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Modified photon equation of motion as a test for the principle of equivalence
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We have considered a modified equation of motion based on the principle of covariance. Some astro-
nomical observations are used to place limits on the presence of the extra terms in the modified equation.

The equivalence principle has been put to several tests,
including a recent one based on the analysis of the
differential time delay between the arrival of left- and
right-handed circularly polarized (LCP and RCP) signals
from the millisecond pulsar PSR 1937+214 [1,2]. The
analysis carried out so far has been based on phenomeno-
logical arguments invoking some symmetry-breaking
terms which can be added to the ordinary Newtonian po-
tential. The equivalence principle dictates that the equa-
tion of motion of a freely falling body be given by the
geodesic equation. On the other hand, the principle of
general covariance is not so restrictive. For example, the
geodesic equation could be modified [3] for a freely falling
particle of spin S5 to
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where p is a parameter specifying the position of a parti-
cle on its trajectory. It has been argued that, since the ar-
bitrary constant f has dimension of length, the ratio of
the third term to the second term would be roughly of or-
der d /D, where d and D are the characteristic linear di-
mension of the particle and the characteristic spacetime
dimension, respectively. The contribution of the last
term would, therefore, be negligible. It is of interest to
see whether any observational limit on such a term, how-
ever small, can be obtained. In this note, we will examine
the pulsar data on the basis of Eq. (1), thereby arriving at
an estimate of the coupling constant f, if such a term ex-
ists.

We consider the motion of a light ray in the
Schwarzschild metric, based on Eq. (1). We note that the
last term in the equation is parity violating. This leads to
different travel times for LCP and RCP light rays. We
write

ds?=—B (r)dt*+ A (r)dr*+r*(d6*+sin’0d ¢?) , (2)

where B(r)=A " Yr)=1—2GM /(c**)=1—2m/r. In
Eg (1), we can always choose S'=0. We also find that if
SY=0, then 6=m/2 is a solution of the second-order
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differential equation in 8. So, in this case, the motion can
be confined to the 6= /2 invariant plane. The other
three equations of motion can be written as

(3a)
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We will now solve these equations, keeping only terms up
to order m =GM /c?. Since the last term in Eq. (1) con-
tains R, s which is of order m, we can substitute values
for the other quantities in this term, namely dx?/ dp and
S?%, by their zeroth-order ones. That is, these values are
obtained by treating the light ray as traveling in a
straight line, as shown in Fig. 1.
The zeroth-order values are

ﬂ:l _éﬁzr_ozcosz

—— =sing, dp P dp 2 7o s

dp
where r, is the radial distance of closest approach of the
light ray. Thus, for the RCP beam, we substitute
"=sing and S#=cos¢ /7 in the terms containing spin in
Egs. (3a)-(3c). Then the Eq. (3a) gives
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FIG. 1. The geometry of the light ray and the helicity vector.

which can be integrated to obtain

dt fm . 2
‘B AR —
dp + .2 sing cos“¢p=1, (5)

where the parameter p has been appropriately chosen to
make the constant of motion 1. Then

da _1_fm,
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From Eq. (3c), we obtain
0= -——91 2dr ﬂ%— Sm coszd) smd) —fﬁcos 3
dp? rdpdp ryr3 dp
(7
which can be integrated to give
iﬂ=_k___f_’£(r2_r2)1/2 8)
dp r?  pyrd o

where k is a constant of motion. As m—0,
(d¢/dp)—ry/rt. So, k =ry+0(m). Now, Eq. (3b) can
be written as
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Using Egs. (6) and (8) and upon integration, we find that
all the f terms cancel, giving
k* 1

2
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From Egs. (6) and (10) we arrive at a dr/dt equation,
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which is integrated to obtain the expression for the time
required by the light ray to traverse the path between r,
to r, to be
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where ¢ (r,,7,) is the corresponding time required by the
light beam, if f=0. Therefore, the difference between
the arrival times of RCP and LCP beams is

ofm [1 1

At= —
c ry, ry

(12)

Similarly, using Egs. (8) and (10), we obtain the d¢/dr
equation, which, upon integration, gives an extra term
=fm /r3) in the expression for the bending of the light
ray. Therefore, the difference in the deviation between
RCP and LCP rays is
ap=21m (13)

0

First, let us consider experiments based on the bending
of light. The experiments confirm [4] the prediction of
the bending of light through an angle 4m /r; to an accu-
racy of 2%. Had the bending of LCP and RCP rays been
different, then there would have been a spread of light
beam and an upper limit can be obtained from

_Ad

=0.02,
4m /r,

leading to

|f1<1.86X107* AU . (14)

A recent analysis using pulsar measurements to place
limits on gravitational symmetry violations can, in princi-
ple, be taken over to estimate limits on f. Recently,
Klein and Thorsett [2] have reported a measurement of
delay between RCP and LCP signals coming from PSR
1937+214 to 0.37%0.67 usec. The pulsar is located at a
distance of 2.5 kpc from Earth and 7.45 kpc from the
galactic center. The distance from Earth to the galactic
centre is 8.5 kpc. If we wish to use this data to put a lim-
it on f, we shall have to make the approximation of treat-
ing the Galaxy as a mass point of mass 6X10'! M.
Since the pulsar is inside the Galaxy, this would be a
rather crude approximation. Then setting Az <107 ° sec,
we obtain, from Eq. (12),

f<2.10X107% AU . (15)

However, the sharpest constraint on f can be obtained, if
we consider the effect of the pulsar’s field, rather than
that of the galaxy, on these photons. For neutron stars,
m, /r, >0.1 is typical, where m,, and 7, are mass and ra-
dius of a pulsar respectively. Therefore, taking into ac-
count the observed delay of 107 sec, Eq. (12) then im-

plies
f<1077 AU . (16)
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The strength of this constraint, however, depends on
where on the neutron star’s surface the pulse radiation
originates.

The supernova SN 1987A data could also be used for
obtaining some information on f. It has been concluded
[5,6] that the difference between the arrival time of light
and neutrinos could, at most, be six hours. One expects a
time difference of the order of

At~|At,—At,|~2m

fr=51 ll—i] . (7

7 r

The supernova-to-Earth distance is about 50 kpc. Then
assuming f, ~f,~f and At =6 h, we get an upper limit
on f as

f<10" AU, (18)

which is much weaker than the other upper limits. On
the other hand, the rather large time delay involved here
may have to be attributed to causes totally different from
modifications to the geodesic equation.
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