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1. - INTRODUCTION AND OUTLINE

The basic concern of the modern first quantized approach to string theory is
Polyakov's path integral [1] describing a string moving im a set of external

fields, e.g., in the simplest case in a gravitational field (or metric) guv(x).

The importance of this point of view goes back to the work of Ademollo et al.
[2] who noticed that strimg propagation in a background generates the dual model

S-matrix.

In the case of a gravitational field this S-matrix describes interacting
gravitons. Thus Polyakov's path integral represents a new - and possibly
consistent - approach to quantum gravity itself [3] based on the quantization of a

two—dimensional field theory.

Classically, an arbitrary gravitational field can be introduced without
spoiling the two-dimensional local invariances of the theory, the resulting
constraints or the BRST charge nilpotency. This is particularly transparent in the
Hamiltonian BRST appreach [4]. 1Indeed, while the metric guv(x) enters in the
expression of the constraints in term of canonical co-ordinates and momenta, it
disappears completely from their algebra, which takes the free form (i.e.,
gth = npv) even for arbitrary guV(X) [5]-

By contrast, it is well known that this is not true at the quantum level.

Already in the free case the algebra gets modified by the appearance of the so-
called central charge [6] (giving the famous D = 26 or D = 10 for the
dimensionality of space—-time). In the presence of external fields, further
anomalies appear, which can be eliminated only by imposing suitable differential
equations on the backgrounds themselves. The above conditions turn out to be the
(string modified) classical equatlons of motions for the external fields [e.g.,
Einstein-type equations for guv(x)] and thus contain all the dynamical information.
These anomalies can be studied in several ways, the most popular being the .one
based on the renormalization of the associated o—model and on the condition that

the corresponding B-functions vanish [7,8,9].

Not much has been done instead on the Hamiltonian approach for the interacting
case, which is certainly the most appropriate one for studying BRST invariance,
unitarity and the modifications of the coastraint algebra. Indeed, while the
Hamiltonian approach is conceptually rather direct, it is usually unpractical for

computations in contrast to the more conventional Lagrangian framework.

On the basis of experience gained on analogous problems for the relativistic

particle [10], one can guess that great simplifications should occur in the
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Hamiltonian approach when the theory is supersymmetric. This is precisely what we
shall exploit in this paper for the case of (type II closed) superstrings in a

gravitational background.

The outline of the paper is follows. In Section 2 we shall recall the action
of the superstring model to be dealt with and determine the classical form of the
constraints by working in the orthonormal gauge. An Appendix deals with the
analogous problem for the free superstring in an arbitrary gauge. 1In Section 3, we
show, in a simple way allowed by supersymmetry that the classical constraint
algebra is not affected by guv(x)' In Sections 4 and 5 we deal with the quantum
case, After a brief summary of the free case, we discuss our model to lowest
{non—-trivial) order in the normal co-ordinate expansion of the background
gravitational field. Extensive use of supersymmetry and of the techaniques
developed in Ref. [11] allow us to fix many quantization ambiguities and to obtain
in a simple way the known constraints on guv(X) and the - so far unknown - quantum

constraint algebra with the complete c and gq—number anomaly structure.

2. = CLASSICAL CONSTRAINTS AND CANONICAL VARTABLES

We consider throughout the case of type II closed superstrings propagating in
a gravitational background. As it will become clear, our method can be straight-
forwardly extended to other kinds of type II superstrings in arbitrary massless

backgrounds.

A question we have to face at the outset is the construction of the
corresponding action., The best attitude would be to work with an action formulated
in an arbitrary gauge, which would have the form of a two-dimensional supergravity
with matter <couplings (the bosonic and fermionic superstring variables) and
auxiliary two-dimensional metric and gravitino fields. Although this is possible
in principle, by suitably generalizing the strategy of Ref. [l2] to the present
case, it is much more simple to work in the orthonmormal gauge (ON gauge), where the
zweibein is constant (normalized to one) and the gravitino field wvanishes.

Correspondingly, the action takes the simple form [13]

.

1. Jatdr [’—,‘g I (0 2 X" X ¢ 4 XFYOY Do X+

(2.1)

+ -'-:-i Ro(‘;xé (x) (xye V) (x Py 7('8)]

where the spinor covariant derivative is defined by



Da, %“5 Oa. x* - wPIxP (X) ?(.Pba XP (2.2)

Some notational comments are useful., Latin indices are {(two-valued) world-sheet

labels, raised and lowered by the flat metric Ny =1 (ON gauge) - they are

-n
11
throughout never explicitly exhibited for spinors, whose Majorana nature (x = y)

has already been used in Eq. (2.1). Our convention for the y matrices is

0 4 : = Yo
¥’ =0, ¥Yi=a0y, Ys=Y°¥' = 03
Greek indices are D—valued target space labels, and in particular u,v,... and
@,f,... are world and tangent space indices, respectively. Finally, g (X) is the
background gravitatlonal metric, expressed in terms of the target space v1elbe1n by
(X) = (X)e (X), while the metric connection, the spin connection and the

curvature tensor are given by the usual expressions

(2.3a)

M = 2 9 (0390 + v Gea - 3 Gw )

(2.3b)

("‘)PMF —-‘-Eo(:\ _BP Q“P — Q'ac_v FVP’A e?‘p

. 3¢)
KdFyS = euk’arv (BP Wy g5 ~ v Wp ¥ ~ Wp,ye Wy, e5 + Wy, ye w,,,¢55 .

