
On TC0, AC0, and Arithmetic Circuits

Manindra Agrawal∗

Department of Computer Science
Indian Institute of Technology

Kanpur 208016, India
manindra@iitk.ac.in

Eric Allender†

Department of Computer Science
Rutgers University

Piscataway, NJ 08855, USA
allender@cs.rutgers.edu

Samir Datta‡

Department of Computer Science
Rutgers University

Piscataway, NJ 08855, USA
sdatta@paul.rutgers.edu

May 26, 1999

Abstract

Continuing a line of investigation that has studied the function
classes #P [Val79b], #SAC1 [Val79a, Vin91, AJMV], #L [AJ93b,
Vin91, AO94], and #NC1 [CMTV96], we study the class of functions
#AC0. One way to define #AC0 is as the class of functions computed
by constant-depth polynomial-size arithmetic circuits of unbounded
fan-in addition and multiplication gates. In contrast to the preceding

∗Part of this research was done while visiting the University of Ulm under an Alexander
von Humboldt Fellowship.
†Supported in part by NSF grants CCR-9509603 and CCR-9734918. Portions of the

work were performed while this author was a visiting scholar at the Institute of Mathe-
matical Sciences, Chennai, India
‡Supported in part by a Rutgers University Graduate Excellence Fellowship and by

NSF grants CCR-9509603 and CCR-9734918.

function classes, for which we know no nontrivial lower bounds, lower
bounds for #AC0 follow easily from established circuit lower bounds.

One of our main results is a characterization of TC0 in terms of
#AC0: A language A is in TC0 if and only if there is a #AC0 function
f and a number k such that x ∈ A⇐⇒ f(x) = 2|x|

k

. Using the naming
conventions of [FFK94, CMTV96], this yields:

TC0 = PAC0 = C=AC0.

Another restatement of this characterization is that TC0 can be sim-
ulated by constant-depth arithmetic circuits, with a single threshold
gate. We hope that perhaps this characterization of TC0 in terms of
AC0 circuits might provide a new avenue of attack for proving lower
bounds.

Our characterization differs markedly from earlier characterizations
of TC0 in terms of arithmetic circuits over finite fields [RT92, BFS92].
Using our model of arithmetic circuits, computation over finite fields
yields ACC0.

We also prove a number of closure properties and normal forms for
#AC0.

1 Introduction

The circuit complexity class AC0 is well-studied and fairly well-understood.
Many lower bound techniques have been developed, showing that exponen-
tial size is required in order to compute many simple functions on AC0

circuits. In contrast, the circuit complexity class TC0 is only poorly under-
stood, in spite of having been the object of many investigations. The class
TC0 is of special interest in computer science, since it characterizes the
computational complexity of such important operations as multiplication,
division, and sorting, as well as being a computational model for neural nets
[RT92, CSV84, PS88]. It remains an open question as to whether every func-
tion in #P has TC0 circuits (although it is at least known that not all #P
functions have Dlogtime-uniform TC0 circuits [All]). The main contribution
of this paper is to present a new connection between AC0 and TC0. We char-
acterize TC0 as being the class of languages that arises in several ways from
counting the number of accepting subtrees of AC0 circuits. Equivalently, we
characterize TC0 in terms of constant-depth arithmetic circuits.

In order to make these notions precise, we need to discuss counting and
enumeration classes.

2

1.1 Counting Classes

Certainly the best-known counting class is Valiant’s class #P [Val79b], con-
sisting of functions that map x to the number of accepting computations
of an NP-machine on input x. Recently, the class #L (counting accepting
computations of an NL-machine) has also received considerable attention
[AJ93b, Vin91, Tod, MV97]. #P characterizes the complexity of computing
the permanent of a matrix [Val79b], while #L characterizes the complexity
of computing the determinant [Vin91, Tod, Val92, MV97].

It should be noted that #P and #L can also be characterized in terms
of uniform arithmetic circuits, as follows: NP and NL both have charac-
terizations in terms of uniform Boolean circuits. (NP sets are accepted by
uniform exponential-size circuits of “polynomial algebraic degree,” and NL
sets are accepted by uniform polynomial-size “skew” circuits [Ven92]. We
will not need to define these concepts further here.) The classes #P and #L
result if we “arithmetize” these Boolean circuits, replacing each OR gate
by a + gate, and replacing each AND gate by a × gate, where the input
variables x1, . . . , xn now take as values the natural numbers {0, 1} (instead
of the Boolean values {0, 1}), and negated input literals xi now take on the
value 1 − xi. Alternatively, #P and #L arise by counting the number of
“accepting subtrees” for the corresponding classes of Boolean circuits. (See
[Ven92] for a formal definition of this notion; for our purposes it is sufficient
to know that the number of accepting subtrees of a circuit C is (a) equal
to the output of the “arithmetized” version of C, (which we denote by #C)
and (b) provides a natural notion of counting the number of proofs that C
accepts.) The arithmetic circuits corresponding to #L were studied further
by Toda [Tod92].

The counting classes that result in this way by arithmetizing the Boolean
circuit classes SAC1 and NC1 were studied in [Vin91] (where it was shown
that #SAC1 corresponds to counting the accepting paths of a NAuxPDA)
and in [CMTV96] (where it was shown that #NC1 is closely-related to count-
ing paths in bounded-width branching programs). In this paper, we study
#AC0.

Definition 1 For any k > 0, #AC0
k is the class of functions computed

by depth k circuits with +, ∗-gates (the usual arithmetic sum and product)
having unbounded fan-in where inputs to the circuits are from {0, 1, xi, 1−xi}
where each xi ∈ {0, 1}. Let #AC0 =

⋃
k>0 #AC0

k.1

1Tomo Yamakami [Yam96] has recently defined #AC0 somewhat differently, and his
definition does not appear comparable to ours. A modification of Yamakami’s defini-

3

Why study #AC0? Our motivation comes in large part from a desire
to obtain more lower bounds in circuit complexity. As we shall see, #AC0

straddles the boundary marking the limits of current circuit lower bound
technology. #AC0 provides a characterization of TC0 (for which no circuit
lower bounds are known), but on the other hand #AC0 is closely related to
the classes AC0 and AC0[2], and as a consequence we can prove that many
simple functions are not in #AC0. (This stands in contrast to the related
classes #NC1, #L, #SAC1, and #P which, for all we know, may contain
all of the functions in PNP.) We can also show that #AC0

k is properly
contained in #AC0

k+1 for every k. A better understanding of #AC0 should
aid in advancing our store of lower bound techniques.

1.2 Language Classes

Counting classes such as #P and #L are closely related to associated lan-
guage classes such as PP and PL. In order to develop this in a general
setting, it is useful to define the “Gap” classes.

The class GapP was defined in [FFK94], and by analogy GapL was
studied in [Vin91, AO94], and GapNC1 was studied in [CMTV96]. In all of
these cases, there are two equivalent definitions:

1. GapC is the class of functions that are the difference of two #C func-
tions.

2. GapC is the class of functions computed by the class of arithmetic
circuits that characterize #C, when these circuits are augmented by
having the constant −1.

(In fact, for the cases when C is one of NC1, L, and P, the cited papers give
many other equivalent definitions, as well.)

Now, for a given class C, GapC gives rise to two language classes:

PC = {A|∃f ∈ GapC, x ∈ A⇐⇒ f(x) > 0},
C=C = {A|∃f ∈ GapC, x ∈ A⇐⇒ f(x) = 0}.

PP and PL were first studied in [Gil77] and have been considered in many
papers; C=P was studied in [Wag86] and elsewhere, and C=L was studied
in [ABO96] (see also [ST]). PNC1 and C=NC1 were defined and studied in
[CMTV96] (see also [Mac]).

tion that does yield an alternative characterization of the classes we study was recently
presented in [NS99].

4

A main result of this paper is that PAC0 and C=AC0 coincide with TC0.
However, there are two difficulties that must be overcome before we can even
state this theorem. We must deal with (a) uniformity, and (b) the fact that
the two most natural ways to define GapAC0 do not seem to be equivalent
(although both ways give rise to the same class PAC0= C=AC0= TC0).

Definition 2 DiffAC0 is the class of functions expressible as the difference
of two #AC0 functions.

