relevant input
bits.

It is an exercise to �nd an NC0 reduction from 3SAT to CLIQUE. Using our results,
any such exercise is a corollary of our Gap Theorem.

As stated above, we prove that for any class C closed under NC1-computable many-one
reductions the sets that are complete for C under AC0 and NC0 reducibility coincide. This
is a gap theorem in the sense that there is a big di�erence (gap) in the computational
power of NC0 and AC0 functions, but no di�erence in their power to perform completeness
reductions. This is analogous to the Borodin-Trakhtenbrot Gap Theorem [Bo72, Tr64].
Some other similar gap theorems are presented in [Ag94, Ag96], and in [Ag95] it is shown
that sometimes, the hypothesis that a gap exists for two reducibilities can have interesting
consequences.

We do not know if our IsomorphismTheorem holds for Dlogtime-uniformAC0 isomorphisms
(also known as �rst-order isomorphisms). In fact, we show that our Gap Theorem fails in
the Dlogtime-uniform setting, i.e., there are Dlogtime-uniform AC0-complete sets for NC1

(or any other natural class) that are not Dlogtime-uniform NC0-complete. This implies
that with our approach one cannot hope to prove the Isomorphism Theorem for Dlogtime-
uniform AC0 isomorphisms.

1.3 Section Organization

Section 2 presents de�nitions for the classes of reductions considered in this paper.
Section 3 presents our results about sets complete under NC0 reductions, the gap the-

orem, the isomorphism theorem, and that it cannot be improved to Dlogtime-uniform re-
ductions using our approach.

Section 4 presents some concluding remarks.

2 Basic De�nitions and Preliminaries

We assume familiarity with the basic notions of many-one reducibility as presented, for
example, in [BDG88]. In this paper, only many-one reductions will be considered.

A circuit family is a set fCn : n 2 Ng where each Cn is an acyclic circuit with n Boolean
inputs x1; : : : ; xn (as well as the constants 0 and 1 allowed as inputs) and some number of
output gates y1; : : : ; yr. fCng has size s(n) if each circuit Cn has at most s(n) gates; it has
depth d(n) if the length of the longest path from input to output in Cn is at most d(n).
A family fCng is uniform if the function n 7! Cn is easy to compute in some sense. In
this paper, we will consider only Dlogtime-uniformity [BIS90] and P-uniformity [Al89] (in
addition to non-uniform circuit families).

5

A function f is said to be in AC0 if there is a circuit family fCng of size nO(1) and
depth O(1) consisting of unbounded fan-in AND and OR and NOT gates such that for
each input x of length n, the output of Cn on input x is f(x). Note that, according to this
strict de�nition, a function f in AC0 must satisfy the restriction that jxj = jyj =) jf(x)j =
jf(y)j. However, the imposition of this restriction is an unintentional artifact of the circuit-
based de�nition given above, and it has the e�ect of disallowing any interesting results
about the class of sets isomorphic to SAT (or other complete sets), since there could be no
AC0-isomorphism between a set containing only even length strings and a set containing
only odd length strings { and it is precisely this sort of indi�erence to encoding details
that motivates much of the study of isomorphisms of complete sets. Thus we allow AC0-
computable functions to consist of functions computed by circuits of this sort, where some
simple convention is used to encode inputs of di�erent lengths (for example, \00" denotes
zero, \01" denotes one, and \11" denotes end-of-string; other reasonable conventions yield
exactly the same class of functions). For technical reasons, we will adopt the following
speci�c convention: each Cn will have nk + k log(n) output bits (for some k). The last
k logn output bits will be viewed as a binary number r, and the output produced by the
circuit will be the binary string contained in the �rst r output bits. It is easy to verify
that this convention is AC0-equivalent to the other convention mentioned above, and for
us it has the advantage that only O(logn) output bits are used to encode the length. It
is worth noting that, with this de�nition, the class of Dlogtime-uniform AC0-computable
functions admits many alternative characterizations, including expressibility in �rst-order
with f+;�;�g [Li94, BIS90]1, the logspace-rudimentary reductions of Jones [Jo75, AG91],
logarithmic-time alternating Turing machines with O(1) alternations [BIS90] and others.
This lends additional weight to our choice of this de�nition.

NC1 and NC0 are the classes of functions computed in this way by circuit families of size
nO(1) and depth O(logn) (or O(1), respectively), consisting of fan-in two AND and OR and
NOT gates. Note that for any NC0 circuit family, there is some constant c such that each
output bit depends on at most c di�erent input bits. An NC0 function is a projection if its
circuit family contains no AND or OR gates. The class of functions in NC0 was considered
previously in [H�a87]. The class of projections is clearly a subclass of NC0 and has been
studied by many authors; consult the references in [ABI93].

For technical reasons and for simplicity of exposition, we do not allow an NC0 circuit
Cn to produce outputs of di�erent lengths for di�erent inputs of length n, although we do
allow AC0 and NC1 circuits to do this by following the convention mentioned above. That
is, if f is computed by NC0 circuit family fCng where each Cn has s(n) output bits, then for
all inputs x of length n, jf(x)j = s(n). Our chief justi�cation for imposing this restriction
is that Theorem 10 shows that any set hard for NP (or other complexity classes) under
AC0 reductions (using the less-restrictive convention allowing outputs of di�erent lengths)
is in fact hard under NC0 reductions (using the more-restrictive convention). Thus we are
able to obtain our corollaries about sets complete under AC0 reductions without dealing
with the technical complications caused by allowing NC0 reductions to output strings of
di�erent lengths. Also note that, even with this restriction, the NC0 reductions we consider

1Lindell [Li94] shows only that this coincides with �rst-order expressibility in �rst order with f+;�;�;

expg, where \exp" denotes exponentiation. However, personal communication from K. Regan and S. Lindell
shows that exponentiation can be eliminated.

6

are still more general than the �rst-order projections considered in [ABI93].
For a complexity class C, a C-isomorphism is a bijection f such that both f and f�1

are in C. Since only many-one reductions are considered in this paper, a \C-reduction" is
simply a function in C.

(A language is in a complexity class C if its characteristic function is in C. This con-
vention allows us to avoid introducing additional notation such as FAC0, FNC1, etc. to
distinguish between classes of languages and classes of functions.)

The theorems we prove in this paper hold for most complexity classes that are of interest
to theoreticians; we require only closure under certain easily-computable reductions. To
make this precise, we say that a class of languages C is a proper complexity class if C is
closed under Dlogtime-uniformNC1 reductions. (That is, if A is in C, and B is reducible to
A via a many-one reduction computable in NC1, then B is in C.) Note that most complexity
classes, such as NP, P, PSPACE, BPP, etc. are proper complexity classes.

In fact, inspection of our proofs shows that our results hold even for any class C that is
closed under reductions computed by uniform threshold circuits of depth �ve. (The number
�ve can probably be reduced.) We do not know how to weaken the assumption to closure
under reductions computed in ACC0; it is easy to see that our results do not hold for some
classes closed under AC0 reductions. For instance, the sets f1g and f1; 11g are both hard
for AC0 under AC0 reductions, but they are not isomorphic, and they are not hard under
NC0 reductions.

A function is length-nondecreasing (length-increasing, length-squaring) if, for all x, jxj �
jf(x)j (jxj < jf(x)j, jxj2 � jf(x)j); it is C-invertible if there is a function g 2 C such that
for all x; f(g(f(x))) = f(x).

The following proposition is well-known:

Proposition 1 P=NP i� every length-increasing Dlogtime-uniform NC0 function is P-
invertible.

Proof. The forward direction is obvious. For the converse, assume that 3SAT is not
in P. Consider the following encoding of a 3CNF formula with variables v1; : : : ; vn. Note
that there are only 8n3 clauses on these variables that can possibly appear in any 3CNF
formula. A formula can thus be encoded as a sequence of 8n3 bits, with each bit denoting
the presence or absence of the corresponding clause. Now consider the function f de�ned
by f(�;~v) = (�; x) where x is the string of length 8n3 such that the ith bit of x is 1 i� (the
ith bit of � is 0 or the ith bit of � is 1 and the corresponding clause evaluates to 1 when
the variables are set according to the assignment ~v). It is clear that f is length-increasing,
and it is not hard to see that f is computed by a Dlogtime-uniform family of NC0 circuits.
Note that � is in 3SAT i� (�; 1j�j) is in the range of f , which can be detected in polynomial
time if f is P-invertible.

3 Main Results

3.1 Superprojections

De�nition 1 An NC0 reduction fCng is a superprojection if the circuit that results by
deleting zero or more of the output bits in each Cn is a projection wherein each input bit (or

7

its negation) is mapped to some output. (Stated another way, it is a superprojection if, for
each input bit xi, there is an output bit whose value is completely determined by xi. That
is, this output bit is either xi or :xi.)

Note that every superprojection has an inverse that is computable in AC0: On input
y, we want to determine if there is an x such that f(x) = y. The AC0 circuit will have
a subcircuit for each n � jyj (since a superprojection is by de�nition one-one and length-
nondecreasing) checking to see if there is such an x of length n. This subcircuit will �nd
the n output bits that completely determine what x must be (if such an x exists), and then
will check to see if f(x) = y.