The action (2.1) is invariant under general co—ordinate transformations and local
Lorentz rotations in the target space, as well as under global world-sheet

supersymmetry transformations
sxl = € e by 76"‘) (2.4a)

XY= -l epte - PPve‘e‘xF‘y}‘ % {’-_‘,'F ef’y’ (2.4b)

where g 1is a constant two—-dimensional Majorana spinor (indeed manifest local

world-sheet supersymmetry is spoiled by the ON gauge choice).

We are now 1in position to derive the constraints of our dyramical system.
Suppose we had started with an action formulated in an arbitrary gauge. Then the
desired constraints would have arisen as the equations of motion for the zweibein
and the gravitino field (they are indeed auxiliary variables). Now, the variation
of the action with respect to these fields yields fhe'energy—momentum tensor and
the supercurrent, and so we conclude that the constraints we are looking for
consist in the vanishing of these two objects. These constraints can be obtained
quite simply in the ON gauge, by setting to zerc the energy-momentum tensor and the

supercurrent as computed by means of the Noether procedure applied to Eq. (2.1).
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We remark that this strategy is already known to work for the bosonic string [14)]
and 1s explicitly checked for the free superstring (see Appendix), for which a
gauge-independent formulation exists [13]. Moreover, again on the basis of the
bosonic string experience, we expect that the constraints derived by the above

procedure should become gauge-independent, once they are expressed in terms of

canonical variables.

Explicitly, the Noether construction yields the following expressions for the

supercurrent and energy-momentum tensor - to be set to zero as constraints

u

1%= epa ¥ xly*a® = (e"ax"Tr” 2p ¥ x‘*’)x"‘x“} (2.5)

A = To-i = _Tda

PPX’F—E- 1';: 2% X | (2.6a)

B = Tol = T44 = .“i. %'N‘HPTTV + :lz a’rv lexw +
3 X5 X - 4 Wpap X% XFP x'F - (2.6b)
- 2 Rapys (x*yo ¥ Y(xBY® 22

Observe that - with an eye to the subsequent Hamiltonian treatment - we have
expressed the constraints (2.53), (2.6) in terms of the "co-ordinates” Xu, xa and

the correspondingly conjugate "momenta”, with

fos Gk~ 5 wpop 27, &

while the canonical momentum associated with xa coincides (up to a constant) with
xa itself (second-class constraint). Moreover, for later convenience we have

introduced the quantity

TTPE PP + %’J Wp, «p Sy AR "}rv x" (2.8)

As usual, the constraint A = 0 does not involve guv(X) — its kinematical nature
stems from the og-reparametrization invariance of the theory. As already mentioned,
there is a second-class constraint in the fermionic sector. A similar situation
already occurred for the N = 1 supersymmetric particle [15] and for the compacti-
fied bosonic string upon fermionization of the compact co-ordimates [14], and it
can be straightforwardly handled. Observe further that this second-class cons-—

i n

tralnt would have also involved X" had we taken y = e:(X)xa as fermionic
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co—ordinates, a fact that would greatly complicate the constraint algebra. This
explains our choice of xa as co—ordinates. Below, we shall discuss yet another
choice of fermionic ¢o=~ ordinates which is completely free of second-class

constraints,

As we shall see in Section 3, the classical constraint algebra takes a parti-

cularly eloquent form by introducing the chiral fermionic projections

\P; = I (4 ’1'-‘6’5) x* (2.9)

in terms of which the Lagrangian in Eq. (2.1) reads

L= 2 9p0xt™X” 4 & (42 Dytha — 5 Dathan ) +

(tk‘." Do b + ¢ Dy qf—-d) — (2.10)

Defining further the auxiliary bosonic quantities
+
X _ a4 i
Sa = F (Tl"l.. -CPot * XP-Q«P«) (2.11)
and the chiral supersymmetry charges
.
Q= 4 (45Ys) 7 (2.12)

the constraints (2.5) and (2.6) can be rewritten as follows

ok
RE = 2 Si«: Ve (2.13)

—[':|= = '% (Tbo 'i—roa) = Sf{ gEe ¥ :';'_' (Drll’;)\l’:l:% +

{(2.14)

+ :%‘q- P\o{F‘55 [tk:r "l'-!’][q"l"F: \l’j] .