Definition 3 For any k > 0, GapAC0
k is the class of functions computed by

depth k circuits with +, ∗-gates (the usual arithmetic sum and product) hav-
ing unbounded fan-in where inputs to the circuits are from {0, 1,−1, xi, 1−
xi} where each xi ∈ {0, 1}. Let GapAC0 =

⋃
k>0 GapAC0

k.

Recall that for all the classes C ∈ {NC1, L, SAC1, P}, GapC can be
defined equivalently either as #C − #C or in terms of arithmetic circuits
with access to the constant −1. However, in all of those cases, the proof
of equivalence relies on the fact that the PARITY language is in C; and of
course this is not true for C= AC0.

Open Question 1 Is DiffAC0 = GapAC0?

Open Question 2 Is (−1)Σxi in DiffAC0?

(Note that DiffAC0 is clearly contained in GapAC0, and that (−1)Σxi =∏
(1− 2xi) ∈ GapAC0)2.

The classes DiffAC0 and GapAC0 each provide reasonable ways to define
PAC0 and C=AC0. This leads to the following two definitions:

Definition 4 The class C=AC0 (C=AC0
circ) consists of those languages L

for which there exists a function f in DiffAC0 (GapAC0) such that for all
bit strings x,

• If x ∈ L then f(x) = 0.

• If x 6∈ L then f(x) 6= 0.

Definition 5 The class PAC0 (PAC0
circ) consists of those languages L for

which there exists a function f in DiffAC0 (GapAC0) such that for all bit
strings x,

2Very recently, it has been shown that DiffAC0 = GapAC0 [ABL98].

5

• If x ∈ L then f(x) > 0

• If x 6∈ L then f(x) ≤ 0

At this point, the reader may fear that we are introducing too many
complexity classes, with relatively little motivation. The good news is that
all of these classes are different names for TC0—at least in the P-uniform
and non-uniform settings.

1.2.1 Uniformity

A (non-uniform) circuit family {Cn} consists of a circuit Cn for each input
length n. If there is an “efficient” algorithm for constructing Cn, given n,
then the family is said to be uniform, where different notions of “efficient”
give rise to different notions of uniformity. We will consider P-uniform,
Logspace-uniform, and Dlogtime-uniform circuit families. For P-uniform
circuits [BCH86, All89], the mapping n 7→ Cn is computable in polynomial
time, for Logspace-uniform circuits [Ruz81], the mapping is computable in
Logspace. Dlogtime-uniformity requires a somewhat more careful definition;
we refer the reader to [BIS90]. Although Dlogtime-uniformity is widely-
regarded as being the “right” notion of uniformity to use when discussing
small circuit complexity classes such as TC0 and AC0, only a few of our
theorems mention Dlogtime-uniformity.

Open Question 3 Can the characterizations of TC0 that we present in
the P-uniform and Logspace-uniform setting also be shown to hold in the
Dlogtime-uniform setting?

1.3 The Characterizations

In the P-Uniform and Non-Uniform Settings

C=AC0 = PAC0 = TC0 = C=AC0
circ = PAC0

circ.

In the Logspace-Uniform Setting

C=AC0 ⊆ PAC0 ⊆ TC0 = C=AC0
circ = PAC0

circ.

In the Dlogtime-Uniform Setting

TC0 ⊆ C=AC0
circ ⊆ PAC0

circ.

6

Figure 1: Logspace-uniform setting ([ABL98] shows these all coincide)

Figure 2: DLogtime-uniform setting (established here)

=

=

Figure 3: DLogtime-uniform setting (established in [ABL98])

7

We are also able to prove some normal form theorems for DiffAC0. This
allows us to present technically sharper characterizations. For instance, for
any set A in (non-uniform or P-uniform) TC0, there exist a constant l, a
function g(n), and a #AC0 function h with the following property:

• If x ∈ A, then h(x) = 2|x|
l
.

• If x 6∈ A, then h(x) = 2|x|
l
+ g(|x|).

(The function g is computable in Dlogtime-uniform #AC0. The important
point is that g depends only on |x|, and not on x itself.) Thus membership
in a TC0 set is determined in a very precise way by the number of accepting
subtrees of a Boolean AC0 circuit.

It seems reasonable to conjecture that all of these classes collapse to TC0

in the Logspace-uniform and Dlogtime-uniform settings, just as in the P-
uniform and non-uniform cases. In the mean time, however, even some very
basic properties of the classes C=AC0 and PAC0 remain to be established.
We list a few such questions below:

Open Question 4 Is C=AC0 (C=AC0
circ) closed under complement in the

Logspace-uniform (resp. Dlogtime-uniform) setting?

Open Question 5 Is PAC0 closed under union or intersection in the
Logspace-uniform or Dlogtime-uniform setting?

1.4 Organization

In Section 2 we take care of some preliminary matters. In Section 3 we es-
tablish some closure properties and normal forms for the classes of functions
we study. In Section 4 we prove our main results, characterizing the circuit
complexity class TC0. In Section 5 we briefly consider arithmetic circuits
over finite fields. In Section 6 we present some concluding remarks.

2 Definitions and Notation

In this section we establish the notation and conventions used in the rest of
the paper.

Definition 6 AC0 (TC0) is the class of languages accepted by constant-
depth circuits of unbounded fan-in AND, OR, and NOT gates (MAJORITY
gates, respectively).

8

It will be convenient to distinguish between languages (accepted by
Boolean circuits with a single output gate) and functions computed by
Boolean circuits with possibly several output gates.

Definition 7 FAC0 (FTC0) is the class of functions computed by constant-
depth circuits of unbounded fan-in AND, OR, and NOT gates (MAJORITY
gates, respectively).

Notice, that depending on the notion of uniformity used, each of the
above definitions denotes several distinct classes. Thus AC0 might be Nonuniform-
AC0, P-uniform-AC0, Logspace-uniform-AC0 or Dlogtime-uniform-AC0. Con-
text should make clear what is intended. (If uniformity is not explicitly men-
tioned, then the strongest interpretation is intended. That is, simulations
and computations hold in the Dlogtime-uniform setting, and lower bounds
hold even in the nonuniform setting, unless we state otherwise.)

3 Normal Forms and Closure Properties

3.1 Normal Forms

In this section, we prove a number of closure properties and normal forms
for #AC0 and GapAC0. These help simplify some of the proofs in later
sections, and are of independent interest.

Proposition 1 FAC0 ⊆ #AC0.

Proof. We will need the following easy observation. (We will use the
notation Cr also in later proofs.)

Proposition 2 For every positive integer r, there is a depth 2 circuit Cr of
size O(r) having exactly 2r accepting subtrees.

Proof. Let Cr be the circuit ∧ri=1(1 ∨ 1) which has
∏r
i=1 (1 + 1) accepting

subtrees.

First note that every language in AC0 has its characteristic function in
#AC0. To see this, notice that one can restructure any AC0 circuit into an
equivalent one whose arithmetized version produces output in {0, 1}. This
is clearly true for any depth zero circuit. Now assume that this is true for
all depth k− 1 circuits and consider a depth k circuit. If the output gate is

9

an AND then no further restructuring is necessary. If the output gate is an
OR of the form ∨mi=1Gi, then replace it by the unambiguous circuit

m∨
i=1

(Gi ∧ (
i−1∧
j=1

¬Gj)),

and propagate the NOT gates to the leaves.
Now consider multiple-output AC0 circuits. Suppose the output bits

bs . . . b0 represent the binary representation of the output f(x), then

s∨
i=0

[bi ∧Ci]

is the required circuit showing that f(x) ∈ #AC0 because the number of
accepting subtrees is

∑
i bi2

i.

Our first normal-form theorem is an analog of a statement that is triv-
ially true for the classes #P and #L, as well as for other counting classes
that can be modeled as the number of accepting paths of some sort of non-
deterministic machine, where without loss of generality the machine makes
one guess at each step. In the absence of such a model for #AC0, a more
complicated argument seems necessary.

Theorem 3 For every AC0-circuit M (on n inputs) and for all “sufficiently-
large” polynomials q(.), there is an AC0 circuit N (on n inputs) such that,

∀x |x| = n⇒ #N (x) = 2q(n) −#M(x).