Theorem 2 For every proper complexity class C, every set hard for C under P-uniform
NC0 reductions is hard under P-uniform one-one, length-squaring superprojections.

Proof. Let A be hard for C under NC0 reductions. We shall show A to be hard under
one-one length-squaring superprojections in two stages.

Stage 1: In the �rst stage, we show that A is also hard under length-nondecreasing super-
projections.

Take any set B in C. We de�ne a new set C, TC0-reducible to B, that is accepted by
the following procedure:

On input y, let y = 1k0z. If k does not divide jzj, then reject. Otherwise, break
z into blocks of k consecutive bits each. Let these be u1u2u3 : : : up. Accept if
there is an i, 1 � i � p, such that ui = 1k. Otherwise, reject if there is an i,
1 � i � p, such that ui = 0k. Otherwise, for each i, 1 � i � p, label ui as null if
the number of ones in it is less than k=2; as zero if the number of ones in it are
between k=2 and 3k=4; and as one otherwise. Let vi = � if ui is null, 0 if ui is
zero, and 1 otherwise. Let x = v1v2 � � �vp, and accept i� x 2 B.

It is straightforward to see that C reduces to B via a Dlogtime-uniform NC1 reduction.
Therefore, C 2 C by the closure properties of C. Since A is NC0-hard for C, there exists an
NC0 reduction of C to A. Let this be given by the family of circuits fDng. In what follows,
we will use the circuits Dn (reducing C to A) to construct a projection reducing B to C

with the property that the composition of these two reductions is a superprojection from
B to A.

Let the depth of circuits in the family fDng be bounded by the constant d and let

c = 22
2d

. The projection fromB to C will map strings of size n to strings of size 4c+1+4cm
where m = O(nc) (the exact value of m will be given later). It will map string x, jxj = n,
to the string 14c0u1u2 : : : um where each ui is of size 4c, and where the string formed out of
these uis (as described in the procedure de�ning C) is x. We show below how the values of
the uis are computed. In the discussion below, we refer to the uis as blocks.

Consider the circuitD4c+1+4cm. Set the �rst 4c+1 bits of the circuit to 14c0 and consider
the reduced circuit with 4cm unset input bits. Each output bit of this circuit depends on
at most 2d input bits. Let O be a maximal set of output bits satisfying the property that
(1) each output bit in O depends on at least one input bit (so there are no constant output

8

bits in O), and (2) no two output bits in O depend on the same set of input bits. We �rst
show that jOj � m=2d. Suppose not. Since any output bit of the circuit depends on at most
2d input bits, the bits in O depend on at most jOj � 2d < m input bits. Also, any output bit
of the circuit that is not in O can depend only on these input bits since otherwise it would
have been included in O. Thus, there are fewer than m input bits, out of 4cm, on which
the output of the circuit depends. This implies that there is one whole block of input bits,
say ui, that does not a�ect the output. Set all the blocks except ui to zero (i.e., to a value
with number of ones between 2c and 3c, e.g., 12c02c). Now, setting ui to 14c or 04c keeps
the output of the circuit identical, which is a contradiction since D4c+1+4cm reduces strings
of C to A.

Therefore, the size of O is r, for some

r � m=2d: (1)

We will start with this set O of output bits, and possibly remove some bits from O as the
construction proceeds.

The remaining input bits are denoted as usual with x1, : : :, x4cm. We view each output
bit as the outcome of a (bounded) truth-table evaluation on the input bits on which it
depends. (We need to be fairly precise here about how we associate a truth table to each
output bit. Consider one of the output bits in O, and consider the fan-in two circuit of
depth d that computes this output bit. Order these input bits according to the index, with
xi coming before xj if i < j. If one of these � 2d input bits actually has no e�ect on
the value of the output, then remove that input bit and simplify the circuit computing the
output bit accordingly, and let the number of input bits remaining be d0 � 2d. The \truth
table" for this output bit has variables v1; : : : ; vd0 . The value of the output bit is obtained

by plugging in the appropriate input bit for each vi.) Note that there are at most 22
2d

= c
di�erent such truth-tables. We choose some truth-table, say �, that is associated with a
maximal number of output bits (i.e., at least as many as is any other truth table).

At this point, remove from O all output bits that do not have � as their truth table,
and let s be the number of output bits that now remain in O. Clearly,

s � r=c: (2)

Consider the ith output bit remaining in O. Let the ordered set of input bits on which
it depends be fxi;1; xi;2; : : : ; xi;d0g where d

0 � c. Consider the family of sets F = fSig where
Si = f(j; xi;j) : 1 � j � d0g. All of the sets in F have size at most c, and note that, by
the way we have constructed our set O, we have that if i 6= i0, then Si 6= Si0 . Thus by the
Sunower Lemma of [ER60] (see also [BS90, Lemma 4.1]), the collection of sets F contains
a sunower of size at least

t � (bs=(c!)c)(1=c): (3)

(This \Sunower" is a collection of t sets from F with the property that, for all pairwise
distinct sets S1; S2; S3; S4 in the sunower, S1 \ S2 = S3 \ S4. The set that one obtains by
intersecting any two elements of the sunower is called the \core" of the sunower.) We
now remove from O all of those output bits i such that Si is not in this sunower. Thus
jOj = t now.

9

Consider any two bits i and j that remain in O. Si and Sj record the input bits on
which output bits i and j depend, and note that the input bits in Si \ Sj correspond to
exactly the same variables in the truth table � that determines how i and j depend on these
inputs. Now, set the bits in the core of the sunower to 0-1 values such that the truth-table
� does not become a constant (this can always be done, because the truth table � depends
on all of its d0 input bits). So now each output bit in O depends only on the input bits that
are in the corresponding petal of the sunower. We will process each petal of the sunower
in turn.

Consider the �rst petal (corresponding to output bit i1). Since setting the bits in the
core did not make � a constant, there is some bit zi1 in this petal and some assignment of
f0,1g values to the other bits in the petal such that the output bit i1 depends only on the
value of zi1 . Moreover, since the truth-table relating the output bits to petals is identical for
all petals, we obtain a corresponding bit zi in each petal, along with an identical assignment
to the remaining bits in each petal. (There is a subtle point here. Although the sets in
our sunower F have pairwise intersection equal to the core of the sunower, and thus the
petals are each pairwise disjoint, this says only that a tuple (j; xk;j) can appear in at most
one petal, but it does not say that a given input variable can appear in at most one petal
(although it does follow that a given input variable can appear in at most d0 � c di�erent
petals, each time paired with a di�erent number j). In particular, it is certainly possible
that the \identical assignments to the remaining bits in each petal" referred to above will
conict with each other. We will show below how to deal with this.) Call the bit zi the
identi�ed bit for the petal i.

Recall that our goal is to map a string x of length n to a string of the form 14c0u1u2 : : : um
where each ui is of size 4c, and where each ui is either \null" or represents a single bit of
x. Our overall approach is to map input bits of x to the identi�ed bits zi in the petals of
the sunower. When we try to do this we have to assign values to the bits in the core of
the sunower and to the other bits in the petals of the sunower; this will cause us to make
some of the blocks ui \null", and it will cause us to remove some of the petals from O.
We will succeed if we can show how to make this assignment and still end up with enough
petals to encode all of the bits of x.

Process each output bit i 2 O in turn. Consider the unset bits in Si. (Initially, none of
the bits in Si are set. When we process the �rst bit i in O we will set all of the bits in Si
except for zi, including all of the bits in the core. When we process the other bits in O only
the bits in the petal will be unset.) For each of these bits other than zi, set this bit to the
value (discussed above) so that output bit i depends only on the value of zi. (This causes
at most c � 1 bits to be set.) Each of these bits is in some block uj . Consider any such
block uj that contains one of these bits that has just been set but does not contain zi. Set
the rest of the bits in such a block uj to zero. Note that this has the e�ect of making block
uj null, since the length of uj is 4c and we are setting at least 3c+ 1 > 2c variables in this
block to zero. We have now set all blocks containing variables in Si except for the block
uji containing zi. This block contains at most c � 1 variables that have been set. Set the
rest of the inputs in block uji (that is, set the variables in uji other than zi) so that there
are exactly 3c ones and c� 1 zeroes in the block. (This has the e�ect of making the block
depend on the identi�ed bit: it is zero when the identi�ed bit is zero and one otherwise.)
Thus far in processing petal i, we have set fewer than 4c2 input bits (at most 4c for each bit

10

other than zi, and at most 4c�1 for zi). Some of the input bits we have set (including some
of the bits in the petal just processed) may be elements of other petals in our sunower.
Remove from O any output j such that its petal contains a bit that has been set in this
way; remove also any j such that its petal contains the bit zi just processed. This causes
O to lose fewer than 4c3 output bits (since each of the < 4c2 bits can appear in at most c
petals), and in the remaining sunower, none of the bits in any petal has been set. Note
that the end result of processing this element i 2 O is that we have obtained an input bit
zi such that the output bit i is a projection of zi. Now repeat the process described above
for the next bit remaining in O.

