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Abstract. We show that simultaneous surface resolution is not always possi-
ble in a cyclic extension whose degree is greater than three and is not divisible
by the characteristic. This answers a recent question of Ted Chinburg.

Section 1: Introduction

Let K be a two dimensional algebraic function field over an algebraically closed
ground field k. Recall that K/k has a minimal model means that amongst all the
nonsingular projective models of K/k there is one which is dominated by all others
(basic reference [?] or [?]). Also recall that K/k has a minimal model if and only if
it is not a ruled function field, i.e., K is not a simple transcendental field extension
of a one dimensional algebraic function field over k (see [?]). A finite algebraic field
extension L/K is said to have a simultaneous resolution if there exist nonsingular
projective models V and W of K/k and L/k, respectively, such that W is the
normalization of V in L. Given any positive integer q which is not divisible by the
characteristic char(K) of K and letting Zq denote a cyclic group of order q, in [?] it
was shown that if q ≤ 3 and L/K is a Zq extension, i.e., a Galois extension whose
Galois group is a cyclic group of order q, then it has a simultaneous resolution,
whereas if K/k has a minimal model and q > 3 with q being a prime number,
then there exists a Zq extension L/K which has no simultaneous resolution. Here
we shall extend this second result to those nonprimes q which are divisible by the
square of some prime p. By taking q = 4, this answers a question raised by Ted
Chinburg at the March 2006 AMS Meeting in New Hampshire to the effect whether
every Z2 by Z2 extension L/K, i.e., a Z2 extension L/J of a Z2 extension J/K,
has a simultaneous resolution. By using a Theorem of David Harbater and Florian
Pop, we generalize our extended result by replacing Zq by its direct sum H ⊕ Zq

with any finite group H. For related matter see [?].
In Lemma (2.2) of Section 2 we shall give a consequence of the Harbater-Pop

Theorem to be used in proving our generalized extended result. In Lemma (2.1) of
Section 2 we shall summarize some technical results form our previous papers [?]
and [?]. These technical results deal with the structure of the integral closure of
a normal noetherian domain in a cyclic extension. They are used in the proof of
Theorem (3.1) of Section 3 which gives a sufficient condition for a two dimensional
local domain to be nonregular. Theorem (3.1) is used in proving the special case
of Theorem (3.2) of Section 3 which corresponds to our extended result, i.e., the
H = 1 case of our generalized extended result. The general case of Theorem (3.2),
which corresponds to our generalized extended result, then follows by using Lemma
(2.2).
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Section 2: Two Lemmas

Let M(R) denote maximal ideal of a local ring R. In Lemma (2.1) we summarize
some properties of the integral closure of a normal noetherian domain in a cyclic
extension. In Lemma (2.2) we give a consequence of the Harbater-Pop Theorem.

LEMMA (2.1). Let R be a normal noetherian domain with quotient field K, let
S be the integral closure of R in a finite algebraic field extension L of K, and let
[L : K] = q. Assume that q is a unit in R, and L contains a nonzero element z such
that L = K(z) and

zq = u

d∏
j=1

x
a(j)
j

where u is a unit in R, d is a nonnegative integer, a(j) is an integer such that
GCD(a(j), q) = 1 for 1 ≤ j ≤ d, and x1, . . . , xd are elements in R such that
x1R, . . . , xdR are pairwise distinct minimal (= height one) prime ideals in R. Let
b(i, j) and c(i, j) be the unique integers such that

b(i, j) = a(j)i + c(i, j)q and 0 ≤ b(i, j) < q.

Let

zi = zi
d∏

j=1

x
c(i,j)
j .

Then we have the following:
(1) (z0, · · · , zq−1) is a free R-basis of S.
(2) If R is a local domain and d ≥ 1, then S is a local domain and for its

maximal ideal M(S) we have M(S) = M(R)S + (z1, · · · , zq−1)S with
S/M(S) = R/M(R).

(3) If R is a regular local domain and d ≥ 2 then S is a nonregular local domain.

PROOF. For (1) and (2) see Theorem 7 [?]. For (3) see Theorem 6 [?] with the
observation that, although in the context of this theorem q is a prime number, the
primeness of q was never used in its proof. A different version of (1) and (2) can
also be found in Theorems 4 and 5 [?]; see Remark 2 on page 28 of [?].

LEMMA (2.2). Let K/k be a two dimensional algebraic function field over an
algebraically closed ground field k. For any finite group H, there exists a Galois
extension L̃/K with Galois group H.

PROOF. It follows from Theorem 4.4 [?] or the Corollary to Theorem A [?] that
given any finite group H and any one dimensional algebraic function field E over
an algebraically closed ground field k, there exists a Galois extension F/E whose
Galois group is H. The following argument, provided by Harbater and Pop, shows
how the desired two-variable existence follows from this.