Proof. We proceed by induction on the height of M (i.e., the length of the
longest path from the root to a leaf).

When the height is 0, the circuit consists simply of a literal or a constant
(= 0 or 1). Thus #M(x) = 0 or 1. Thus it is sufficient to consider the
following circuit,

N =

q(n)−1∨
i=0

Ci

 ∨M,

where M denotes the negation of the circuit M .
Now, consider a circuit M of height h. There are two subcases:

10

• M is a disjunction:

M =
k∨
i=1

Mi,

where k = k(n) = nO(1) is the number of gates feeding into the topmost
∨ gate. In this case, for each Mi, let Ni be the circuit, guaranteed by
the inductive hypothesis, such that #Ni(x) = 2q1(n) − #Mi(x). Let
q(n) be any polynomial such that q(n) ≥ q1(n) + k(n), and let

N =

[
k∨
i=1

Ni

]
∨
q(n)−q1(n)−k∨

i=1

Cq1(n).

Then,

#N (x) =
k∑
i=1

#Ni(x) + (q(n)− q1(n)− k) 2q1(n)

=
k∑
i=1

(
2q1(n) −#Mi(x)

)
+ (q(n)− q1(n)− k) 2q1(n)

= (q(n)− q1(n))2q1(n) −
k∑
i=1

#Mi(x)

= (q(n)− q1(n))2q1(n) −#M(x).

(In order to massage this into the precise form required, it suffices to
appeal to Lemma 5 below.)

• M is a conjunction:

M =
k∧
i=1

Mi,

where k = k(n) = nO(1) is the number of gates feeding into the topmost
∧ gate. In this case, for each Mi, let Ni be the circuit such that,
#Ni(x) = 2q1(n) −#Mi(x) and let M0 = C0. Let

N =
k−1∨
i=0

Ciq1(n) ∧Nk−i ∧

k−i−1∧
j=0

Mj

 .

Thus, with an appeal to Lemma 4 below, we have,

11

#N (x) =
k−1∑
i=0

2iq1(n)#Nk−i(x)
k−i−1∏
j=0

#Mj(x)


=

k−1∑
i=0

[
2iq1(n)

(
2q1(n) −#Mk−i(x)

)]k−i−1∏
j=0

#Mj(x)


= 2kq1(n) −

k∏
j=1

#Mj(x)

= 2kq1(n) −#M(x).

The proof is now complete except for the following lemmas. (As David
Mix Barrington has pointed out (personal communication), this first lemma
can be understood intuitively as computing the volume of a k-dimensional
cube of side a with a piece removed.)

Lemma 4 Let a, a1, . . . , ak be integers, where a0 = 1. For all k ≥ 1:

ak −
k∏
i=1

ai =
k−1∑
i=0

ai (a− ak−i)
k−i−1∏
j=0

aj.

Proof. We use induction on k.

a− a1 = a0 (a− a1)
=
∑0
i=0 ai (a− a1−i)

∏1−i−1
j=0 aj.

This proves the base case (k = 1). For the inductive step observe that,

ak+1 −
k+1∏
i=0

ai

= a

(
ak −

k∏
i=0

ai

)
+ (a− ak+1)

k∏
i=0

ai

= a
k−1∑
i=0

ai (a− ak−i)
k−i−1∏
j=0

aj + (a− ak+1)
k∏
i=0

ai

=
k−1∑
i=0

ai+1 (a− ak−i)
k−i−1∏
j=0

aj + (a− ak+1)
k∏
i=0

ai

12

=
k∑
i=1

ai
(
a− ak−(i−1)

) k−(i−1)−1∏
j=0

aj + (a− ak+1)
k∏
i=0

ai

=
k∑
i=1

ai
(
a− a(k+1)−i

) (k+1)−i−1∏
j=0

aj +
(
a− a(k+1)−0

) (k+1)−0−1∏
i=0

ai

=
k∑
i=0

ai
(
a− a(k+1)−i

) (k+1)−i−1∏
j=0

aj.

Lemma 5 If q(n) and q1(n) are polynomials, and a(n) ∈ FAC0, where
q(n) ≥ q1(n) + log a(n), and if the function a(n)2q1(n) − f(x) is in #AC0,
then 2q(n) − f(x) ∈ #AC0.

Proof. Let c(n) be the value 2q(n)−q1(n)−a(n), and note that c(n) ∈ FAC0.
Let B(n) = {j | bit number j of the binary representation of c(n) is equal to
1}. The lemma now follows by considering the following #AC0-computable
function:

a(n)2q1(n) − f(x) +

 ∑
j∈B(n)

Cj

 2q1(n)

= a(n)2q1(n) − f(x) + (2q(n)−q1(n) − a(n))2q1(n)

= 2q(n) − f(x).

(End of the proof of Theorem 3.)

Corollary 6 DiffAC0 = FAC0 −#AC0 = #AC0 − FAC0.

In fact, we have the stronger statement that if f and g are #AC0 func-
tions, then there exist polynomials q1, q2 and #AC0 functions h1, h2 such
that f(x)− g(x) = 2q1(|x|) − h1(x) = h2(x)− 2q2(|x|). To see this, note that
f(x)− g(x) = 2n

k − ((2n
k − f(x))+ g(x)). For large enough constant k, the

function ((2n
k − f(x)) + g(x)) is in #AC0, by Theorem 3.

13

3.2 Closure Properties

We begin with some simple closure properties. In [FFK94] the notions of
“weak sum” and “weak product” were defined as follows:

Definition 8 Let C be a class of functions.

• C is closed under weak sum if, for any f ∈ C and any k, the function
g(x) =

∑nk

i=1 f(x, i) is in C.

• C is closed under weak product if, for any f ∈ C and any k, the
function g(x) =

∏nk

i=1 f(x, i) is in C.

Proposition 7 #AC0 and GapAC0 are closed under weak sum and weak
product. DiffAC0 is closed under weak sum.

Proposition 8 DiffAC0 = GapAC0 if and only if DiffAC0 is closed under
weak product.

In contrast to the foregoing two propositions, the following closure prop-
erty seems to require a much more complicated proof. Although closure
under the choose operation is easy to show for classes such as #L and #P,
where a machine can simply guess and execute k computation paths simul-
taneously, a different argument appears necessary for circuit-based counting
classes.

Theorem 9 #AC0, DiffAC0 and GapAC0 are closed under the choose op-
eration (i.e. if f(x) is a function in one of these classes, then so is

(f(x)
k

)
for any positive constant k).

Proof.(of Theorem 9) Notice that once we know that #AC0 is closed under
the choose operation, it follows immediately that DiffAC0 is closed as well
(using essentially the same proof as that of Closure Property 5 in [FFK94]).

We proceed by induction on the depth of the counting circuit computing
the #AC0 function. If the circuit has depth 0, then the claim follows trivially
as f(x) assumes values 0 and 1 only. In order to prove the inductive step,
we just need to prove that if f1(x), . . ., fn(x) are #AC0 functions and for
some constant k and all j ≤ k,(f1(x)

j

)
, . . . ,

(fn(x)
j

)

14

are #AC0 functions, then so are
(∑n

i=1
fi(x)

k

)
and

(∏n

i=1
fi(x)

k

)
. Consider the

identity:
(1 + z)

∑n

i=1
fi(x) =

∏n
i=1 (1 + z)fi(x)

=
∏n
i=1

∑fi(x)
j=0

(fi(x)
j

)
zj .

The coefficient of zk on the right hand side is
∑∏n

i=1

(fi(x)
ji

)
, where the sum

is taken over all distinct tuples 〈j1, . . . , jn〉, satisfying
∑n
i=1 ji = k. Thus

comparing the coefficients of zk on both sides of the identity we get:

(∑ fi(x)
k

)
=
∑
~j

n∏
i=1

(fi(x)
ji

)
.

Here ~j = 〈j1, . . . , jn〉 is a partition of k into n parts. (Note that this shows
that two multivariable polynomials agree on an infinite domain, namely, the
naturals; hence these polynomials agree also on the integers.)