We repeat this process jxj times to obtain jxj such bits zi. In order for this to be possible,
it is su�cient for t to be at least 4c3 � jxj. This gives us a bound on m: m � 2d � r (by (1))
� 2d � c � s (by (2)) � 2d � c � (tc+1) � c! (by (3)), and thus if we pick t to be 4c3 � jxj, it follows
that it is su�cient to choose m to be c00 � jxjc for some constant c00 depending on d. (Recall
that c depends on d.)

So our reduction of B to C will, on input x of length n, identify bits z1; : : : ; zn and map
xi to bit zi, where the other bits of circuit D4c+1+4cm are set according to the procedure
listed above (or if there are any remaining bits left unset by this procedure, we set those bits
to zero, having the e�ect of nullifying all remaining blocks not containing one of the zis).
This reduction of B to C is just a projection from B, since every output bit depends on at
most one input bit. It maps a string of size n to one of size 4c+ 1 + 4cm with m = c00 � nc.

If we now consider the reduction from B to A that results by composing the projection
from B to C with the reduction D4c+1+4cm, we note that the n bits that are determined
by the zi are merely the projections of the input x, and the other bits are either �xed
or correspond to output bits that were deleted from O by the foregoing procedure, but
nonetheless are still computed by the NC0 circuit. Thus the reduction is a superprojection.

It is somewhat tedious to verify that this reduction can be made P-uniform. First
observe that � can be found in logspace. Then observe that there are at most nc sets
that could possibly be the core of the desired sunower; exhaustively trying each such
possible core in turn, and then using a greedy algorithm to �nd a maximal collection of sets
containing the core and with pairwise disjoint \petals" will eventually uncover a sunower
of the desired size. (The proof of the Sunower Lemma given in [BS90] shows that this
approach will succeed.) Finding the desired setting of the bits in the core and petals is easy.
Then sequentially deleting the bits from the petals is straightforward.

Stage 2: It is clear at this point that the reduction of B to A described above is length-
nondecreasing and also 1-1 at least on strings of the same length. However, it may map
strings of two di�erent lengths to the same string. To take care of this problem, we add
another stage of the construction.

Once more, we take any set B in C. Once more, we de�ne a new set E AC0-reducible
to B. The de�nition of E is straightforward:

E = fx10k j x 2 B k 2 Ng:

E is clearly in C and therefore there exists an NC0 reduction of E to A that is a length-
increasing superprojection. Let this reduction be given by the function f . We know that for
all x: jxj � jf(x)j � p(jxj) for some polynomial p. De�ne a function r as follows: r(0) = 1,

11

and r(t+ 1) = p(r(t)) + 1. And now de�ne a reduction g of B to E as: g(x) = x10k where
k is the smallest number such that: k � jxj2 and jxj+ 1 + k = r(t) for some t. Function g
can clearly be computed by a projection circuit, and so f �g is an NC0 reduction of B to A.
It is length-increasing because g and f are both length-increasing. It is 1-1 also, which can
be seen as follows: for any two strings x and y such that jg(x)j = jg(y)j, f(g(x)) 6= f(g(y))
follows from the nature of f . And when jg(x)j > jg(y)j then jf(g(y))j � p(jg(y)j) = p(r(t))
(for some t) < r(t+ 1) � jg(x)j � jf(g(x))j.

Also note that, since g is length-squaring and f is length-nondecreasing, the resulting
superprojection is at least length-squaring.

Checking P-uniformity of this step is trivial.

The following corollary (the non-uniform case) is a trivial consequence of the foregoing.

Corollary 3 For every proper complexity class C, every set complete for C under NC0 reductions
is complete under one-one, length-squaring superprojections.

Corollary 4 For every proper complexity class C, every set complete for C under NC0 reductions
is complete under reductions computable by depth two AC0 circuits and invertible by depth
three AC0 circuits. (If the NC0 reductions are P-uniform, then so are the AC0 circuits.)

Proof. First note that since a superprojection is an NC0 reduction, it can be computed in
depth two simply by expressing each output bit in DNF or CNF form.

Next note that because of the construction of Stage 2 of the proof of Theorem 2, we know
that if A is complete for C under NC0 reductions, then it is complete under superprojections
f of the form h � g where h is a superprojection when restricted to strings in the range of
g, and strings in the range of g have the form y10k. Furthermore, for each n there is an
(easily-computed) m such that, for each string x of length n, if f�1(x) exists, then there
exist y and k such that jg(y)j = jy10kj = m, f�1(x) = y, and h(y10k) = x. (The point
here is that m depends only on n = jxj.) Now to compute f�1 for inputs of length n, it
su�ces to consider the circuit computing h on inputs of length m. For inputs x of length n,
f�1(x) exists if and only if h�1(x) exists and is of the form y10k for k in the correct range.
If h�1(x) exists, then there are m bits of x that directly encode the bits of y10k, since h is
a superprojection.

Thus our circuit to compute f�1(x) �rst takes the string y10k that is available on the
input level of the circuit (as determined by m bits of input x) and that is a candidate
for h�1(x). Then (in depth two) it computes h(y10k), and checks that all of the bits of
h(y10k) and x agree. This is an AND of several NC0 predicates, and by expressing the
NC0 predicates in CNF and merging the two levels of AND gates we obtain a depth two
circuit producing output y10k if h�1(x) = y10k. Since our goal is to produce output y (and
also output jyj in the length-encoding �eld) we obtain a depth three circuit by taking the
OR over all possible values of r = jyj of the predicate \h�1(x) = y10k AND the last m� r
bits of y10k are in 10�".

Corollary 5 For every proper complexity class C, all sets complete for C under P-uniform
NC0 reductions are P-uniform AC0-isomorphic. Furthermore, these isomorphisms are com-
putable and invertible by P-uniform AC0 circuits of depth three.

12

Proof. The main result in [ABI93], showing that all sets complete under �rst-order projec-
tions are �rst-order isomorphic, carries over also into the P-uniform setting, and the same
proof also works for superprojections. We refer the reader to [ABI93] for details, but we
sketch some of the important steps here.

Let A and B be complete for C under NC0 reductions. Thus there are superprojections
f and g reducing A to B and reducing B to A, respectively. Our goal is to construct an
isomorphism mapping A onto B. We �rst construct a depth four isomorphism between A
and B, and then improve it to depth three. As in most other work constructing isomor-
phisms (see [BH77] for example), given an input x, we will need to compute the length of
the \ancestor chain" of x, and output f(x) if the length of the chain is even, and output
g�1(x) if the length of the chain is odd.

Note that if the kth ancestor exists, then (just as in the case k = 1 in the proof of
Corollary 4) the bits of the kth ancestor are available at the input level. Thus one can
determine in depth three if the length of the ancestor chain is exactly r. (Namely, for all
k < r the appropriate inverse image of the kth ancestor exists, and it does not exist for the
rth ancestor.) Now, the ith bit of the output would be

((
_

k odd

r = k)
^
(ith bit of f(x)))

_
((
_

k even

r = k)
^
(ith bit of g�1(x))):

This gives a depth six circuit, however, note that the top two levels are of fan-in two, and
therefore, can be \pushed down" and collapsed with the bottom two levels. This results in
a depth four circuit.

To reduce the depth further, we observe that we do not need to explicitly check for
the existence of the inverse at level two (as is done in the proof of Corollary 4). Instead,
we distribute this work to the top two levels: Let Ck;m be the NC0 circuit that outputs
a sequence of ones i� the kth ancestor exists and has length m. Let C0

k be the depth two
AC0 circuit (with top level AND gates) that outputs a sequence containing at least one
zero i� the kth ancestor does not exist. (To see how to construct C0

k, note that if the k
th

ancestor does exist, then there is a k � 1th ancestor z of some length m that is completely
determined by n and k, and the kth ancestor is a string y where h�1(z) = y10r where r
cannot be too large. That is, in addition to the local consistency checks (each bit of which
can computed in NC0), the only other condition that must be checked is to say that the
kth ancestor does not exist if h�1(z) = y10r ends in too many zeros. This can clearly be
checked by a CNF circuit.) Let Dr;l;~m be the circuit computing

(
^
k�r

output(Ck;mk
) 2 1�)

^
(lth bit of output(C0

r+1) = 0):

(Here, ~m is a vector of O(logn) bits encoding a sequence m1; : : : ; mr of numbers such
that (mi)2 � mi+1 � n. Since f and g are both length-squaring, the sequence of lengths
occurring in the ancestor chain can be encoded as such a vector. Dr;l;~m is still a depth two
circuit since the AND gate at the top can be merged with the AND gates on top of the
Ck;mk

s and C0
r+1s. The i

th bit of the output can now be de�ned as:

((
_

r odd

_
l

_
~m

Dr;l;~m)
^
(ith bit of f(x)))

_
((
_

r even

_
l

_
~m

Dr;l;~m)
^
(ith bit of g�1(x))):

13

As argued before, this is a depth three circuit. A similar circuit computes the inverse of the
isomorphism.

Corollary 6 For every proper complexity class C, all sets complete for C under NC0 reductions
are AC0-isomorphic. Furthermore, these isomorphisms are computable and invertible by
AC0 circuits of depth three.