Now, Lagrangian (2.10) suggests other convenient sets of fermionic canonical vari-

ables, which are free of second-class constraints. Explicitly, they are given by



(T :‘\J? (1.|,+°‘+ 4‘,4,_*) (2.15a)

Pal
1}’“5 jﬁ (,h_u_&,*,:() (2.15b)

from which we can also construct

i}

\l,l"_—__ 'e‘}-;( Il’d ' Lh‘
¢PE -@Pol '(\l/"‘ . ¢P

Correspondingly, the fermionic kinetic part of Lagrangian (2.10) can be written in

& (2.16a)
Eps Y

n

eb, {F"‘ . (2.16b)

three equivalent forms (up to a total % derivative)

LG G+ dwypap KPP 17
iz’, (‘l’: DoWya + ¢ Do Yo .,() ~ &@r@r + 4 I‘“Pvi"{}\'-,&l—"' (2.17b)
(2.17¢)

AGPp - 4 T XPE s

showing that ¢ and ¢ are canonically conjugate variables. This entails in turn
different expressions for the bosonic momenta. We are thus led - exactly like in

Ref. [11] - to three different sets of classical cancnical variables

9} (Xr, Puj ¥, (F"‘) (2.18a)

Las= (XP, P{;.‘ i q,l“} '@P) (2.18b)

L= (XP, P(ﬁ‘ i by, {I:P) (2.18c)
obeying the canonical Poisson brackets*)

SO Ry = 4 sh 5l , (2.19a)

it

{440, ¢F(")}FB E“P S(e-a") (2.19b)

* . .
) Note that our Poisson brackets are defined somewhat unconventionally, so that
they turn into (anti)commutators at the quantum level (without i factors).
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{xr(dr P ("’}PB = 430§ (o-o") | (2.20a)
{1”,(") r Cl"’(")}?s = ol 8lr-oM | (2.20b)

{Xp(r)' p@ (s'\}rs = A BPV &l | (2.21a)
PFa
{lh- ("], ‘}’V (f')}fg = BVP ) ("‘-—""3 . (2.21b)
The newly defined momenta PH’ P;l), Péz) are related to the wvelocity Hp =g Viv
[see Eq. (2.8)] as follows *
PP‘ + 4 th“F {F.x ‘-l’F (2.22a)
[ I S ) v | 2.22b
TTP = PP" 4T I '4”) Y ¢ )
. P
P(;l_ i r-'APv lla'x Jv (2.22¢)
so their Interrelations are given by
@ (i . N e (2.23a)
Pp - Pp = -4 p G 4y
(o - v /\d (2.23b)
FP-PP = fb"e,o(Brae—VF'Lla ‘-‘«F
(2.23¢)

» . v /N
F]" —_ Flo = - A exaPQVF 'L};"‘l{/F i

3. - CLASSICAL CONSTRAINT ALGEBRA

The advantage of dealing with the newly defined sets of canonical variables
21, R at once, becomes manifest by introducing the following (linear combination

of the) supersymmetry charges

Q = J'Ti‘ (&4-_,{,;@-) _ (3.1a)
A
Q= -3.—2- (Q+— AQ7) (3.1b)

As it can be very easily discovered, their canonical expressions read



Q

A

Q

which turn out to be a direct extension to the superstring of the canonical

P(? b 4 X'P¢p (3.2a)

P[? {l':}’ + X'Pq,l_‘ (3.2b)

expressions found for the supersymmetry charges in N = 2 non-relativistic quantum
mechanies [11]. Quite remarkably, Q has a free form in the variables Q;), and the
same happens for 1? in the variables Q5. Moreover, the wvariables which appear
multiplied in the above expressions have wvanishing Poisson brackets - this fact

will play a crucial r8le when the quantization procedure will be carried out.

On the basis of our previous experience [see Ref. (11)], we expect that all
relevant quantities can be expressed in terms of Q,'ﬁ'and thelr algebra. Since @
and‘a have the free form in the variables Q; and Qj, respectively, the metric
guv(X) only enters through the relatioms (2.23). In particular, one can express

more symmetrically both Q and Q in the variables Q. It is precisely in delaying

this last step as much as possible, that the quantization procedure can be greatly

simElified.

3.1 - The basic Poisson brackets

A
We now proceed to evaluate the Polsson brackets involving Q and Q, starting
A A
with {Q’Q}PB and {Q’Q}PB' Obviously, the first one is computed (as in the free
theory) in the canoanical set Q;, leading to

{Q(‘),Q("q}n = (A(‘)-l-/\("')) 8("-"') . (3.3)

Likewise, the second Poisson bracket is evaluated (as in the free theory) in the

set Q7, glving

180, &6}, = (AP« Al)) 86— . (3.4

Explicitly, we find

A

”~

A

PUXP- g Gyl - 4P (3.52)

. N

P(Fu wP _ _4_,2: '{-"Fq’r _ ‘Li'. 1},”,’4‘,}' ' (3.5b)

It can be easily checked [through Eqs. (2.23)] that

Pa
A=A . (3.6)



Moreover, we have

A=Brbo e fuy s 4 ¢4 =

(3.7)

™ XFP- 4 (b, §*)gy - A (Dr‘-l*“)@d,

in agreement with Egq. (2.6a).