Hence, in order to show that
(∑n

i=1
fi(x)

k

)
is in #AC0, we just need to

show that the above expression involving a sum of products has polynomially
many terms. But a simple inductive argument shows that it has less than
nk terms: letting T (n, k) denote the number of terms in the sum and giving
jn values 0, . . . , k successively, we get the following equation:

T (n, k) = T (1, 0)T (n−1, k)+T (1, 1)T (n−1, k−1)+ · · ·+T (1, k)T (n−1, 0).

Noting that T (1, i) is 1 for each i and using a simple induction on k we get
the result.

In order to prove that
(∏n

i=1
fi(x)

k

)
is in #AC0, we first consider

(ac
k

)
. Note

that
(ac
k

)
is exactly the number of ways of choosing k distinct cells out of an

a × c matrix. For any choice of k cells, let b1, . . . , bk denote the number of
columns containing 1, . . . , k of the chosen cells. Then an alternative way of
choosing k cells out of this matrix is to first choose the integers b1, . . . , bk,
then choose the b1 columns containing exactly one chosen cell and the chosen
cell within each of these, then choose the b2 columns containing exactly two
chosen cells and the two chosen cells within them and so on.

Consider all distinct partitions of k in the form k = 1b1 +2b2 + · · ·+kbk.
We denote by ~b = 〈b1, b2, . . . , bk〉 one such partition and by Sk, the set of all
such partitions. Also define πk as the cardinality of the set Sk. Then,

(ac
k

)
=

∑
~b∈Sk

(c
b1

)(a
1

)b1(c−b1
b2

)(a
2

)b2 · · · (c−b1−b2−···−bk−1
bk

)(a
k

)bk
15

=
∑
~b∈Sk

(b1 + b2 + · · ·+ bk)!
b1!b2! · · ·bk!

(c
b1+b2+···+bk

)(a
1

)b1 · · ·(ak)bk .
Thus we have shown that

(ac
k

)
can be represented by a sum of πk terms. (As

above, note that this equality holds also when a and c are integers.)
For ~b ∈ Sk, let

F (n, k) =
(∏n

i=1
fi(x)

k

)
,

cn =
n−1∏
i=1

fi(x),

an = fn(x),

G(a,~b) =
(b1 + b2 + · · ·+ bk)!

b1!b2! · · ·bk!
(a
1

)b1 · · ·(ak)bk .
Then using the above identity involving

(ac
k

)
, we have:

F (n, k) =
∑
~b

G(an,~b)F (n− 1,
k∑
i=1

bi).

Let R(n, k) denote the number of terms in this sum once the right hand
side has been completely expanded as a sum of products. Then,

Claim 10 R(n, k) ≤ π1π2 · · ·πknk−1.

Proof. The claim clearly holds for R(1, k). Now assume that the claim
holds for all n′ < n and all k′ < k, and consider the induction step.

Let S
′
k be Sk − {〈k, 0, , 0, . . . , 0〉}. Then,

R(n, k) =
∑
~b∈Sk

R
(
n− 1,

∑
bi
)

= R(n− 1, k) +
∑
~b∈S′k

R
(
n− 1,

∑
bi
)

≤ R(n− 1, k) +
∑
~b∈S′k

R(n− 1, k − 1)

≤ R(n− 1, k) + (πk − 1)R(n− 1, k− 1)

< R(n− 1, k) + πk
(
π1π2 · · ·πk−1(n− 1)k−2

)
,

where the last inequality holds inductively. Thus,

16

R(n, k) < π1π2 · · ·πk
∑n−1
i=0 ik−2

< π1π2 · · ·πk
∑n−1
i=0 nk−2

= π1π2 · · ·πknk−1.

This completes the proof of Theorem 9 for the #AC0 case. Closure of
GapAC0 follows by an essentially identical proof. (The basis case needs to
be augmented to deal with the constant −1.)

A proof along these lines can also be used to show that #NC1 is closed
under the choose operation – but (as was pointed out to us by David Mix
Barrington) a much simpler proof suffices for #NC1, since one can show that
#NC1 is closed under the “monus” and “div m” operations for any constant
m. (That is, if f is in #NC1, then so are the functions max(f(x)− 1, 0),
and df(x)/me.) Although one can show that #AC0 is also closed under the
monus operation, #AC0 and GapAC0 are not closed under div m for any
m 6= 2. Proofs of these and other recent results about #AC0 will appear in
upcoming work.

This is a good time to observe that #AC0 is not closed under some more
general choose operations. For instance, let f(x) =

∑
i xi; f is clearly in

#AC0. For any function g(n) 6= logO(1) n, the function
(f(x)
g(n)

)
is not in #AC0,

since this function is 0 iff f(x) < g(n), and thus the underlying Boolean AC0

circuit would be computing the g(n)-threshold function, which is not in AC0

[FKPS85, DGS86]. (This shows merely that
(∑

i
xi

g(n)

)
is not in #AC0; for an

improvement of this result to a lower bound for GapAC0, see Theorem 11.)
This argument leaves open the question of what happens when g(n) 6= O(1)
but g(n) = logO(1) n. For g in this range, the g(n) threshold is computable
in AC0 [FKPS85, DGS86], but the currently-known proofs of this fact do
not preserve the number of accepting subtrees.

Open Question 6 Are the functions
(∑

i
xi

logn

)
and

(∑
i
xi

log∗ n

)
in #AC0?

Theorem 11 For every integer k ≥ 2, there are infinitely many integers
n with the property that there is some j ≤ log3k2

n, such that there is no
GapAC0

k-circuit of size ≤ nlogk−1 n computing the function(∑n
i=1 xi
j

)

17

where the xi’s are Boolean variables. (In particular, for any superpolyloga-
rithmic function g(n), it is not the case that a GapAC0 circuit can compute(∑

i
xi
j

)
for all j ≤ g(n).)

Proof. Assume otherwise. Thus we have a k ≥ 2, such that for all large
enough n and for each j ≤ log3k2

n, there is a GapAC0
k-circuit of size at

most nlogk−1 n computing
(∑

i
xi
j

)
.

Using these GapAC0 circuits, we will show how to compute the exact
threshold predicate

m∑
i=1

xi = m/2

(for any large enough m of the form 2r), using depth k + 1 AC0[2] circuits
of size smaller than the 2Ω(m1/2(k+1)) lower bound proved in [Smo87].

We need the following fact (a proof of which can be found in [BT91, Fact

2.2]): a is divisible by 2r iff

(
a
2j

)
is even for each 1 ≤ j ≤ r− 1.

Thus if a =
∑m
i=1 xi for some m = 2r, the predicate

m∑
i=1

xi = m/2

is equivalent to

(
∨
i

x̄i) ∧ (
∨
i

xi) ∧
∧

t<r−1

(∑
i xi
2t

)
is even.

Let n = d2m1/3k2

e. Thus m ≤ log3k2
n, so for all j ≤ m there is a GapAC0

k

circuit of size nlogk−1 n computing
(∑

i
xi
j

)
, and thus the lower-order bit of

this expression can be computed by AC0[2] circuits of the same depth and
size.

Thus the expression

(
∨
i

x̄i) ∧ (
∨
i

xi) ∧
∧

t<r−1

(∑
i xi
2t

)
is even

has depth k+1 AC0[2] circuits of size (nlogk−1 n)O(1) = 2O(m1/3k2
m(k−1)/3k2

) =
2O(m1/3k) which is asymptotically less than the lower bound of 2Ω(m1/2(k+1))

given by [Smo87].

18

Further results relating to closure properties of these classes may be
found in [AABDL].

4 C=AC0 = PAC0 = TC0

The most important step in proving this characterization involves showing
how to simulate threshold circuits.

Theorem 12 P-uniform TC0 ⊆ P-uniform C=AC0 and Dlogtime-uniform
TC0 ⊆ Dlogtime-uniform C=AC0

circ.

Proof. We will need to use the following well-known fact (see e.g. [PS88]),

Fact 13 A problem is in TC0 if and only if it is accepted by a constant-
depth family of “exact-threshold” gates ETmm/2 (an ETs

r gate has s inputs
and outputs 1 iff exactly r of them are 1).

We will present a polynomial time algorithm that proceeds by induc-
tion on the depth of a TC0-circuit C (composed only of ETm

m/2 gates) and
constructs a DiffAC0 (or Dlogtime-uniform GapAC0) circuit f , such that, if
C(x) = 0 then f(x) = 0, and if C(x) = 1 then f(x) is equal to a constant
independent of x. The following paragraph provides details for the base case
of depth 1 circuits.