The above corollary generalizes the result not only of [ABI93] to a larger class of complete
sets, but also the results of [Ag94]. To see this, we observe that the complete sets under all
the reducibilities considered in [Ag94] are also complete under NLOG-uniform projections.
It was shown in [Ag94] that the complete sets under 1-L, 1-NL, and 1-omL reductions are
also complete under forgetful 1-L, 1-NL, and 1-omL reductions respectively. A forgetful
reducibility was de�ned there as one computed by a TM that, after scanning each bit of the
input, ends up in a con�guration that depends only on the size of the input|in particular,
it is independent of the value of the bits scanned so far. It is easy to see that a forgetful TM
computes a function that is a projection|the output of the TM during its scan of any input
bit depends only on the bit and the length of the input; and thus every output bit depends
on at most one input bit. And since all the three reducibilities 1-L, 1-NL, and 1-omL are
subclasses of NLOG-reducibility, the corresponding forgetful TMs compute NLOG-uniform
projections. Thus, these complete sets form a strict subclass of NC0-complete sets as it
is straightforward to construct a set that is NC0-complete (for any proper class) but not
complete under even non-uniform projections [ABI93].

3.2 The Gap Theorem and The Isomorphism Theorem

3.2.1 Random Restrictions of AC0 reductions

An important tool will be the fact that when we randomly restrict the inputs to a circuit
family computing an AC0 function we obtain a circuit family computing an NC0 reduction.
This has been a folklore theorem since [FSS84, Aj83]. Lemma 7 below is explicitly stated
in [Ar95]. The proof can be gleaned by suitable modi�cations of any of several alternative
presentations [BS90, Fo95, B95]. The proof of a slightly stronger statement can be found
in the appendix of this paper.

De�nition: For a natural number a, an a-random restriction �a on m variables is a
function independently assigning to each variable a value in f0; 1; �g as follows: set it to 0
with probability (1 �m(1=a)�1)=2, set it to 1 with probability (1�m(1=a)�1)=2, and set it
to * with probability m(1=a)�1.

Lemma 7 For any AC0 reduction computed by a family of circuits fCmg, there exists an
a 2 N such that, with probability 1 � o(1), an a-random restriction �a on m variables
transforms Cm into an NC0-circuit with
((m1=a)) input variables.

In the appendix of this paper we prove a slightly stronger version of this, which (to the
best of our knowledge) has been a folklore theorem.

Lemma 8 Let m = r2a, and let the m variables x1; : : : ; xm be divided into r blocks of length
r2a�1 (where block i consists of variables xir+1; : : : ; xir+r). Then with probability 1� o(1),
an a-random restriction assigns * to at least three variables in each block.

14

Proof. Each one of the m bits will have probability p = m(1=a)�1 = r2a
(1=a)�1

= r2�2a

of getting set to *. Notice that the block size is r2a�1 = r=p. The probability that any
particular block of size r=p gets no more than two *s is given by:

(1� p)r=p + r
pp(1� p)(r=p)�1 +

�r=p
2

�
p2(1� p)r=p�2

� e�r + re�r + r2e�r

= O(r2e�r)

Since there are r blocks the probability that one of them gets fewer than 3 *'s is O(r3e�r) =
o(1). It follows that all blocks get at least 3 *'s with probability 1� o(1).

All that is needed for the results of the following section is this easy consequence of the
preceding two lemmas.

Corollary 9 For any AC0r
�
eduction computed by a family of circuits fCmg, there exists an

a 2 N such that, for all large m of the form r2a, there is a restriction �m such that �m
transforms Cm into an NC0 circuit, and �m assigns * to at least three variables in each
block of length r2a�1.

3.2.2 The Gap Theorem

Theorem 10 (Gap Theorem) Let C be any proper complexity class. The sets hard for
C under non-uniform AC0 reductions are hard for C under non-uniform NC0 reductions.

Proof.
Let C be any proper complexity class, i.e., C is closed under Dlogtime-uniform NC1

reductions. Let A be any set hard for C under AC0-reductions. Let B be any set in C.
Clearly, B is AC0-reducible to A. We seek to show that B is actually NC0-reducible to A.

The proof strategy will be similar to the one followed in Stage 1 of the proof of Theo-
rem 2. As there, we de�ne a set B0 2 C, and use the AC0-reduction Cn from B0 to A as
a starting point for a reduction from B to A. B0 will have been chosen so that a suitable
non-uniform restriction of Cn will give us an NC0 reduction from B to A.

We de�ne B0 to be the set of strings accepted by the following procedure:

On input y, let y = 1k0z. Reject if k does not divide jzj. Otherwise, break z
into blocks of k consecutive bits each. Let these be u1u2u3 � � �uq. For each i,
1 � i � q, let vi = 0 if the number of ones in ui equals 0 modulo 3; vi = 1 if
the number of ones in ui equals 1 modulo 3; and vi = � otherwise. Accept i�
v1v2 � � �vq 2 B.

It is easy to see thatB0 is Dlogtime-uniformNC1 reducible toB. Hence, by the de�nition
of proper complexity class, B0 2 C. Since A is hard for C under AC0-reductions, there must
exist an AC0 circuit family Cn computing a reduction from B0 to A. Let d be a bound on
the depth of the family Cn. W.l.o.g. we can assume that Cn takes n input bits and has no
more than nd output bits. (Recall that the �nal O(logn) bits are used to encode a number

15

that indicates how many of the output bits to use in the reduction. We refer to these bits
as the \length-encoder bits".)

Let a be the constant (depending on the depth d of Cn) from Lemma 7. Let C0
m be the

family of circuits for inputs of length m = (2q)2a, where C0
m is obtained by taking circuit

Cn for n = 1+ (2q)2a�1 +m and setting the �rst 1 + (2q)2a�1 bits to 1(2q)
2a�1

0.
By Corollary 9, for all largem, there is a restriction �m such that �m transforms C0

m into
an NC0 circuit, and �m assigns * to at least three variables in each block of length (2q)2a�1.
We will now show how to extend �m to obtain a further restriction of C0

m having only q

variables, and having the length-encoder bits set to constant values. We will call this new
circuit family Dq. This circuit family Dq will be our NC0 reduction from B to A.

Each of O(logn) length encoder bits depends only on a constant number of remaining
input bits. Thus, the encoder bits depend only on O(logn) blocks. For each of these
O(logn) blocks, �x all the remaining bits to constants so that the number of 1's in each
block is 2 modulo 3 (this is always possible because we have at least 3 unset bits in each
block). The length-encoder bits are �xed and we still have 2q � O(log q) blocks that we
have not tampered with. Pick all but the �rst q blocks and also �x their inputs so that the
number of 1's in each of them is 2 modulo 3. For each of the remaining q blocks, set all but
one bit in each block so that the total number of 1's in the block is 0 modulo 3 (again this is
possible since there are at least three unset bits in each block). The result is a circuit with
exactly q input bits and a �xed output size. (That is, all of the length-encoder bits have
been set to constant values by setting the bits on which they depend. Let this value be r.
Thus we can delete the length encoder bits and all but the �rst r output bits.) Call this
circuit family Dq. Notice that it has size polynomial in q because q is
(n�) for some � > 0
and Cn is of size polynomial in n. Also note that Dq is obtained from Cn by restricting

attention to inputs of the form y = 1(2q)
2a�1

0z, where z is a string with exactly q *'s. For
any string x of length q, denote by y(x) the result of plugging the q bits of x into the q
positions in z, and note that the algorithm for B0 accepts y(x) if and only x 2 B (because
the algorithm for B0 decodes z to obtain x).

Since Cn reduces B0 to A, we see that Dq reduces B to A. This is the desired NC0-
reduction from B to A.

3.2.3 The Isomorphism Theorem

The Isomorphism Theorem is an immediate consequence of the Gap Theorem and Corollary
6.

Theorem 11 (Isomorphism Theorem) Let C be any proper complexity class. All sets
complete for C under (non-uniform) AC0 reductions are AC0-isomorphic. Furthermore the
isomorphisms are computable and invertible by depth three AC0 circuits.

Note that this is, in some sense, a true analog of the Berman-Hartmanis conjecture,
since it presents a natural notion of computation (which then yields natural notions of
reducibility and isomorphism) and it shows that in this setting the complete sets coincide
with the isomorphism type of the standard complete set.

In the rest of this section, we include a few observations that we hope will shed additional
light on the original Berman-Hartmanis conjecture.

16

Recall that our Gap Theorem says that, for sets A that are complete for NP under
AC0 reductions, all sets reducible to A under AC0 reductions are already reducible to A
under NC0 reductions. Let us now consider another type of possible \collapse" and inves-
tigate its consequences.

For the purposes of this section, let us say that a set A is special if it has the property
that the class of sets reducible to A via uniform AC0-reductions is equal to the class of
sets reducible to A via reductions computed by uniform threshold circuits of depth �ve.2

Since AC0 cannot compute the MAJORITY function (computable by a depth one threshold
circuit), clearly no �nite set is special, and it is easy to construct many other sets that are
not special.

On the other hand, any set A that is complete for NP under AC0-reductions clearly is
special, since NP is exactly the class of sets reducible to A under either form of reducibility.

Are all sets that are complete for NP under polynomial-time reductions special? If so,
then (as we sketch below), a non-uniform version of the Berman-Hartmanis Conjecture is
true.