Given a two dimensional algebraic function field K over k, choose a separating
transcendence basis x, y for K over k. So K is a finite separable field extension of
k(x, y). Let E be the algebraic closure of k(x) in K. E is finite over k(x), since K
is finite over k(x, y) and since k(x) is algebraically closed in k(x, y). Thus E is a
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one dimensional algebraic function field over k and so, by the one-variable existence
theorem, H is the Galois group of a finite extension F of E. Since E is algebraically
closed in K and since F is algebraic over E, it follows that F and K are linearly
disjoint over E. So the compositum L̃ = KF (in an algebraic closure of K) is a
Galois extension of K with Galois group H, completing the proof.

Section 3: Two Theorems

In Theorem (3.1) we give a sufficient condition for a local domain to be nonreg-
ular. In Theorem (3.2) we construct our examples of simultaneous nonresolvability.

THEOREM (3.1). Let R be a two dimensional regular local domain, let (X, Y )
be generators of its maximal ideal M(R), and let K be its quotient field. Let
R0 = R. For all n > 0, let Yn = Y/Xn and let Rn be the localization of the ring
Rn−1[Yn] at the maximal ideal in it generated by (X, Yn). Note that then Rn is a
two dimension regular local domain with quotient field K such that Rn dominates
Rn−1 and (X, Yn) are generators of M(Rn).

Let q be a positive integer which is a unit in R. Assume that q = pm where p is
a prime number and m is a positive integer divisible by p. Assume that K contains
q distinct q-th roots of 1. Let L be a splitting field over K of the polynomial of
Zq −XY m. Let Sn be the integral closure of Rn in L.

Then L/K is a Zq extension and for every nonnegative integer n, the ring Sn is
a two dimensional nonregular local domain.

PROOF. Let w be the discrete valuation whose valuation ring is the one dimen-
sional regular local domain obtained by localizing the ring R at the prime ideal in
it generated by X. Then w(XY m) = 1 and hence the polynomial Zq − XY m is
irreducible in K[Z] and L/K is a Zq extension. Let z ∈ L be a root of the said
polynomial. Then zq = XY m and L = K(z). Let X = zp/Y and J = K(X). Then
X

m
= X and hence J/K is a Zm extension. By (2.1)(2) the integral closure Tn of

Rn in J is a two dimensional regular local domain whose maximal ideal M(Tn) is
generated by (X,Yn). Also zp = XY = X

1+nm
Yn and, since m is assumed divisible

by p, upon letting ζ = z/X
nm/p

we get L = J(ζ) with ζp = XYn. Now L/J is a
Zp extension with L = J(ζ), and Sn is the integral closure of Tn in L. Therefore
by (2.1)(3) we see that Sn is a two dimensional nonregular local domain.

THEOREM (3.2). Let K/k be a two dimensional algebraic function field over
an algebraically closed ground field k. Assume that K/k has a minimal model V ∗.
Let q be a positive integer which is not divisible by char(K). Assume that q = pm
where p is a prime number and m is a positive integer divisible by p. Then, given
any finite group H, there exists a Galois extension L′/K with Galois group H⊕Zq

such that L′/K has no simultaneous resolution.

PROOF. By (2.2) there exists a Galois extension L̃/K with Galois group H.
Take R in (3.1) to be the local ring of a point of V ∗ which is not ramified in L̃. Let
L′ be a compositum of L̃ and L. It is easy to see that L′/K is a Galois extension
whose Galois group is H ⊕ Zq.
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By [?] Lemma 12, there exists a unique valuation v of K dominating Rn for all
n ≥ 0. By construction each Rn+1 is the immediate quadratic transform of Rn

along v. Let ṽ be an extension of v to L̃. Let, if possible, V and W be nonsingular
projective models of K/k and L′/k respectively, such that W is the normalization
of V in L′. Then by the minimality of V ∗, V must dominate V ∗. Consequently
by [?] Theorem 3 the local ring of the center P of v on V must equal Rn for some
nonnegative integer n. Since Rn dominates R and R is not ramified in L̃, Rn is not
ramified in L̃. Let Ṽ be the normalization of V in L̃, and R̃n be the local ring of
the center P̃ of ṽ on Ṽ , then P̃ lies above P in Ṽ and R̃n is two dimension regular
local ring whose maximal ideal M(R̃n) is generated by (X, Yn). Now L′ is a Zq

extension of L̃ constructed from L̃ in the same way as L is constructed from K in
(3.1), and W is the normalization of Ṽ in L′. By (3.1), the point of W lying above
P̃ is not a simple point, which is a contradiction.

REMARK (3.3). The construction of a Zq extension L/K having no simulta-
neous resolution does not use the results of Harbater and Pop. Their results plus
the fact that a regular system of parameters lifts to a regular system of parameters
through a unramified local ring extension allow us to mimic such construction to
get a H ⊕ Zq extension. Similar arguments will show that the statement of (3.2)
remains true if q > 3 is a prime number; see [?] Theorem 11 for details.
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