Let Km be
∏m
j=0,j 6=m/2 (m/2− j). It is easy to see that the function

∆(x1, x2, . . . , xm) =
∏
j 6=m/2 ((

∑
i xi)− j)

Km

is 1 if
∑
i xi is m/2 and is 0 otherwise (the xi’s are Boolean variables).

Thus ∆(x1, x2, . . . , xm) = ETm
m/2(x1, x2, . . . , xm). Consider the function

P (X) =
∏
j 6=m/2 (X − j). The naive algorithm that multiplies the terms

(X − j) together to explicitly compute the coefficients of powers of X runs
in polynomial time. (Note that the binary representations of the coeffi-
cients are only polynomially long). Separating the positive and negative
terms we get P (X) = Q(X) − R(X), where Q(.) and R(.) are polynomi-
als with coefficients that can be computed by P-uniform #AC0 circuits.
Thus Q(

∑
i xi) − R(

∑
i xi) is a P-uniform DiffAC0 function that is equal

to 0 if C(x) = 0, and is equal to Km if C(x) = 1. On the other hand

19

∏
j 6=m/2 ((

∑
i xi)− j) is already a Dlogtime-uniform GapAC0 function with

this property. This completes the basis step of our inductive argument.
For the inductive step, in order to prove P-uniform TC0 ⊆ P-uniform

C=AC0, our inductive hypothesis will be: for every P-uniform family {Cn}
of exact-threshold circuits, for every d, there is a function computable in
time polynomial in n that, on input (n, Cn, C) outputs circuits Dn, D

′
n of

depth O(d) such that if C is a gate at level d of Cn then for all x of length n,
C(x) = 0 implies Dn(x)−D

′
n(x) = 0 and C(x) = 1 implies Dn(x)−D

′
n(x) =

(Km)t (where t = t(m, d) is some function depending only on d and m). Note
that we have established this claim for the case d = 1.

Consider a depth d+1 exact-threshold circuit with output gate G, where
the inputs to G are Gi (i = 1 . . .m). We show how to construct, in polynomial
time, a DiffAC0 function that takes values (Km)t(m,d+1) = (Km)mt(m,d)+1

and 0 whenever G outputs 1 and 0 respectively.
Let the DiffAC0 function corresponding to Gi be Fi = fi − gi (fi, gi are

#AC0 functions). From Theorem 3 we know that there exists an integer q
and an #AC0 function hi such that Fi = fi − gi = hi − 2q. Furthermore, q
depends only on the depth d and the size of Cn. Now the output of G is

∆
(

F1

Kt
m

, . . . ,
Fm
Kt
m

)
=

∏
j 6=m/2

(∑
i
Fi

Ktm
−j
)

Km

=
∏
j 6=m/2 ((

∑
i
Fi)−jKt

m)
Kmt+1
m

=
∏
j 6=m/2 ((

∑
i
hi)−m2q−jKt

m)
Kmt+1
m

=
Q
′(
∑

i
hi)−R′(

∑
i
hi)

Kmt+1
m

.

Here Q
′
(.) and R

′
(.) are polynomials with coefficients in #AC0. They

are obtained by expanding the product
∏
j (X − (m2q + jKt

m)) (where X =∑
i hi) and separating the positive and negative terms. Just as in the base

case their coefficients can be computed in time polynomial in n, and hence
can be computed by P-uniform #AC0 circuits constructed by our algorithm.

To prove Dlogtime-TC0⊆ C=AC0
circ is even simpler. Inductively suppose

the GapAC0 function corresponding to Gi is Fi. Then proceeding the same

20

way as for DiffAC0 functions we get

∆
(

F1

Kt
m

, . . . ,
Fm
Kt
m

)
=
∏
j 6=m/2 ((

∑
i
Fi)−jKt

m)
Kmt+1
m

.

Thus
∏
j 6=m/2

(
(
∑
i Fi)− jKt

m

)
is the GapAC0 function corresponding to

G, whose value is either 0 or Kmt+1
m , according to whether gate G accepts.

This completes the proof of Theorem 12.

Proposition 14 C=AC0 ⊆ PAC0 (under all considered notions of unifor-
mity).

Proposition 15 P-uniform (non-uniform) GapAC0 ⊆ P-uniform (non-uniform)
FTC0.

(This is a simple consequence of the fact that unbounded fan-in addition
and multiplication are in P-uniform TC0 [RT92].)

Corollary 16 In the P-Uniform and Non-Uniform Settings,

C=AC0 = PAC0 = TC0 = C=AC0
circ = PAC0

circ.

Note that one interpretation of the preceding corollary is that TC0 lan-
guages can be computed with just constant-depth arithmetic and a single
threshold gate. Also note that, although we do not know if DiffAC0 =
GapAC0, we obtain a characterization of TC0 using either function class.
Finally, note that our normal form theorems yield an even more restrictive
characterization of TC0.

Corollary 17 For any set A in non-uniform or P-uniform TC0, there exist
a constant l, a function g in #AC0, and a (non-uniform or P-uniform,
respectively) #AC0 function h with the following property:

• If x ∈ A, then h(x) = 2|x|
l
.

• If x 6∈ A, then h(x) = 2|x|
l
+ g(|x|).

Proof. From the proof of Theorem 12, we know that there is a DiffAC0

function f such that if x 6∈ A, then f(x) = 0, and if x is in A, then f(x) =
(Km)tm+1 where m = 2|x|k for some k, and Km =

∏m
j=1,j 6=m/2 (m/2− j).

21

Let g(|x|) = (Km)tm+1. By Corollary 6, f(x) is of the form h(x)− 2|x|
l
for

some #AC0 function h and some constant l.

(This corollary shows that TC0 is the AC0-analog of the class LWPP
studied in [FFK94]. We refer the reader to [FFK94] for further details.)

Corollary 17 is probably nearly the strongest result in this direction that
one can prove. For instance, one might seek to strengthen Corollary 17 to
obtain g(n) = 1. (This corresponds to the AC0-analog of the class SPP
studied in [FFK94].) Note that if g(n) = 1, then the characteristic function
of A is in GapAC0. However, it follows from Proposition 28 that any such
language A is in AC0[2]. Thus the lower bound of [Raz87] (showing that
MAJORITY is not in AC0[2]) shows that we cannot improve Corollary 17
to obtain g(n) = 1.

More generally, observe that the function g(n) has lots of small divisors.
This is no accident. Assume for the moment that one could strengthen
Corollary 17 so that g(n) is of the form 2n

k
(for example). Then it would

follow that TC0 = ACC0. To see this, note that the GapAC0 function
m(x) = h(x) − 2n

l
would have the property that m(x) is a multiple of 3

if and only if x ∈ A. As is clear from Theorem 27, this property can be
checked in AC0[6]. More generally, if Corollary 17 can be strengthened so
that, for some prime p, there are infinitely many n such that g(n) is not a
multiple of p, then there is an ACC0 circuit family that, for infinitely many
n, computes the MAJORITY function on n variables.

It is of interest to us to try to improve the uniformity condition. This
leads us to the next theorem.

Theorem 18 Logspace-uniform PAC0
circ ⊆ Logspace-uniform TC0.

Before proving this theorem, we need to introduce some number theoretic
machinery.

Definition 9 Zp is the group over {0, . . . , p− 1} with modulo p addition (p
any prime)and Z∗p is the multiplicative group over {1, . . . , p− 1} modulo p.
Further g is a generator of Z∗p if Z∗p = {1, g, g2, . . . , gp−1} (all products are
taken in Z∗p). indg,p, powg,p : Z∗p → Z∗p are functions satisfying gindg,p(x) = x
and powg,p(x) = gx.

We will need the following variant of the Chinese Remainder Theorem:

Theorem 19 (see e.g. [HW79]) Given primes p1, p2, . . . , pk and an inte-
ger x, there are unique integers x1, x2, . . . , xk (modulo p1, p2, . . . , pk respec-
tively), satisfying

22

x ≡ x1 mod p1,
x ≡ x2 mod p2,

...
x ≡ xk mod pk.