Let A be any set that is complete for NP under polynomial-time reductions. We observe
�rst of all that there is a set A0 that is both

1. P-isomorphic to SAT, and

2. AC0-reducible to A.

Let f be a polynomial-time reduction from SAT to A, and let f be computed by a
polynomial-time machine M . Let A0 be the set f< x; y; C1; : : : ; Cm >j C1 is an initial
con�guration of M on input x, each Ci yields Ci+1 via one computation step of M , Cm

is the �nal con�guration of M producing output y, and y 2 Ag. Since SAT is reducible
to A0 via a length-increasing and invertible reduction, it follows from [BH77] that SAT is
P-isomorphic to A0.

If in addition A is special, then by Theorem 10 there is a (non-uniform) NC0 reduction
from A0 to A, and by Theorem 2, there is a (non-uniform) superprojection reducing A0

to A. In particular, this implies that there is a length-increasing and invertible P/poly
reduction from SAT to A, and hence A is P/poly-isomorphic to SAT. (Most of the non-
uniformity here can in fact be eliminated. The NC0 reduction from A0 to A can in fact

be made DTIME(nlog
O(1) n)-uniform, by noting that the pseudorandom output produced

by Nisan's generator [Ni92] must frequently produce restrictions satisfying the condition of
Corollary 9; we leave the details to the reader. It follows that, if A is special, then it is
quasipolynomial-time isomorphic to SAT.)

We do not view this as strong evidence in favor of the Berman-Hartmanis Conjecture,
but we do feel that it casts the problem in a new light.

3.3 Uniform Versus Non-uniform Gap Theorems

Theorem 10 cannot be made Dlogtime-uniform. That is, there exist Dlogtime-uniformAC0-
complete sets for NC1 that are not Dlogtime-uniformNC0-complete. It is worth mentioning

2See the comments in Section 2, where the notion of a proper complexity class is de�ned, to understand
this reference to threshold circuits.

17

at this point that it is not entirely clear what should be the \right" notion of uniformity for
NC0 circuits, since Dlogtime Turing machines can do things that cannot be done by any
NC0 circuit (and thus one might want to consider a more restrictive version of uniformity
when discussing uniform NC0, so as not to allow the uniformity machine to overwhelm the
computation done by the NC0 circuit itself). However, we show here that even under this
\powerful" notion of uniformity for NC0, Theorem 10 fails to hold.

Theorem 12 For any class C closed under Dlogtime-uniform AC0 reductions and having
a set complete under AC0 reductions, there are Dlogtime-uniform AC0-complete sets for
C that are not Dlogtime-uniform NC0-complete.

Proof. The proof uses ideas from [Ag95]. Let A be any Dlogtime-uniform AC0-complete
set for C, and let L be any set in NTIME(n). Let �mL denote the characteristic bit-vector
of L for the �rst m strings of �� (in lexicographic order). De�ne a set AL as:

AL = fxz j z 2 A ^ jxj = jzj ^ x = �
jzj
L g:

The set AL reduces to A via a Dlogtime-uniform AC0 reduction: for inputs of size 2n,
the reduction circuit computes the bit-vector �nL (this can be done by a Dlogtime-uniform
AC0 circuit since L 2 NTIME(n) and the size of each of the �rst n strings of �� is at most
logn), compares it with the �rst n bits of the input, and outputs the last n bits if all the
bits match, and otherwise outputs some �xed string not in A. For inputs of odd size, the
reduction circuit just outputs some �xed string not in A. It is easy to see that the entire
circuit can be made Dlogtime-uniform. Therefore, AL 2 C.

The set A reduces to AL via a Dlogtime-uniform AC0 reduction: for input of size n, the
reduction circuit �rst outputs �nL and then outputs the n input bits. This circuit too is a
Dlogtime-uniform AC0 circuit. Therefore, AL is Dlogtime-uniform AC0-complete for C.

Now, let us assume that Dlogtime-uniform AC0-complete sets for C are also Dlogtime-
uniform NC0-complete. Thus, AL is Dlogtime-uniform NC0-complete for C. By Lemma
13 (below), AL is complete under Dlogtime-uniform NC0 reductions for which there is a
constant c � 1 such that the length of the output produced on input x has length at least
jxj=2c. Let fCng be such a reduction of the set 1� to AL.

We will now give a deterministic procedure that accepts L in linear time. On input x,
jxj = n, the procedure considers the circuit C2n+2+c . This circuit, on input 12

n+2+c
, must

output a string in AL of size ` with ` � 2n+2. Since the output is in AL, the �rst `=2 bits of

it are �
`=2
L , and therefore, the mth output bit of the circuit is �L(x) where m is the position

of the string x in the lexicographic order. (This is because m � 2n+1 � `=2.)
The circuit C2n+2+c is a Dlogtime-uniformNC0 circuit. Thus the following functions are

computable in time logarithmic in input size (in other words, in time linear in n):

� (2n+2+c; g; R) 7! g0, where g0 is the name of the right input to gate g in C2n+2+c if g
is a gate in C2n+2+c . (The output is * if g is not a gate in C2n+2+c .)

� (2n+2+c; g; L) 7! g0, where g0 is the name of the left input to gate g in C2n+2+c if g is
a gate in C2n+2+c . (The output is * if g is not a gate in C2n+2+c .)

18

� (2n+2+c; g) 7! T , where T is the type of gate that g is, i.e., T 2 fAND, OR, NOT,
INPUT, 0, 1g. (Note that, since C2n+2+c takes input in 1�, all \INPUT" gates are
essentially constant 1 gates.)

Our procedure to determine if x is in L �rst computes the number m such thatm is the
position of x in the lexicographic order. Then it determines g, the gate that computes the
mth bit of circuit C2n+2+c . (We've established that such an output gate must exist. Using
a reasonable notion of uniformity, we should be able to compute the name of this output
gate.) Now it computes the right and left inputs to the gate g, right and left inputs of these
two gates and so on until the entire tree for the gate g has been computed. Since this tree
has constant height, this computation takes only linear time (in n). Finally, the procedure
computes the value output by the gate g. This can be done because it knows what sort
of gates are in the tree of g, and that all of the inputs are either constants or, if they are
circuit inputs, they are set to 1. The procedure accepts i� this bit is 1.

Thus, L 2 DTIME(n). Since L was an arbitrary language in NTIME(n), we have shown
that NTIME(n) = DTIME(n), which is a contradiction, since it is known that DTIME(n)
is properly contained in NTIME(n) [PPS83].

The proof is now complete, except for the following technical lemma.

Lemma 13 For any class C closed under Dlogtime-uniform AC0 reductions, all sets com-
plete under Dlogtime-uniform NC0 reductions are complete under Dlogtime-uniform NC0 reductions
for which there is a constant d � 1 such that the output produced on input x has length at
least jxj=d.

Proof. Let A be hard for C, letB be any set in C, and letD be the set f0x j x 2 Bg[1�. D is
Dlogtime-uniformAC0-reducible to B, and thus there is a Dlogtime-uniformNC0 reduction
fCng reducing D to A. We will show that the NC0 reduction from B to A obtained by
composing the obvious projection from B to D with fCng satis�es the conditions of the
lemma.

Consider the circuit Cn. If we set the �rst input bit to 1, note that each remaining input
bit must inuence at least one output bit, because if all bits are set to 1, Cn must produce
an element of A as output, but if any bit is set to 0, then the output produced is not in A.
The bound follows because there is some constant d such that each output bit depends on
at most d input bits.

4 Conclusions

In closing, let us summarize our results. Berman and Hartmanis conjectured in [BH77] that
all sets complete for NP under poly-time many-one reductions are P-isomorphic. Following
the lead of [ABI93] we have considered the analogous question, where polynomial-time re-
ductions and isomorphisms are replaced by AC0-computable reductions and isomorphisms.
In [ABI93] it was shown that all sets complete under AC0 projections are AC0-isomorphic.
We have improved that result to show that all sets complete under NC0 reductions are
AC0-isomorphic. To give some indication of the nature of this improvement, note that (1)

19

projections are a very simple sort of NC0 reduction, and (2) projections are easily invert-
ible in AC0, whereas NC0 reductions are not invertible in polynomial time unless P=NP.
(Invertibility is relevant here, since the likely existence of non-invertible poly-time reduc-
tions is one of the main considerations leading many researchers to conjecture that the
Berman-Hartmanis conjecture is false [JY85].) We use our results about NC0-reducibility,
superprojections, and an inherent gap in the power of reductions to prove a true analog of
the Berman-Hartmanis conjecture. (That is, the sets complete under AC0 reductions are
all AC0-isomorphic.) Finally, we show that our approach cannot yield the analog of the
conjecture for Dlogtime-uniform AC0 reductions.

We especially call attention to the following problems:

1. Assuming the existence of a function that is one-way in a very strong average case
sense, is it possible to construct a counter-example to the original Berman-Hartmanis
conjecture?

2. Is there any natural class C (larger than P) such that there is a set hard for C under
polynomial-time many-one reductions that is not hard under (non-uniform) superpro-
jections?