A
The Poisson brackets of Q and Q involve guv(x) explicitly, since there is no

Fal
canonical basis where both § and Q take the free form. A direct calculation

yields
{Q(ﬂ,&@')}m = (B(“’ + B(f‘\) Sle-on (3.8)
ehere
B= % [awxXPx i (080 %a - 4 (Pt s
3.9
+ Wp g - L Rugys 4UGRGE 42 ]
which can be checked to coincide with Eq. (2.6b).

We report for further convenience the form taken by the above Poisson brackets

in the * fermiomic variables

2 (T*@+ T*E) 8l (3.108)

2 (T @+ T-@) 8- o

{Q“‘(ﬂ, Q+(€“}ps
{Q- () , Q7 C"‘}Pg

{&’«(r), GZ’G:)}PB o, (3.10c)

¥
with T = 3(BtA) given by Eq. (2.14).

3.2 - The Remaining Algebra

As it is clear from Eg. (3.9), the explicit expression of B(g) is much more
complicated than the ome of A(¢), and so a direct computation of the Poisson

brackets containing B(c) would be cumbersome. Thus, we proceed first to evaluate
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Fal
the Poisson brackets involving A, Q and Q. Remarkably, all the remaining Poisson
brackets will next be obtained by making use of appropriate (graded) Jacobi

identities.

Indeed, taking advantage from the fact that A and Q have simple canonical
expressions in the variables @), and the same happens for ? and a in the wvariables

f2, we easily obtain

{/\("‘, Q" }PB (—4,) (Q(’)+ '-‘ZQ("')) Sl("'-"'l) (3.11a)

{A(r\) /Q (D) }FB (-4} (a(fl + % &("'ﬂ Bl(r'r‘) (3.11b)

{/\(‘), A(“l}m (-9 (/\(6‘) + /\C"“ §'(r-") (3.11c)

which imply at once

(A®, a* 09}y = (OB @+ £ )8 @Y

IAR, & (N}, = (0 (@@ 3 a @) 8-

(3.12b)

Now, use of the Jacobi identities involving {{q*,q*},Q7] and [{Q7,Q"},Q"] entails

{T*@, @}, = o (3-132)

{T-("'); Qr (ﬂ'&}rs = 0 (3.13b)

Recalling now that
T T+ A , T =Tt-A (3.14)

and using Egs. (3.12) and (3.13) we immediately get

{TY@, & @M = (0 e @+ &4EM) 8 () (3.150)

{7T°@,67E e = 4 (2@ @+ @ @) 3 () (3.15b)

Again, use of the Jacobl identity for [T%{Q~,Q"}] yields
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1140, T = ©

(3.18)

and fimally, the Jacobl identities involving [T,{q%,qQ*}], [T7,{Q,Q"}] and
Eqs. (3.15) lead to

§74@), T = (~20) (T*‘(r) +THEN & (") (3.17a)

{Th (r)’ T-(’l) }75 2L (T-(‘) + 1- ("')) B‘(‘r”r‘)

(3.17b)

The full classical constraint algebra is summarized in Table 1. Some concluding
remarks are in order. As in the case of the spinning particle [l10] and the bosonic
string [l4], the classical constraint algebra is precisely the same as the free
theory. Moreover, the + and - sectors do not couple. This fact is a direct conse-
quence of the particularly simple canonical expressions of Q and Q [Egqs. (3.2)] and

of the Jacobi identities.

4. — QUANTIZATION

4.1 = The Free (Case

When going from a system with finitely many degrees of freedom (the parficle)
to one with infinitely many (the string), one encounters a well-known complication:
the product of two local operators A(o)), B(oy) is often singular as o » o3.
Consequently, unless some appropriate limiting procedure is used, the local product

A(c)B(g) is ill defined.
In order to illustrate this problem — and the way to handle it - we discuss in
some detail the well-known case of free string theory. This will also be our

starting point for dealing with the interacting case.

The four fundamental operators of the free superstring are:

Pl () = = (PP + XPEY) (4.1)
oA
’-l’t(f) (4.2)

They yield the well~known non—vanishing correlation functions:



CPIOXEN> = 2 A (Asie)! (4.3a)

ax
<XP(") Py (e = 9t %’5 (atigy (4.3b)

v
o3
7
‘.\

CRP@ PR @Y (Axi€)” (4.30)

o X con=1
<‘h ("') q’ﬂt(’”) = % —;’—w 'Z"P (A:I:IE) (4.3d)
where A = ¢ =o' . Recalling
(B+i€)' - (B-ie)" = - z=i §(8) (4.4)
eqs. (4.3) imply cancnical equal-time (anti)commutators.

The products appearing in Eqs. (4.3) are divergent for ¢ =+ o¢'. In order to
define finite local operators one normal orders (creation precedes destruction
operators) which, for bilinear operators, simply amounts to subtracting the corres—

ponding vacuum expectation values (4.3).