And if any y satisfies the congruences above then x ≡ y mod Pk, where
Pk =

∏k
i=1 pi. More explicitly, x = Ak − qkPk where

Ak =
k∑
j=1

((xjck,j) mod pj)Pk/pj,

ck,j = (Pk/pj)
−1 mod pj,

qk = bAk/Pkc .

And the following variant of the prime-number theorem:

Theorem 20 (see e.g. [HW79]) For sufficiently large values of n, the prod-
uct of all primes less than n exceeds 2n.

As a consequence of Theorems 19 and 20 we get the following corollary:

Corollary 21 If 0 ≤ x < 2n, then x can uniquely be represented as ~x =
(x1, x2, . . . , xs), where x ≡ xi mod pi (for 1 ≤ i ≤ s) and p1, p2, . . . , ps are
the primes smaller than n. ~x is called the Chinese Remainder Representation
of x.

Lemma 22 There is a Logspace-uniform TC0 circuit that decides whether
a number less than Pk is actually less than Pk/2, given the residues modulo
p1, p2, . . . , pk (here p1, . . . , pk are the first k primes and Pk is their product).

Proof. We consistently use the notation (viz. pj, Pi, ci,j, qi, ~x etc.) intro-
duced in Theorem 19 and Corollary 21. Let

Xi = Ai − qiPi

(in the remaining portion of the proof any unqualified i or j refers to an
integer in the range [1, k]). From the Chinese Remainder Theorem we know
that the number in question (i.e. the number with residues xi modulo pi) is

Xk = Ak − qkPk.

23

Thus we need to find out whether or not Xk > Pk/2, which is equivalent
to

1
2

<
Xk

Pk

=
Ak − qkPk

Pk

=
Ak

Pk
−
⌊
Ak

Pk

⌋

So, essentially, we need to find out the first bit of the fractional representa-
tion of Ak/Pk. [DMS94] shows how to do this in Logspace. We show that
their method is amenable to a TC0 circuit implementation.

The essential idea is to compute the first 3dlog2 ie bits of each of the
fractions ti,j(x) = ((xjci,j) mod pj)/pj (for 1 ≤ j ≤ i ≤ k) and find the
sums q

′
i(x) =

∑i
j=1 ti,j(x) approximating Ai/Pi. [DMS94] show that if the

fractional part of q′k(x) contains any zeros, then the first bit of the fractional
part of q′k(x) is equal to the first bit of the fractional part of Ak/Pk (which
is the bit that we need to compute). If, instead, the fractional part of q′k
is all ones, then consider the number x′ that results by flipping the bit x1

(recording the residue mod 2 of x). In the Chinese Remainder Representa-
tion, the number x′ is equal to x + Pk/2 or x − Pk/2; note that x < Pk/2
if and only if x′ ≥ Pk/2, thus if the fractional part of q′k(x

′) contains any
zeros, we again know the value we want. If the fractional parts of q′(x) and
of q′(x′) are both all ones, then [DMS94] show that the computation can
be repeated using q′k−1 approximating Ak−1/Pk−1 (which in this case has
the same bit as Ak/Pk). Thus our answer can be computed by finding the
value i∗, which is the largest i < k for which the first 2dlog2 ie bits of the
fractional part of q

′
i(x) or of q′i(x

′) are not all 1.
So we just need to show that each of the q

′
i’s and i∗ can be computed

using Logspace-uniform TC0 circuits. But this follows from Lemma 24-7,8
below.

(We remark that, instead of relying on [DMS94], it is also possible to
make use of similar results of [Lit92, DL91]. It seems to us that the con-
struction of [DMS94] results in a simpler circuit.)

Lemma 23 The following are computable in O(logn) space where in the
following x is n bits long and p, pi, g, k, z are all O(logn) bits long.

1. A generator g of the multiplicative group Zp, given prime p.

24

2. The function z, p 7→ powg,p(z) (see Definition 9) where g is as in item
1 above.

3. The function z, p 7→ indg,p(z) (see Definition 9) where g is as in item
1 above.

4. The function modk : k, x 7→ x mod k.

5. The function i, j 7→ ci,j.

6. The function t : i, j, z 7→ the first 3dlog2 ie bits of zci,j/pj (where
z < pj).

Proof.

• (of Lemma 23-1) For each h ∈ Zp try if h(p−1)/2 ≡ −1 mod p, if yes
then it is a generator else not. As h and p are only O(logn) bits long
this can be done in logspace.

• (of Lemma 23-2) Given a number z compute gz, reducing the result
gi modulo p at each step.

• (of Lemma 23-3) Given a number z first find its modulo p representa-
tion y then for each element y ∈ Zp check whether gy mod p = z.

• (of Lemma 23-4) With numbers in this range, the standard long-
division algorithm runs in logspace.

• (of Lemma 23-5) By successively testing each integer for primality
compute the ith,jth prime pi, pj. Now successively (re)compute pk
(for k ≤ i) and if k 6= j, then find the modulo-pj inverse of pk (by
reducing pk modulo pj and checking for each positive number l <
pj whether l · pk ≡ 1(modpj)). Keep accumulating the inverses in a
product modulo-pj. The final value of the product is the modulo-pj
inverse of Pi/pj.

• (of Lemma 23-6) Compute pj, and then compute ci,j using Lemma
23-5 above. Compute the product xci,j and then produce the first
3dlog2 ie bits of xci,j/pj using the standard long division algorithm.

Lemma 24 The following are computable using a Logspace-uniform TC0

circuit (the length of the input is always O(n)):

25

1. f ◦g where f : {0, 1}c logn → {0, 1}m is a Logspace computable function
and g : {0, 1}n→ {0, 1}c logn is a function in Logspace-uniform TC0.

2. f ◦~g (where this is defined as f(g(x1), g(x2), . . . , g(xn))), where f and
g are in Logspace-uniform TC0.

3. The sum of n integers each having O(n) bits (denote this function by
sum).

4. The iterated sum modulo k (any O(logn) bit integer) of n integers
each having O(n) bits (denote by sumk).

5. The iterated product modulo p (any O(logn) bit prime) of n integers
each having O(n) bits (denote by prodp).

6. The function t : i, j, x 7→ the first 3dlog2 ie bits of xci,j/pj (where
x < pj).

7. The function q
′
: i, ~x 7→∑i

j=1 t(i, j, xj) (where ~x = 〈x1, x2, . . . , xk〉).

8. The function ~x 7→ i∗, where i∗ is the maximum i such that the first
2dlog2 ie bits of the fractional part of q

′
(i, ~x) are not all 1’s.

Proof.

• (of Lemma 24-1) Construct a circuit whose ith output bit (on input y)
is given by

nc∨
j=1

c logn∧
k=1

(j[k] = y[k])
∧

f(j)[i]


(here a[i] denotes the ith bit of integer a). This circuit is clearly
Logspace uniform from the Logspace computability of f . Compos-
ing this circuit with the circuit for g yields the required circuit.

• (of Lemma 24-2) Straightforward.

• (of Lemma 24-3) This is well known (e.g. see [CSV84]).

• (of Lemma 24-4) sumk = modk ◦ sum. Result follows from Lemmas
23-4, 24-3 and 24-1.

• (of Lemma 24-5) Let g = indg◦modp. Then prodp = powg◦sump−1◦~g.
Result follows from Lemmas 23-4, 23-2, 23-3, 24-3, 24-2, and 24-1.

• (of Lemma 24-6) Follows from 23-6 and 24-1.

26

• (of Lemma 24-7) Follows from 24-6 and 24-3.

• (of Lemma 24-8) Given the values of q
′
i (1 ≤ i ≤ k), finding the

maximum i satisfying an AC0 property is equivalent to finding the
rightmost 0 in an array of length k, which is again in AC0.

Proof.(of Theorem 18) Let k be the constant such that for all large n, the
value of the given GapAC0 circuit has absolute value less than 2n

k
. (Such

a k exists, since #AC0 ⊆ #P.) We use Lemmas 24-4 and Lemmas 24-5 to
construct a TC0 circuit that computes the answer modulo the primes less
than n2k. This way any positive number is mapped into [0, P/2) and any
negative number into (P/2, P − 1]. Thus it is sufficient to test whether the
final answer is greater than P/2, which can be done with the help of Lemma
22.