3. Are there any natural classes C (larger than P) such that the classes of sets hard for
C under (a) polynomial-time many-one reductions, and (b) uniform AC0 reductions,
di�er? (We have already shown that uniformNC0 reductions do yield a strictly smaller
class of complete sets.)
Note in this regard that [Ar95] shows (a) there is a poly-time reduction f : PARITY
�p
m Clique such that x 2 PARITY implies f(x) has a very large clique, and x 62

PARITY implies f(x) has only very small cliques, and (b) no AC0 reduction can have
this property. Nonetheless, there is no version of the Clique problem (or any other NP-
complete problem) that is currently known not to be complete under AC0 many-one
reductions.

4. Is there any class C such that Dlogtime-uniform AC0-complete sets for C are all
Dlogtime-uniform AC0-isomorphic?

Acknowledgments

We acknowledge helpful conversations with M. Ajtai, S. Arora, R. Boppana, O. Goldreich,
M. Ogihara, D. van Melkebeek, R. Pruim, D. Sivakumar, and M. Saks.

References

[Ag94] M. Agrawal, On the isomorphism problem for weak reducibilities, To appear in J.
Computer Sys. Sci. For a preliminary version, see Proc. 9th Structure in Complexity
Theory Conference (1994) pp. 338{355.

[Ag95] M. Agrawal, DSPACE(n)?=NSPACE(n): A degree theoretic characterization, in
Proc. 10th Structure in Complexity Theory Conference (1995) pp. 315{323.

20

[Ag96] M. Agrawal, For completeness, sublogarithmic space is no space, Manuscript.

[AA96] M. Agrawal and E. Allender, An Isomorphism Theorem for Circuit Complexity,
in Proc. 11th Annual IEEE Conference on Computational Complexity (1996) pp.
2{11.

[Aj83] M. Ajtai, �1
1 formulae on �nite structures, Annals of Pure and Applied Logic 24,

1-48.

[Al89] E. Allender, P-uniform circuit complexity, J. ACM 36 (1989) 912{928.

[ABI93] E. Allender, N. Immerman, and J. Balc�azar, A �rst-order isomorphism theorem,
to appear in SIAM Journal on Computing. A preliminary version appeared in Proc.
10th Symposium on Theoretical Aspects of Computer Science, 1993, Lecture Notes
in Computer Science 665, pp. 163{174.

[AG91] E. Allender and V. Gore, Rudimentary reductions revisited, Information Processing
Letters 40 (1991) 89{95.

[AS92] N. Alon and J. Spencer, The Probabilistic Method, John Wiley and Sons, (1992).

[Ar95] Sanjeev Arora, AC0-reductions cannot prove the PCP theorem, manuscript, 1995.

[BDG88] J. Balc�azar, J. D��az, and J. Gabarr�o, Structural Complexity I and II, Springer-
Verlag, 1988, 1990.

[BIS90] David Mix Barrington, Neil Immerman, Howard Straubing, On Uniformity Within
NC1, J. Computer Sys. Sci. 41 (1990), 274-306.

[B95] P. Beame, A switching lemma primer, manuscript, available from
http://www.cs.washington.edu/homes/beame/papers.html.

[BH77] L. Berman and J. Hartmanis, On isomorphism and density of NP and other com-
plete sets, SIAM J. Comput. 6 (1977) 305{322.

[BS90] Ravi Boppana and Michael Sipser, The complexity of �nite functions, in J. van
Leeuwen, ed. Handbook of Theoretical Computer Science, Vol. A: Algorithms and
Complexity, Elsevier, 1990, pp. 757{804.

[Bo72] A. Borodin, Computational complexity and the existence of complexity gaps, J. ACM
19 (1972), 158{174.

[ER60] P. Erd�os and R. Rado, Intersection theorems for systems of sets, J. London Math.
Soc. 35 (1960) 85{90.

[Fo95] L. Fortnow and S. Laplante, Circuit lower bounds �a la Kolmogorov, Information
and Computation 123 (1995) 121{126.

[FSS84] Merrick Furst, James Saxe, and Michael Sipser, Parity, Circuits, and the
Polynomial-Time Hierarchy, Math. Systems Theory 17 (1984), 13-27.

21

[H�a87] J. H�astad, One-Way Permutations in NC0, Information Processing Letters 26

(1987), 153-155.

[HILL90] J. H�astad, R. Impagliazzo, L. Levin, and M. Luby, Construction of a pseudo-
random generator from any one-way function, ICSI Technical Report, No. 91-068
(1990).

[Jo75] Neil Jones, Space-Bounded Reducibility among Combinatorial Problems, J. Com-
puter Sys. Sci. 11 (1975), 68{85.

[JY85] D. Joseph and P. Young, Some remarks on witness functions for non-polynomial
and non-complete sets in NP, Theoretical Computer Science 39 (1985) 225{237.

[JPY94] D. Joseph, R. Pruim, and P. Young, Collapsing degrees in subexponential time,
Proc. 9th Structure in Complexity Theory Conference (1994) pp. 367{382.

[KLD86] Ker-I Ko, Timothy J. Long, and Ding-Zhu Du, On one-way functions and
polynomial-time isomorphisms, Theoretical Computer Science 47 (1986) 263{276.

[KMR88] S. Kurtz, S. Mahaney, and J. Royer, Collapsing degrees, J. Computer Sys. Sci.
37 (1988), 247{268.

[KMR90] S. Kurtz, S. Mahaney, and J. Royer, The structure of complete degrees, in A.
Selman, editor, Complexity Theory Retrospective, Springer-Verlag, 1990, pp. 108{
146.

[KMR95] S. Kurtz, S. Mahaney, and J. Royer, The isomorphism conjecture fails relative to
a random oracle, J. ACM 42 (1995), 401{420.

[LV93] M. Li and P. Vit�anyi, An Introduction to Kolmogorov Complexity and its Applica-
tions , Springer{Verlag, 1993, p. 99.

[Li94] Steven Lindell, How to de�ne exponentiation from addition and multiplication in
�rst-order logic on �nite structures, (manuscript). This improves an earlier char-
acterization that appears in: Steven Lindell, A purely logical characterization of
circuit uniformity, Proc. 7th Structure in Complexity Theory Conference (1992)
pp. 185{192.

[Lu96] Michael Luby, Pseudorandomness and Cryptographic Applications, Princeton Uni-
versity Press (1996).

[Ni92] Noam Nisan, Using Hard Problems to Create Pseudorandom Generators, MIT Press
(1992).

[PPS83] W. J. Paul, N. Pippenger, E. Szemer�edi, and W. Trotter, On determinism ver-
sus non-determinism and related problems, Proc. Foundations of Computer Science
(1983) pp. 429{438.

[Ro95] J. Rogers, The isomorphism conjecture holds and one-way functions exist relative
to an oracle, in Proc. 10th Structure in Complexity Theory Conference (1995) pp.
90{101.

22

[Se92] A. Selman, A survey of one way functions in complexity theory, Mathematical Sys-
tems Theory 25 (1992) 203{221.

[Tr64] B. A. Trakhtenbrot, Turing computations with logarithmic delay, Algebra i Logika
3 (1964) 33{48.

5 Appendix

In this appendix, we give a proof of Lemma 7. Although there are several people in the
community who were already aware that established techniques can be used to prove this
lemma, we have been unable to �nd a published statement of this fact, and hence we provide
the proof for completeness.

In an earlier version of this work [AA96], the argument that was presented required a
stronger lemma, stated in terms of \blockwise" restrictions. Since this stronger version of
the lemma may be useful in some other applications, we have chosen to include the proof
of this stronger lemma in the appendix. Note that we have not tried to obtain the best
constants in this proof. Instead our goal was to make the proof as simple as possible.

Let b 2 N. A b-block restriction on n variables is an assignment to the variables
x1; : : : ; xn with the property that for all j � 0 either all of the variables xjb+1; : : : ; xjb+b are
given values, or none of them are. (The variables xjb+1; : : : ; xjb+b together constitute the
j-th b-block. If n is not a multiple of b, then the �nal block may have length less than b.)

For a; b 2 N, an a-random b-block restriction �a on n variables is a b-block restriction
chosen according to the following process: For block of b variables in turn, with probability
(n=b)1=a�1 set all of the variables in that block to *, and for any v 2 f0; 1gb, set the variables
in the block to the vector v with probability (1� (n=b)1=a�1)=2b. (Note that the a-random
restrictions used in Section 3.2 are 1-block restrictions.)

We now restate Lemma 7 using the more general notion of block restriction.
Lemma 7 For any AC0 reduction computed by a family of circuits fCng, there exists an
a 2 N such that for any constant b, with probability 1�o(1), an a-random b-block restriction
�a on n variables transforms Cn into an NC0-circuit with
(n1=a) b-blocks of input variables.
Proof. Without loss of generality, the circuit family fCng is

� of depth k � 2

� leveled (meaning that the circuit has n inputs x1; : : : ; xn, and n negated inputs
:x1; : : : ;:xn, and that these inputs feed into AND gates (or OR gates), and that
AND gates feed into OR gates, and vice-versa)

� of bottom fan-in 1 (meaning that the gates that x1; : : : ; xn, and :x1; : : : ;:xn feed
into have fan-in only 1).

The constant a is chosen to be 5(k � 1).
To simplify notation, we will assume throughout the proof that n is a multiple of b. Let

m = n=b.
By a simple application of the Cherno� bound (see, e.g., [AS92]), with probability

1� o(1), the number of b-blocks that are set to * is between 1
2m

1=a and 2m1=a. Thus it is

23

su�cient to show that, with probability 1 � o(1), Cn is transformed into an NC0-circuit,
given that the number of blocks that are set to * lies within this range.