Let us apply the procedure to the fermionic constralnt operators (2.13):

QR = 2 4% (@) Pra () (4.5)

and to their anticommutators. Since ¢ and P describe Independent dynamical
+
variables, no particular care is needed for defining Qp. As for their algebra, one

has immediately:
£~ | -
{Qo (r), Qo; (’)} = O (4.6)
since, again, independent operators appear in Qg, QG .

By contrast, for {Q%(g ),Q%(o')} we have to be careful and write, for

instance:
REARLEN = : REIRLE) £ 4 P+P("1f’+}- COR f%; (A+ie) '
(4.7)

+ 4 P3O s () _:_; (a+ie)* + 4D A (A+ie)'3’

gird

where D is the number of space—time dimensions. This yields immediately, through

Eq. (4.4) and its derivatives, the well-known result
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{05@,afen} = 4 T (@ sl-) + 2 5%

and similarly

f@@, 6@} =4 To@ sl e 2 80

where

H
f
o

. F+P(a~) ]’+},(r\ - % ;l‘:;(rlw+(r) z
(4.10)

PP Pp@ e 2O

T @ = 4 (B(e A ()

T7@) = 1 (Bol) - Ao (@)

Equations (4.8)-(4.10) differ from the classical omes [Eqs. (2.14) for the free

case] in two respects:
+
i) Ty are normal ordered;
1i) The new term D/2n 6"(o —¢’/) appears. This kind of Schwinger term is the
famous anomaly (or central extension of the Virasoro algebra) £first

discussed in string theory by J.H. Weis {6].

4.2 = The Fundamental Transformation

In the interacting theory, these anomalies will originate very much in the
same way as in the free case, i.e., from the need to work with finite, local,
composite operétors. In the presence of a non~trivial metric or vielbein ea(x),
the operator x* appears, in general, in a non-polynomial way (cf. non—l?near

os-model) a further complication adding up to the ill-defined local products.

As it is customary, we shall resort to a pertﬁrbative approach based on
expanding x"* and all background fields in normal Riemannian co—ordinates. This
expansion, justified for slowly varying backgrounds (in «' units) is described in

detail in Ref. [16]. At the lowest nom-trivial order ome has

)d’ ("') = XBP + ?P(') (4.11a)
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2pa (x() = Ty - % RP?«(K : f’*(a) (A o4 - (4.11b)

where RpkaK’ now a c-number, stands for the Riemann tensor at the background point

XB. In order to give a meaning to Eqs. (4.11) we had, of course, to normal order

the product EE.

Equations (4.,11) suggest to introduce the operator:

U= 44K = 44 Jdr k() (4.12a)

K@ = - R»('AFK ._;'l(,).,;k(ﬂ t|—+°"‘(r) '{-..F(r) : (4.12b)

_g_

The importance of U lies in the fact that it allows to express in a simple and neat
way the relations among the quantum version of the three sets of variables Q, 2],

Qy of Section 2 to lowest order in R. One finds:

24 vuaut ~ +[K,.Q.] ) (4.13a)

Q, = U0V = - [K.-ﬂ-] _ - (4.130)

Equations (4.13) show that, to this order, all the dynamical information due to the
presence of a gravitational field is encoded in the single operator K. Indeed we
know from the previous discussion [Eqs. (3.2)] that @ is bilinear [and guv(X)
independent] in the variables Q;, the same being true of Q in the set Q;. If Q
and Q; would coincide (e.g., for K = (), the algebra would be totally independent

of gpv(x) and hence identical to the free one.

For a non-trivial K, using the expressions:
QE = PEEHE) + X (), (626
a () = P‘: () {FP("') + X'P() ¥p () (4.14b)

and (4.13), we find
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n

QRE) = UQe (VL Qo (" 4 [K,Qb(ﬂ] | (4.15a)

7

ﬁ(ﬂ = U-\aO(") v Qe () - [K, Go (r)] , (4.15b)

A
where Qp, Qg are the free fermionic comstraints expressed in the variables Q. From

Eq. (4.15) the more useful quantities Qi can be immediately expressed as:

n

Q+(€) Q°+ (‘ﬂ + A [K,Qo—(f)] ’ (4.16a)

Q@ Q@) - 4 [K, Q:(ﬂ] . (4.16b)

"

Equations (4.16) can be now used to obtain convenient expressions for the relevant

anticommutators to first order in K. These are:
(@, e @) = {ar@,a3 @) + 4 {[K, & (], Q@] +

v {Q.,*(f), [K, Qo (,.,)]} , (4.17)

fae,a @) = {ar @, 6@} - « {Ikar @], a7 (0] -

-i{ad@, [k, @]} (4.18)

(@@, a @} = 4 {[K,q 0], & @} -

i fere, [K,esEn]T

(4.19)

The strategy of our approach is now clear. At zero order [Section (4.1)] only two
bilinear operators Q% occur and, consequently, we have to deal with two-point
functions. At first order, dynamics enters through the quadrilinear operator
K = fdok(o). We thus have to deal with three-point functions (integrated over one

point}. This pattern should of course extend to higher orders in the normal co-

ordinate expansion.
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5. ~ THE QUANTUM CONSTRAINT ALGEBRA: FERMIONIC CONSTRAINTS