Corollary 25 In the Logspace-Uniform Setting,

TC0 = C=AC0
circ = PAC0

circ.

5 Arithmetic Circuits over Finite Fields

There has been earlier work characterizing TC0 in terms of finite fields
[BFS92, FVB94, RT92]. However, this earlier work provides no connection
to AC0, and the characterizations involve having a different finite field for
each input length. Also, these earlier characterizations dealt with arithmetic
circuits with additional gates (such as conjugation gates, or division gates)
in addition to the + and × gates that we use.

It may be interesting to point out that, when one uses our notion of
arithmetic circuits over finite fields, one obtains a characterization of ACC0.
(It has been pointed out to us by David Mix Barrington that this is in some
sense implicit in the work of Smolensky [Smo87].)

We need the following fact from number theory.

Theorem 26 (Dirichlet) (see e.g. [HW79]) For any two relatively prime
numbers q and r, there exist infinitely many primes in the sequence {qn +
r}∞n=1.

Let F be a finite field, and let #AC0
F denote the class of functions

computed by #AC0 circuits, where now + and × are operations over the
field F .

27

Theorem 27 A language is in ACC0 if and only if its characteristic func-
tion is in #AC0

F for some finite field F .

Proof. Let A be a language in ACC0; thus A is in AC0[m] for some m.
Without loss of generality the only gates are ∧ and Modm (since ∨ can be
simulated by ∧ and Modm). Our first step is to find a prime p of the form
am + 1 for some a, using Dirichlet’s theorem (Theorem 26) above. Now
make a copies of each gate, and replace all Modm gates with Modp−1 gates
(keeping in mind that m | x⇔ am | ax). Thus at this stage the only gates
are ∧ and Modp−1. Now an ∧ gate can be replaced by a product gate modulo
p (since the value of each gate is Boolean). It remains only to simulate the
Modp−1 gates.

Let an arbitrary Modp−1 gate have inputs x1, . . . , xr. Consider

X =
∏
i

(1 + (g − 1)xi) mod p

(where g is a generator of the multiplicative group modulo p); this has
value 1 iff the number of xi’s that are 1 is divisible by (p − 1). Further,
(X + p− 1)p−1 mod p is 0 if X is 1 mod p and is 1 otherwise. This gives us
the arithmetic circuit equivalent to the Modp−1 gate.

The other direction is equally simple. We will build a circuit that com-
putes, for each gate g, a representation of the field element to which g
evaluates. Let the finite field F be GF(pk). We will use two representa-
tions. One representation rep+(x) will be as a k-tuple of strings of the form
1ai0p−ai , where x corresponds to element (a1, a2, . . . , ak) when F is viewed
as a vector space over GF(p). Note that, when given n such k-tuples, their
sum can easily be computed by AC0[p] circuits. (When adding up the lth

components, test for each j ≤ p if Modp(rep+(x1,l) · · ·rep+(xn,l)1j) holds.
If so, then output 1p−j0j as the value of the lth component.)

The other representation rep×(x) will be of the form 1i0p
k−i where

gi = x, where g is a generator of the multiplicative group of F . Since
F is finite, each representation is only O(1) bits, and conversion between
representations can be computed in AC0. Now the product

∏
i xi can be

computed by computing
∑
i rep×(xi) mod (pk − 1), which can clearly be

computed in AC0[pk − 1]. This completes the proof.

Although in general there is no close connection between arithmetic cir-
cuits over GF(p) and AC0[p] (since, for example, both PARITY and Mod3

are computable with arithmetic circuits over GF(3)), there is one important
case where an equivalence does hold. (The proof of the following proposition
is an easy modification of the foregoing.)

28

Proposition 28 The following are equivalent:

1. A ∈ AC0[2].

2. χA ∈ GapAC0.

3. χA can be represented as the low-order bit of some #AC0 function.

4. χA ∈ #AC0
GF (2).

Proof. The only one of the implications 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1 that re-
quires much explanation is 1 =⇒ 2. This implication is proved by induction
on the depth of the AC0[2] circuit (composed of only PARITY and AND
gates). The main observation required in the inductive step is that, in order
to simulate a PARITY gate with inputs f(x, i) (for 1 ≤ i ≤ nk), it suffices
to use the following function:(

1 +
∏

(1− 2f(x, i))
2

)
.

This is in GapAC0 by the closure properties established in Section 3.
V. Vinay (personal communication) has pointed out that the following

direct construction also computes the zero-one PARITY function:

∑
i

∏
j<i

(1− 2f(x, j))

 f(x, i).

A similar argument shows that, for all prime p and for all k, #AC0
GF (pk)

corresponds exactly to AC0[p(pk − 1)]. We close this section with another
question concerning the relationship between #AC0 and DiffAC0.

Open Question 7 Is there any set A 6∈ AC0 such that χA ∈ DiffAC0?

6 Lower Bounds, and Conclusions

We know many lower bounds for #AC0. For instance, the Mod3 function
is not in #AC0, as a consequence of Proposition 28 and the circuit lower
bounds in [Raz87]. At the end of Section 3.2 we saw that some functions
related to the symmetric polynomials are not in #AC0. Other examples can
easily be generated as easy consequences of known circuit lower bounds. (In

29

contrast, no function in #P or in PNP is known not to be in #NC1.) We
can also show that the #AC0

k and GapAC0
k hierarchies are strict using the

known lower bounds.

Theorem 29 For any k > 0, #AC0
k ⊂ #AC0

k+1, and GapAC0
k ⊂ GapAC0

k+1.

Proof. We prove the theorem for #AC0, the proof for GapAC0 is identical.
Assume that #AC0

k = #AC0
k+1 for some k > 0. It follows then that

#AC0 = #AC0
k. Let A be a language in AC0 but not in depth k AC0[2].

(See, for instance Proposition 11 in [AH94]. We can choose A to be the mod
3 of the first loga n bits, for some a.) The characteristic function of A is in
#AC0, and therefore, in #AC0

k by our assumption. But this gives a depth
k AC0[2] circuit for A, in contradiction to our choice of A.

On the other hand, we know essentially no lower bounds for threshold
circuits, which amounts to studying the limits of what can be expressed as
the high-order bit of a #AC0 function. A great many new questions present
themselves, such as whether DiffAC0 = GapAC0. Although the resolution
of this and related questions would not immediately yield lower bounds for
threshold circuits, it would be informative to learn more about what can
and cannot be computed in #AC0 and increase our store of lower bound
techniques for dealing with this class of functions.

Note that [RR94] argues that, if certain popular cryptographic assump-
tions are true, then there are no “natural proofs” of lower bounds for TC0

circuits. The model of arithmetic circuits considered here has not been stud-
ied in sufficient detail for it to be clear whether this should be considered a
significant obstacle to proving lower bounds for TC0 via arithmetic circuits.
Since many lower bounds for #AC0 can be proved using natural proofs, it
would also be interesting to know what types of questions about #AC0 can
be addressed via natural proofs, and which cannot.

The issue of uniformity is especially interesting, and it again leads us
to the frontier of current lower bound technology. It is currently an open
question whether a given bit of the permanent can be computed as the high-
order bit of Dlogtime-uniform #AC0 functions, although if the inclusion
PAC0 ⊆ TC0 holds also in the Dlogtime-uniform setting, then a negative
answer would follow from the lower bound of [All].

The main obstacle to proving a Dlogtime-uniform analog to Theorem 18
seems to be the problem of finding a generator for the multiplicative group
Zp. Note in this regard that our proof uses the fact that a logspace machine
can check if the graph on {1, . . . , p} with edges i → ig(modp) is a cycle.
(It is a cycle if and only if g is a generator.) The problem of checking if a

30

general graph is a cycle is complete for logspace (see, e.g., [Ete95]), and thus
any argument handling the Dlogtime-uniform TC0 case will almost certainly
need to make use of special properties of this graph.

Getting rid of the P-uniformity condition in Theorem 12 seems closely-
related to the problem of finding Logspace-uniform (or Dlogtime-uniform)
circuits for iterated integer multiplication, which in turn is equivalent to
obtaining more uniform circuits for division [BCH86, IL95, RT92].