Since we will assume that at least m� 2m1=a blocks are set to values in f0; 1gb, it will
be convenient to consider the following process for picking the random restriction �a. One-
by-one, a block is picked and set to a value in f0; 1gb (with all unset blocks being equally
likely, and all values in f0; 1gb equally likely after the block is picked). We will see that after
m� 2m1=a blocks have been set in this manner, the circuit Cn will be transformed into an
NC0-circuit with probability 1 � o(1). This process will actually proceed in k � 1 stages,
where the �rst k � 2 stages each decrease the depth of the circuit by one with probability
1� o(1) (this is guaranteed by Claim 15), and the �nal stage changes the depth two circuit
into an NC0-circuit with probability 1� o(1) (this is guaranteed by Claim 16). Setting any
additional blocks will not alter the fact that the circuit is transformed into an NC0-circuit.
Thus, given that we are assuming that the number of blocks that are set to * lies within
the acceptable range, this will prove the lemma.

More formally, let fk(m) = m(k�2)=(k�1), and let r(m; k) = m1=(4b(k�1))

bk�2 . Claim 15 shows
that we can take a depth k circuit onm blocks, having bottom-fan-in r(m; k), and by setting
some of the blocks randomly, obtain a circuit that is equivalent to a depth k � 1 circuit
with fk(m) blocks, having bottom fan-in r(fk(m); k � 1). For i < k, de�ne the function

f
(i)
k as follows: f

(1)
k (m) = fk(m), and f

(i+1)
k (m) = fk(f

(i)
k�1(m)). Note that f

(i)
k (m) =

m(k�(i+1))=(k�1). Also note that r(f
(i)
k (m); k� i) = bir(m; k).

Applying Claim 15 k�2 times, we obtain a circuit with depth 2, on f
(k�2)
k (m) = m1=(k�1)

blocks, having bottom fan-in r(f
(k�2)
k (m); 2) = bk�2r(m; k) = m1=(4b(k�1)). Now we apply

Claim 16 and obtain a circuit on m1=(4(k�1)) = !(n1=a) blocks with bottom fan-in O(1).

Before we can present the proofs of Claims 15 and 16, we will need some additional
notation.

Let R`
n;b denote the set of all b-block restrictions to the variables x1; : : : ; xn that have

exactly ` blocks of b variables unset. It will usually be the case that n and b are understood
from context, and thus we will usually delete the subscripts.

Note that

jR`j =

m

`

!
2n�`b:

Thus there is a constant c1 such that, for any � 2 R`
n;b,

K(�jn; `; b)� c1 + n � `b+ log

m

`

!

(Here, we are assuming some �xed system for encoding restrictions; the particulars are
irrelevant. We are assuming that the reader is familiar with Kolmogorov complexity. For
details, see [LV93].) Note also that, for s > 0,

jR`j=jR`�sj = 2�sb�

�m
`

�
� m
`�s

���m� `

2b`

�s

In our applications, s will be much larger than b, and n=b will be much larger than `, and thus
R`�s is much smaller than R`. In particular, although at �rst it may seem counterintuitive,

24

a Kolmogorov-random element � 2 R` has greater Kolmogorov complexity than any element
�0 of R`�s (even if �0 is the result of assigning values to some of the unset variables of �).
This simple fact is a key observation underlying the proof of the switching lemma.

In the following, we will not make any meaningful distinction between a circuit Cn and
the bit string that describes an encoding of Cn. Thus given any circuit Cn of size t, any
gate in the circuit can be described using an additional log t bits, and thus a pair (Cn; i)
is a description of the function computed by gate i of Cn. If gate i is on level two of Cn

(and thus by our assumptions it is an OR of ANDs, where the ANDs are connected to input
literals), then the pair (Cn; i) immediately gives a DNF formula Fn;i where this formula lists
the AND gates feeding into gate i (listing them in the order in which they appear in Cn)
where each AND gate is presented by the literals feeding into that gate (where the ordering
on the variables imposes an order on the literals).

Given any DNF formula F and restriction �, F j� is the formula that results by (1)
deleting from F all terms (i.e., conjunction of literals) that are made false by �, and (2)
replacing each remaining term C by the term Cj� obtained by deleting fromC all the literals
that are satis�ed by �. It should be emphasized that this is a syntactic operation, and that
F j� is a syntactic object. A formula with an empty term denotes the constant function 1;
a formula with no terms denotes the constant function 0.

Given any DNF formula F , we follow [B95] and de�ne the canonical decision tree for F
(denoted T (F)) as follows.

1. If F has no terms, then T (F) is a single leaf labelled 0.

2. If the �rst term in F is empty, then T (F) is a single leaf labelled 1.

3. If the �rst term C1 of F is not empty, then let F 0 be the rest of F (i.e., F = C1_ F
0).

The decision tree T (F) begins by querying all of the variables that appear in any b-
block containing a variable in C1. (That is, if C1 has r variables, the tree T (F) begins
with a complete binary tree on the r0b � rb variables in the r0 blocks that contain
variables appearing in C1.) Each leaf v� of this complete binary tree is reached by
some path labelled by a restriction � recording an assignment to the variables in C1.
Each such node v� is the root of a subtree in T (F) given by T (F j�). For any � that
satis�es C1, T (F j�) is a single node labelled 1. For all other �, T (F j�) = T (F 0j�).

For a restriction �; let Dom(�) denote ��1(f0; 1g); i.e., the variables set by �: For
S � fx1; : : : ; xng; let �jS denote the restriction

�jS(xi) =

(
�; xi =2 S;
�(xi) xi 2 S

For a Boolean expression F; we will sometimes write �(F) for F j�:
Following [B95], we will show that for any Kolmogorov-random � and for any DNF

formula F , the height of T (F j�) (denoted jT (F j�)j) is small.
It is easy to observe that if f is a Boolean function having a decision tree with height

bounded by s, then it has a DNF formula with term size bounded by s. (The disjuncts
consist of the conjunctions, over all paths of the tree ending in 1, of the literals queried
along those paths.) Similarly, such an f has a CNF formula with term size bounded by s

25

(since :f clearly has a small decision tree, and hence a DNF formula with small term size).
Note that saying that jT (F)j is small is a much stronger statement than merely saying that
the function computed by F has a decision tree with small height; this is because T (F) may
well be a very ine�cient decision tree.

Lemma 14 (H�astad Switching lemma) There is a constant c4 such that, for any DNF
formula F in n variables with terms of length at most r, and for any b and for any 0 < s <

` � n=b, and for any � 2 R`
n;b, if

K(�jF; n; `; s; b)> c4 + n� `b+ sb log(16r) + log

n=b

`� s

!

then jT (F j�)j < sb.

At this point, we can present the proofs of the Claims 15 and 16.

Claim 15 Let C be a leveled circuit on m blocks with depth k � 3 and with bottom fan-in
� r = r(m; k), and having no more than 2r gates at levels 2 and above. Then for all large
n, with probability 1� o(1), a random b-block assignment �a leaving fk(m) blocks unset has
the property that Cj� is computed by a depth k�1 circuit with bottom fan-in r(fk(m); k�1)
and with no more than 2r(fk(m);k�1) gates at level 2 and above.

Proof. (of Claim 15) Assume without loss of generality that the bottom level gates are
AND gates. The other case follows by DeMorgan's laws.

Let s = r = r(m; k) and let ` = fk(m). Note that for a randomly chosen � in � 2
R`
n;b, K(�jC; n; `; s; b) is high. In particular, with probability (1 � 1= logn), we have that

K(�jC; n; `; s; b)� n� `b+ log
�m
`

�
� log logn.

Consider any of the gates on level two of C, and consider the DNF formula F represented
by this gate. Before we go further, we must argue that

K(�jF; n; `; s; b)> c4 + n� `b+ sb log(16s) + log

n=b

`� s

!

and that we can therefore appeal to the Switching Lemma.
Since there are most 2s gates at level two of C, it is easy to see that K(�jC; n; `; s; b)�

K(�jF; n; `; s; b) + c5 + s. (The constant c5 is enough bits to say \count the number p of
gates in C at level 2 and above, and use the next dlog pe � s bits to identify one of the OR
gates on level two of C. Construct the DNF formula F computed by this gate, and then
use the remaining bits of information to construct � from F .")

Thus K(�jF; n; `; s; b)� K(�jC; n; `; s; b)� c5� s � n� `b+ log
�m
`

�
� c5 � s� log logn:

This value is bounded below by c4 + n � `b+ sb log(16s) + log
� m
`�s

�
if and only if

log

�m
`

�
� m
`�s

� � (c4 + c5) + s + sb(log 16s) + log logn:

Thus it is su�cient to show that

log

�
m� `

`

�s

� (c4 + c5) + s+ sb(log 16s) + log logn:

26

This is equivalent to showing that

m� ` � 2d`(16s)b(logn)1=s

where d = 1 + (c4 + c5)=s. Note that d < 2 for all large n, since s = r(n; k). Since there is
some > 0 such that `sb � n1� , it is thus su�cient to show that n=b�` � 24b+2n1� logn,
which is clearly true for all large n: Thus we have established that, for the chosen values of
`, s, and �, the hypothesis of the Switching Lemma is satis�ed.