+
We now insert into Egs. (4.16) the expressions (4.5), (4.12) for {p and K =
jdc k(g ). The first step consists of the evaluation of the commutator

[k(o ),Qi(c’)] yielding easily:
[K(‘],Q,*(f‘\] = :C*) i B(r-rt) +

+ = R,(F ‘q,_"((r) }P(r) 5 (o’..a") (5.1)

MLy

K@, @] = e @ 8(-r) «

+ 2 Rap 47 () PO 81 (-7 (5.2)
where
C+(°’\ = - 13— ﬁ})‘)-ﬂ& (P-;P\qui(q’j + ,i, 'EK""_P‘]-I’:"""-(}) {5.3a)
c-@ = 4 Rpaax (RPFEUT 44 el el vr)  sow
with
ﬁ}.ﬁ.m = X (RF\AK + Rpm;\) . (5.4)

Inserting Eqs. (5.3) into Egqs. (5.1) and (5.2) and integrating over o3, Egs. (4.16)

take the form:

{5.5a)

RO = B+ O - R 2 (450 5FC)
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Q@ = Q@i CHAi+ R 2 (WEOEFE) L Gom

+
Let us identify the various terms appearing in Egs. (5.5). The terms Qj t ¢t

coincide, apart from ordering complications, with the corresponding first ordef

approximations to the classical expressions (2.12).

On the other hand, the last terms in Eqs. (5.5) are essentially quantum cor-

rections arising from the correct treatment of composite operators.

In order to evaluate expressions (4.17), (4.18), we now compute the relevant

triple commutators

[[k@,ac@], et @} + {Q* 6, [k, ae @]} =

Sk, ad @], @i (0} - {65 (=, [K@), at(a]] =

- A E(ﬁ): 3@1—6'3\5("1“"3) + (5.6)

¢ 2 R 3@ TR (5'(r4-03) 5(r2-3) + 5' (231 8 (729)) -

.é_“::_z $'(rs-r) 3 (-m) R
where

EQ s 4 Rpee (REYITEF -
(3.7)

LA RES Tt o DRt el

Moreover, for the evaluation of (4.19) we compute:

’
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{CQ*?G]), [VQ(?é),(Q*'GﬁA:I} - {.CQ"(fi\, [:p((rs)’ (;Q-ng)j].} -

(5.8)

IAVACY (6'(@—6”1)5("'3 AN G W AR (fs-fz\)

where
V(= - %{5 Rotp 4@ 4P (-9

Integrating now over o3 and inserting Eqs. (5.6), (5.8) into Egs. (4.17), (4.18)
and (4.19), we finally obtain

{Qi(ﬂ,Qi(‘W} = §(r-Y (é\: ‘I”o*(r) 3+ E@ —

(5.10)

- -EE R«F % (’f”‘(«r}?l&(d‘))) + 4 6“(0"—0") (D__ é_)’

2w

{Q+(ﬂ,Q_("'3} = o (6“-6"3 Vl (") . (5.11)

Equations (5.10) and (5.11) are our basic result since the rest of the algebra will

follow from these anticommutators and appropriate use of Jacobi identities.

Let us discuss first Eq. (5.10). The coefficient of & 1s:

2
4 T*A = 4 :Tot[rl: + i E(@: - .:l‘%%- R,qs %I(?d(ﬂ??@))i (5.12)
Here the first two terms coincide, except for ordering complications, with the
first order expansion of the classical expressions for 4Ti, while the last term of
Eq. (5.12) represents a quantum modification of Ti which does not affect the
algebra, Finally, (D~R/6m), is the first-order modification of the free c—number
anomaly (4.8), (4.9).

By contrast, Eq. (5.11) represents a new complete departure from the classical

constraint algebra in two respects:
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i) it couples Q¥ and Q~, which are completely decoupled at the classical

level;
ii) it introduces a g-number-type Schwinger term (ancmaly).
Unless Ruv =0, this would make it very problematic to close in any simple way
the constraint algebra and to construct a nilpotent quantum BRST operator. Because

of the importance of this new anomaly we wish to present a more direct derivation

of Eq. (5.11) based on the identity

260,66 4 {eten, e @) = {abra@t- 186,867 (5.5

A A
and on the fact that ¢ and Q can be written in terms of Qy, Qy and K through

Eqs. (4,15}, It is a simple algebra to show that

$QE@, ) = 2 AP & (- (5.14)
{&G’), & (""3} -2 A (r) 5(s-) (5.15)
where
,’\(0‘) = /\o (f‘ + [K,/\o (f‘] (5.16a)
AP = Ao [ - [K, Ao (f)] (5.16b)
and

Ay () = BPG Pap () - P-PEAPp () - 4 (‘1‘1+"£6'“['+x('r)*“f-u(")“l""(dls.n)
It remains to compute the commutator in Eqs. (5.16). One gets
[K(’), /\o(f'ﬂ = A V(A S () + ,%: (--) (5.18)

with V(o) given by Eq. {5.9). After integration over ¢ , this immediately yields:

Al - //\\("') = 2 VI (5.19)

which, after use of Eq. (5.13), agrees with Eq. (5.11).
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6. - THE REST OF THE QUANTUM CONSTRAINT ALGEBRA

Let us recall one of the central results of the previous section, i.e., the

anomalous anticommutator:
{Q+@,a-C"} = V(A 8- (6.1)
with Vv given by Eq. (5.9).