Another direction worth investigating concerns branching programs. It
is shown in [CMTV96] that #NC1 is closely related to the problem of count-
ing paths in bounded-width branching programs, and it is also known that
AC0 is the class of languages accepted by branching programs over acyclic
monoids [BT88]. Is there some characterization of #AC0 or DiffAC0 in
terms of branching programs? Is there a related algebraic characterization?

Acknowledgments

We would like to thank Richard Bumby, David Mix Barrington, Pierre
McKenzie, Denis Therien, Noam Nisan and Dieter van Melkebeek for dis-
cussions and suggestions on the material.

References

[AABDL] E. Allender, A. Ambainis, D. Mix Barrington, S. Datta, and
Huong LêThanh, Bounded Depth Arithmetic Circuits: Count-
ing and Closure. To appear in Proc. 26th International Col-
loquium on Automata, Languages, and Programming (ICALP),
1999.

[AH94] E. Allender and U. Hertrampf, Depth Reduction for Circuits of
Unbounded Fan-In. Information and Computation, 112(2):217–
238, 1994.

[ABO96] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix
rank and feasible systems of linear equations. In Proc. 28th ACM
Symposium on Theory of Computing (STOC), pages 161–167,
1996.

[AJ93b] C. Álvarez and B. Jenner. A very hard log-space counting class.
Theoretical Computer Science 107:3–30, 1993.

31

[AJMV] E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-
commutative arithmetic circuits: depth reduction and size lower
bounds. Theoretical Computer Science 209:47–86, 1998.

[All] E. Allender. The permanent requires large uniform threshold
circuits. To appear in Chicago Journal on Theoretical Computer
Science. A preliminary version of this paper appeared as [All96].

[All89] E. Allender. P-uniform circuit complexity. J. ACM, 36:912–928,
1989.

[All96] E. Allender. A note on uniform circuit lower bounds for the
counting hierarchy. In International Conference on Comput-
ing and Combinatorics Conference (COCOON), volume 1090 of
Lecture Notes in Computer Science, pages 127–135. Springer-
Verlag, 1996.

[AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and
the determinant. To appear in Computational Complexity. An
earlier version appeared in Proc. 9th IEEE Structure in Com-
plexity Theory Conference, pages 267–278, 1994.

[ABL98] A. Ambainis, D. M. Barrington, H. LêThanh, On counting AC0

circuits with negative constants. In Proceedings of the 23rd In-
ternational Symposium on Mathematical Foundations of Com-
puter Science (MFCS), 1998.

[BCH86] P. Beame, S. Cook, and H. J. Hoover. Log depth circuits for
division and related problems. SIAM J. Comput., 15:994–1003,
1986.

[BFS92] J. Boyar, G. Frandsen, and G. Sturtivant. An arithmetical
model of computation equivalent to threshold circuits. Theo-
retical Computer Science, 93:303–319, 1992.

[BIS90] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uni-
formity within NC1. Journal of Computer and System Sciences,
41:274–306, 1990.

[BT88] D. A. Mix Barrington and D. Thérien. Finite monoids and the
fine structure of NC1. Journal of the ACM, 35:941–952, 1988.

[BT91] Richard Beigel and Jun Tarui. On ACC. Computational Com-
plexity, 4:350–366, 1994.

32

[CMTV96] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nonde-
terministic NC1 computation. Journal of Computer and System
Sciences, 57(2):200–212, 1998.

[CSV84] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth
reducibility. SIAM Journal on Computing, 13:423–439, 1984.

[DGS86] L. Denenberg, Y. Gurevich, and S. Shelah. Definability by
constant-depth polynomial-size circuits. Information and Con-
trol, 70:216–240, 1986.

[DL91] George I. Davida and Bruce Litow. Fast parallel arithmetic
via modular representation. SIAM Journal on Computing,
20(4):756–765, August 1991.

[DMS94] Paul F. Dietz, Ioan I. Macarie, and Joel I. Seiferas. Bits and
relative order from residues, space efficiently. Information Pro-
cessing Letters, 50(3):123–127, 9 May 1994.

[Ete95] K. Etessami. Counting quantifiers, successor relations, and log-
arithmic space. Journal of Computer and System Sciences,
54(3):400–411, 1997.

[FFK94] Stephen A. Fenner, Lance J. Fortnow, and Stuart A. Kurtz.
Gap-definable counting classes. Journal of Computer and Sys-
tem Sciences, 48(1):116–148, 1994.

[FKPS85] R. Fagin, M. Klawe, N. Pippenger, and L. Stockmeyer. Bounded-
depth, polynomial-size circuits for symmetric functions. Theo-
retical Computer Science, 36:239–250, 1985.

[FVB94] G. Frandsen, M. Valence, and D. Mix Barrington. Some results
on uniform arithmetic circuit complexity. Mathematical Systems
Theory, 27, 1994.

[Gil77] J. Gill. Computational complexity of probabilistic Turing ma-
chines. SIAM Journal on Computing, 6:675–695, 1977.

[HW79] G. H. Hardy and E. M. Wright. An Introduction to the Theory
of Numbers. Oxford press, USA, 1979.

[IL95] N. Immerman and S. Landau. The complexity of iterated mul-
tiplication. Information and Computation, 116:103–116, 1995.

33

[Lit92] B. Litow. On iterated integer product. Information Processing
Letters, 42(5):269–272, 03 July 1992.

[Mac] I. Macarie. Space-efficient deterministic simulation of probabilis-
tic automata. SIAM J. Comput. 27(2):448–465, 1998.

[MV97] M. Mahajan and V. Vinay. Determinant: Combinatorics, algo-
rithms, and complexity. Chicago Journal of Theoretical Com-
puter Science, (5), 1997.

[NS99] F. Noilhan and M. Santha. Semantical counting circuits.
Manuscript, Université Paris-Sud.

[PS88] I. Parberry and G. Schnitger. Parallel computation with thresh-
old functions. Journal of Computer and System Sciences,
36:278–302, 1988.

[Raz87] A. A. Razborov. Lower bounds on the size of bounded depth
networks over a complete basis with logical addition. Mathe-
maticheskie Zametki, 41:598–607, 1987. English translation in
Mathematical Notes of the Academy of Sciences of the USSR
41:333-338, 1987.

[RR94] A. A. Razborov and S. Rudich. Natural proofs. Journal of
Computer and System Sciences, 55(1):24–35, 1997.

[RT92] J. Reif and S. Tate. On threshold circuits and polynomial com-
putation. SIAM J. Comput., 21:896–908, 1992.

[Ruz81] W. Ruzzo. On uniform circuit complexity. Journal of Computer
and System Sciences, 21:365–383, 1981.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds
for Boolean circuit complexity. In Proceedings, 19th ACM Sym-
posium on Theory of Computing, pages 77–82, 1987.

[ST] M. Santha and S. Tan. Verifying the determinant in parallel.
Computational Complexity, 7:128–151, 1998.

[Tod] S. Toda. Counting problems computationally equivalent to the
determinant. Manuscript.

[Tod92] S. Toda. Classes of arithmetic circuits capturing the complexity
of computing the determinant. IEICE Trans. Inf. and Syst.,
E75-D:116–124, 1992.

34

[Val79a] L. Valiant. Completeness classes in algebra. In Proc. 11th ACM
Symposium on Theory of Computing (STOC), pages 249–261,
1979.

[Val79b] L. Valiant. The complexity of computing the Permanent. The-
oretical Computer Science, 8:189–201, 1979.

[Val92] L. Valiant. Why is boolean complexity theory difficult? In M. S.
Paterson, editor, Boolean Function Complexity, volume 169 of
London Mathematical Society Lecture Notes Series, pages 84–94.
Cambridge University Press, 1992.

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic com-
plexity classes. SIAM Journal on Computing, 21:655–670, 1992.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-
unbounded arithmetic circuits. In Proc. 6th IEEE Structure in
Complexity Theory Conference, pages 270–284, 1991.

[Wag86] K. W. Wagner. The complexity of combinatorial problems with
succinct input representation. Acta Informatica, 23:325–356,
1986.

[Yam96] T. Yamakami. Uniform AC0 Counting Circuits. Manuscript,
1996.

35