Thus by the Switching Lemma, each of the OR gates at level two of Cj� has a decision
tree of height � sb, and thus each of those OR gates can be computed by CNF circuits
with bottom fan-in sb. The circuit that results by substituting these CNF circuits into Cj�
has AND gates on levels two and three. If we merge these two levels, we obtain a circuit
having depth k � 1, having ` blocks of b variables, and with bottom fan-in bounded by
sb = r(`; k� 1) and with no more than 2r(`;k�1) gates at level two and above. (of Claim

15)

Claim 16 Let n be su�ciently large. Let f be a function on n inputs such that jf(x)j � nB

for all x of length n, where f is computed by a depth-two circuit C having bottom fan-in
� r = r(m) = m1=4b. Then with probability 1 � o(1), a randomly-chosen � leaving m1=4

b-blocks unset has the property that each output bit of Cj� has a decision tree of height at
most sb, where s = 4B.

Proof. Assume without loss of generality that the output bits of C are ORs. The other
case follows easily.

Pick ` = m1=4, and let � be randomly chosen element of R`
n;b. Thus, with probability at

least 1� 1= logn, K(�jC; n; `; s; b) is greater than n� `b+ log
�m
`

�
� log logn.

Consider any of the output gates of C, and consider the DNF formula F represented by
this gate. Before we go further, we must argue that

K(�jF; n; `; s; b)> c4 + n� `b+ sb log(16r) + log

n=b

`� s

!

and that we can therefore appeal to the Switching Lemma.
Since there are most nB output gates in C, it is easy to see that K(�jC; n; `; s; b) �

K(�jF; n; `; s; b) + c5 + B logn. Thus K(�jF; n; `; s; b) � K(�jC; n; `; s; b)� c5 � B logn �
n � `b + log

�m
`

�
� c5 � B logn � log logn: This value is bounded below by c4 + n � `b +

sb log(16r) + log
� m
`�s

�
if and only if

log

�m
`

�
� m
`�s

��(c4 + c5) + B logn+ sb(log 16r) + log logn:

Thus it is su�cient to show that

log

�
m� `

`

�s
� (c4 + c5) +B logn+ sb(log 16r) + log logn:

By our choice of s this is equivalent to showing that

n

b
� ` � 2(c4+c5)=sn1=4`(16r)b(logn)1=s:

27

Since n1=4rb` = �(n3=4), the hypothesis of the Switching Lemma is satis�ed for all large n.
Now the claim follows immediately from the Switching Lemma. (of Claim 16)

Thus it will su�ce to give a proof of the Switching Lemma.
Proof. (of the Switching Lemma)

Let F; `; s; n; t; � be as in the hypothesis of the lemma. We will prove the contrapos-
itive. That is, we'll show that if T (F j�) contains a path � of length at least sb, then

K(�jF; n; `; s; b)� c4 + n � `b+ sb log(16r) + log
�n=b
`�s

�
.

The strategy is to construct �0 2 R`�s extending � (i.e., �xing more variables), such
that K(�j�0; F; `; s; b) is not much bigger than K(�0jF; n; `; s; b). As we observed above,
K(�0jF; n; `; s; b) is small, because R`�s is small.

Let � 2 R` and let � be any path in T (F j�) having length at least sb. Note that we
may view � as a restriction (namely the restriction that gives to the � sb variables queried
along � the value determined along path �, and leaving the other � n� sb variables unset).

We now de�ne sequences of restrictions �1; �2; : : : and �1; �2; : : : (where each �i in turn
is decomposed into �i = �0i�

00
i , where Dom(�0i) = Dom(�i)). Our goal is to de�ne �0 =

��1�
00
1�2�

00
2 : : : �k�

00
k in such a way that � is easy to retrieve from �0.

Let Ci1 be the �rst term in F that is not set to 0 by �. (Such a term must exist, since
otherwise the height of T (F j�) would be zero; by the same observation, Ci1 j� is not empty.)
Thus C�1 j� is the �rst term of F j�. Let S1 be the set of variables in Ci1 j�, and let �1 be the
unique restriction of the variables in S1 that satis�es Ci1 j�. (Thus, S1 = Dom(�1).) Let P
be the set of variables that are in b-blocks containing an element of S1, and let P1 = P nS1.
Note that, by the de�nition of the canonical decision tree, P � Dom(�), since the tree
queries all variables in each block touched by a term. Let �01 = �jS1 and �001 = �jP1 , and let
�1 = �jP , so that �1 = �01�

00
1 . Note that �1 is a pre�x of path �.

If �1 is in fact all of �, then the �rst part of the construction is over. Otherwise, by
the de�nition of the canonical decision tree, it must be the case that there must be some
Ci2 that is the �rst term in F that is not set to zero by ��1, and Ci2 j��1 is the �rst term of
F j��1 , and it is this term that is explored next in the decision tree along path �. As above,
let �2 be the unique assignment to the variables S2 in Ci2 j��1 that satis�es this term, let P2

be the other variables in the blocks touched by S2 and let �02 = �jS2 and �002 = �jP2 .
Continue in this way until the entire path � is processed, maintaining the property that

clause Cih is the �rst term of F not falsi�ed by ��1 : : : �h�1, and ��1 : : :�h�1�h satis�es
Cih . It is important to observe also that each set Sh is nonempty.

Note that, since the length of � is at least sb, it must touch at least s b-blocks. A slight
problem is caused by the fact that � may touch more than s blocks. Since we want �0 to
be in R`�s, we simply consider the �rst stage k such that �1 : : : �k�1�k touches at least s
b-blocks, and rede�ne Sk to be the initial sequence of variables in clause Cik up through the
sth block touched, de�ne Pk to be the other variables in those blocks, and rede�ne �k to
be the setting to those variables that does not falsify the clause, �0k = �jSk , and �00k = �jPk .
(Note that k � s.) By setting �0 equal to ��1�

00
1�2�

00
2 : : : �k�

00
k , we have de�ned the desired

element of R`�s
n;b .

We now want to show that � is easy to recover from �0. To do this, we de�ne a sequence
�1; : : : ; �k, where each �h describes how �h and �0h di�er. Each �h is a string of length r

(recall that r is the bottom fan-in of the circuit C) over the alphabet f0; 1; �g, de�ned as

28

follows. The jth bit of �h is � if either (1) clause Cih of the original formula F has fewer
than j variables, or (2) the jth variable in clause Cih is not in Sh. The j

th bit of �h is 0 if
the jth variable in Cih is in Sh and �h and �0h agree on this variable. The jth bit of �h is 1 if
the jth variable in Cih is in Sh and �h and �0h disagree on this variable. Note that each �h
contains at least one symbol that is not a �. The total number of non-* symbols is at least
s and no more than sb (since the �h's together touch exactly s blocks). Let � = �1 : : :�k;
thus � is a string of length kr � sr. We will pad � with *'s at the end to obtain a string �0

of length exactly sr.
Observe that, for some constant c2, K(�0js; b; r) � c2 + sb(3 + log r). (This is because

�0 is of the form �j1�1b1 �j2�1 b2 : : : �jv�1 bv � � : : :� where each bh 2 f0; 1g, and v � bs and
each jh � 2r (since no �h is all *'s. Note that many of the numbers jh may be equal to zero.
By making jv+1 = : : : jbs = 0 and making bv = : : : = bbs we can encode �0 using exactly bs

such numbers. Thus we can encode �0 as a sequence of exactly bs numbers jh of exactly
dlog re + 1 bits, and a bit string of exactly bs bits encoding the bh's.)

Now we claim that, for some constant c4,

K(�jF; n; `; s; b)� c4 + n � `b+ sb log(16r) + log

n=b

`� s

!
:

To see this, note that �0 can be described with c1+ n� `b+ sb+ log
�n=b
`�s

�
bits. Since r can

be obtained from F , �0 can be described with c2 + sb(3 + log r) bits. The bound on the
Kolmogorov complexity of � now follows from an additional c3 bits of information, encoding
the following instructions:

Find the �rst clause Ci1 in F that is not made false by �0. (Note that ��1
makes Ci1 true, and the further assignments made by �0 cannot change this.)

Let �1 be the �rst r bits of �
0. Use �1 to �nd the elements of S1. (If the j

th

bit of �1 is not *, then the jth variable in Ci1 is in S1.)
Use Ci1 and S1 to obtain �1. Use �1 and �1 to obtain �01. P1 consists of all

of the other variables in blocks touched by S1; �
00
1 is �0jP1 ; �1 = �01�

00
1 .

Let Ci2 be the �rst clause of F that is not made false by ��1�2�
00
2 : : : �k�

00
k .

(Note that this can be obtained from �0 (without knowing what � is) by changing
the setting of the variables in S1 and P1 to �1. As above, compute �2 and �2,
and then use ��1�2�3�003 : : : �k�

00
k to �nd Ci3 , and continue in this way, to obtain

�1; : : : ; �k.
Obtain � by de�ning �(xi) = � if xi 2 Dom(�1 : : : �k), and �(xi) = �0(xi)

otherwise.

29