In order to extend the algebra to the remaining (bosonic and mixed)

commutators, 1t e convenient to {ntroduce three more operators throughs
[a*@, V]
(o @, v
(6@, W] = [ @, Wil)] = 2656 (6.6)

Wa () B (- (6.2)

We (0 §(e-) (6.3)

0

One finds easily

n

Wa @ = ~ -2’_; Ragp A CTAIC (6.5)
Wa ("\ - A Ra{F ‘\++°<(r) P. F(r) (6.6)

I35

ZE = - £ Ry RA@PPE. (6.7)

I3

1]

Let us first proceed to compute [T*(¢ ),Q (s?)] and {T7(o y,QY(a?)] by using Jacobi
identities for [{Q*,Q%},Q7] and [{Q~,Q7},Q*]. One easily obtalns

(10, @] = (e @) 86 e

- i
[T0, & 60] = (W@ - 2wa(e) 8- 6.
In order to compute [Ti(c ),Qi(c')}, we recall from Egqs. (5.12) and (4.10}:

TR =T = T - T7E@ = & (AP +AR) = A} 610

A A
and that the pairs Q, A and Q, A have the free form in the variables Q) and Q3,

respectively. Thus

[A@), a] = (O (@@ + $aEn) &' (6.11)
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[A@, &En] < o (@6 4 &6 86

(6.12)

Using Egs. (6.10), (6.11) and (6.12), a slightly cumbersome but easy calculation
yields

[T+('\,Q+(“’\] = - (2. (Wz.(") HRYE) + (Wz () +4 Qt (ﬂ"))) 5e~") (6.130)

[T"(o-]’&"(d“)] = - (z (W4 (cr)...{Q"(r)) + (W«: (™ ~Lq° (f'))) §'(-") (6.13v)

This exhausts the mixed commutators. Proceeding to the purely boscnic algebra, we

+ + o+ + F T
use the Jacobi identities again, this time for [T_,{Q",Q"}] and for [T_,{Q+,Q+}],
and we obtain

[T0,70] = -2 (O T (260 04T )80

(6.14a)

[T"(ﬂ,-r-(m)] = -2 ((z(r1_rr-(a1)+ (2() _,;,-T-(,,)D s +

‘ 2 (6.14b)
4 11} ol
+ 2 (b~ ) $E
and, finally,
[T4@,7°E] = 22'() 86-r) (6-12)

This exhausts the whole quantum constraint algebra, whose complete structure is
summarized in Table 2. It 1s immediate to check that, to this order, the necessary
and sufficient condition for preserving the free algebra is R v - 0. In this case,

taking into account the ghost contribution to the BRST operator [4], nilpotency is
obtained at D = 10,

On the other hand, if Ruv % 0, the square of QBRST contains (even for D = 10,
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R = 0) a term proportional to R v and to some of bilinears in left and right moving

ghost fields.

7. — CONCLUSIONS

One of the main conclusions to be drawn from this work is the crucial differ-
ence between quantization of the supersymmetric point particle and of the

superstring.

While at the classical level, even in the presence of external fields, both
cases can be dealt with on similar grounds and without difficulty, at the quantum
level the case of the string brings up (besides the known problem of operator
ordering already present for the point) the difficulty of regularizing the product
of local fields at the same point. In order to obtain finite, acceptable results,
it is necessary to make reference to a well-defined Hilbert space and to normal

ordering the product of operators with respect to the ground state.

This new problem is already present for the free string and leads to the well-
known c—-number Schwinger term (the anomaly) which enforces a critical value for the

dimensionality of flat space—time.

In going to the interacting case, a great simplification is brought in by
world-sheet supersymmetry, which allows to focus one's attention on the fermionic
constraints and their algebra, which then generates, through Jacobi identities, the
remaining commutators. In this paper we have tried to take full advantage of the

simplifications allowed by supersymmetry.

Noticing that each of the two independent fermionic constraints takes the free
form in a convenient set of canonical variables, we have been able to commect the
anomalies to the transformation from one canonical set to the othexr: we have then
worked out the results to leading non-trivial order in the space-time curvature
tensor R vpa" To this order, the correct closure of the quantum constraint algebra
(alternatively the nilpotency of the BRST operator) can be shown to demand the

vacuum Einstein equation va = 0, in agreement with earlier claims.

Besides showing explicitly how a non—-vanishing Ruv modifies the algebra
through c as well as gq-number Schwinger terms, we may speculate that our method can
be extended to higher-orders in the normal co-ordinate expansion (or o-model loops)
with considerable simplifications with respect to the equivalent o-model calcula-
tions. Moreover, the present approach can be straightforwardly generalized to

other kinds of type Il superstrings propagating in arbitrary massless backgrounds.
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We hope to report on new results in this direction in a future publication.
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APPENDIX

SUPERSTRING IN FLAT SPACE-TIME AND IN AN ARBITRARY GAUGE

In this appendix we present the Hamiltonian formalism for the free superstring

in an arbitrary gauge. The action is [13]

I - Tt V2 [4 9o o X + & X5YY> 20 Xu -
(A.1)

L AR YN AR X - F K K i‘axbv*mb]

The notations are as follows. Xa, x“ are bosonic and (NRS) fermionic co-ordinates,

respectively, where ¢ = 0,..., D=1; eia is the zweibein (e = detueiau), nij is the

3
b1 §
- Latin indices take the values 0O, 1. ha is the (spinor-vector) gravitino field omn

local flat metric on the world-sheet and 8ap = eiae is the world-sheet metric

*
the world-sheet, obeying the Majorana condition Ra = ha. Finally ya = eaiyi where

Yi are the two-dimensional Dirac matrices defined in the local co-ordinate frame.

The action (A.l) is invariant under local reparametrizations, Weyl rescaling
and local supersymmetry transformations. Our aim here 1s to derive the constraints
associated with the local symmetries of Eg. (A.l), by working in the Hamiltonian

formalism.

owing to the fact that the kinetic energy terms for eai and Ka are missing in
Eq. (A.1), the equations of motion for these filelds are actually constraint

relations. Hence

ol
Se

im

-T&i = - 'eia.. ('B.Q, Xo( Oe X« %-&c‘l‘ ti« ?(“\6‘70' Do X ~

- zghXCYt’%db& Xu - 35_‘ X7Y° Ko o bea/’\") Y we

+ 2 BQ,X*-&*’:{ D5 X ('Z'J + »i%'(h'o‘o’iba?(—u -

- 20 A XY AE e X = O
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5 .
s:f‘ s T%= XY ™ A - & AP AYEY* X = 0 @y
a

Since the energy—momentum tensor is symmetric and traceless, the two constraints

(A.2) are expressed in terms of the Hamiltonian phase-space variables as follows

2 %

T = %1 (P*X’) t Ty 9¢%tas = © (A.4)
where

'P“ = £ 'ngx%"’ —ie Naxteo ™ x % (A.5)

- A
and
& «

Yo = 4?, (" ‘-{-\f;} X (A.7)
Likewise, the two comstraints (A.3) - vanishing of the supercurrent - take the
Hamiltonian form '

Qt = % (F*:': X"’(BL‘,*K = O (A.8)

The space-space realization of the classical constraint algebra for the free

superstring then takes the same form as in Table 1.
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TAELE 1

Classical constraint algebra

{@*(),Q" (e} g = UT(0)4T4(a" 1)8(0=0")
{Q7(), Q7 (e} = 2(T-(0)+T-(0"))8(0-0")
{QH(9),Q7 (6"} py = ©

{TH(6),QM (o} 5y = ~1(2QH(0)+a1(6))8" (0=0")
[T(0),07 (") }pp = 1(2Q7(0)+Q7(0"))8" (0-0")
{TH(0),Q (o' ) }pg = ©

{17€0), Q% (0" }pp = ©

{TH(0),TH(o" )}, = —24(TH(0)+14(0"))8" (0=0")
{T‘(U),T“(G')}PB = +21(T_(o)+T_-(c"))8'(o—c")

{T+(c),T_(U')}PB =0



{q*(a),qt(a"}
{@7(0),97(c")}
{q*(e),q7 (e}
[TH(0),Q"(c")]
[T(c),Q7(a")]
[TH(5),Q7(a")]
[T7(0),QT(c")]

[TH(o), TH(c")]

[T™(a),T7(a")]

[TH(o),T"(c")]

Il
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TABLE 2

Quantum constraint algebra

2(THo)+TH(6"))6(0m0") + 7o (D = =) 8"(o=0")

e 1 R\ e s
2(T=(o)*+T™(c") )6 (o) + —5;-(D - —359 5" (o=c')
V' (g)t{a—c")

—(2QW2(0)+iq(a)) + (W2(o")+1Q¥(c"))} &' (o=0")

=-(2(W; (0)+1Q~(0)) + (W1(0')-1Q (c"))) 8'(o=a")

(Wi (a")=2W1(c))8 " (o=c")
(Wa(o')=2Wa (o) }8' (o~a")

—2[(Z(d)+iT+(c))+((Z(d')+1T+(o'))]6'(0—0') -

_i_ __R'_ LI — ¥
= (D = £ 8" (gma")

+

~2((Z(o)=1T~(0) )+((Z(c*)=iT™(c")) )8  (o=c') +

i

R LI S
EE‘(D - E}Q 5" " (o~c")

22'(0)8(c=0")
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