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Abstract 

The long distance effect of a small wormhole on correlation func- 

tions can be summarized as the insertion of a local ‘vertex’ operator. 

We compute, to leading order in the size of the wormhole and in 

Planck’s constant, the vertex operator for axionic wormholes. The 

effects of matter fields, primarily in the form of conformally coupled 

scalars, are also studied. The effective bilocal action does not seem 

to factorize, clouding the notion of a local vertex operator. 
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1. It has been recently realized that the effects of topology change in quantum 

gravity may be quite interesting and surprising. It is not quite clear yet what 

these effects are. It has been suggested, for example, that they may lead to loss 

of quantum coherence[l,2,3], though it is believed now that this occurs only as 

a sort of quantum indeterminacy of the constants of nature[4,5]. Perhaps more 

interesting is the proposal that the probability distribution for the constants of 

nature is delta-function peaked at vanishing cosmological constant[6,7,8]. It has 

been argued, though, that one should really interpret such results as indicating 

that the many universes wave function evolves typically into states of very many 

large and cold universes[9,10]. 

In trying to ascertain what the effects of topology change are, the useful 

concept of a vertex operator is introduced[l]. If we look at physics at distance 

scales much larger than the scale of the topology changing quantum fluctuations, 

it is rather plausible that their effects can be summarized in terms of local ‘ver- 

tex’ operators. It is likely that a good understanding of these vertex operators 

will play a role in figuring out what the ultimate effect of topology change in 

quantum gravity may be. 

In this paper we will set up the computation of vertex operators. We 

will work within the context of Euclidean Quantum Gravity, and will assume 

the validity of a semiclassical expansion, summing over saddle points of the 

Euclidean action. The topology changing saddle point configurations that we 

will consider are the axionic wormholes, and in particular the explicit solution 

of Giddings and Strominger[3]. The matter sector of the theory we consider 

contains a complex scalar field with U(1) symmetric potential and undergoes 

spontaneous symmetry breaking. Additional matter fields will be added, but 

they will play no role in stabilizing the wormhole. They merely propagate in the 

background of the wormhole. The different wormholes in this theory are labeled 

by the charge Q they carry. We will compute a vertex operator for each Q. 

2. We begin by reviewing the axionic wormhole solutions. In a theory of a 

charged scalar 4 = p/d expi0 with a symmetry under constant shifts in 0, the 

wormhole arises as a saddle point in the action with the constraint[ll,l2] that 

the initial and final configurations be of definite charge Q. We will present here 
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a quick and (not really) dirty way of reproducing the results of ref. [ll]. Our 

method here has the added advantage of being explicitly covariant. Moreover, 

the result in eq. (lo), which will play an important role in the computation of the 

vertex operators, is obtained regardless of the details of the background metric. 

Therefore, whatever results follow from it will be valid even for non-spherically 

symmetric (i.e., O(4) symmetric) wormholes. 

Our method yields directly the euclidean (Le., imaginary time) equations 

of motion. It neatly resolves the paradox, explained below, that has led some to 

suggest that the rotation into imaginary time and the derivation of equations of 

motion don’t commute. For this reason we first explain our method in a simpler 

system, a particle in two dimensions moving under the influence of a central 

potential. The Euclidean action is 

I = 
I 

dr (ii’ + +@ + V(T)) 

The B equation of motion 

&(T’B) = 0 

yields 

(1) 
where C is a constant. Therefore, one may write 

I e,, = I 
dr(;+’ + K,,(T)) 

where 

&,I = V(T) + 2. (2) 

This we recognize as the correct expression for the effective potential, and inter- 

pret the constant C as the conserved angular momentum. On the other hand, 

the equation of motion for the radial coordinate from the original action I is 

or, using (1) 

-i: + g + V’(T) = 0 
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This is not the equation of motion obtained from&f. While we think Ictr is cor- 

rect, the procedure leading to eq. (4) is one generally accepted as correct. The 

resolution of this paradox lies in specifying what we mean by ‘I.tr is correct’. 

We know from the WKB methods that if we compute a tunneling amplitude 

we would get a suppression factor exp(-&f(p)), with f an extremum of Ietr 

satisfying the tunneling boundary conditions. Therefore, the correct question 

is not what are the ‘correct’ equations of motion in Euclidean space, but how 

do we obtain the correct transition amplitudes. And of course what needs to 

be computed are transition amplitudes between states of definite angular mo- 

mentum I. We must stress that this is not an artifact introduced to save the 

day. In fact it has long been known that states of defmite angular coordinate 

are ilLdefined[l3]. Thus one computes 

(~&t?) = / d6’ld& exp(il(& - Bl))~~,[rdrdg]e-‘(r,s) 

= A., [Tdt] /[de] exp( -I(r, 0) + 2 j dtd) (5) 

Here ‘b.c.’ stands for the appropriate boundary conditions, namely, f(~ii) = ri 

and, in the first line only, e(ri) = Bi. The integral over the angular variable is 

trivial, for there are no boundary conditions and the action is at most quadratic 

in 8. Rather than asking what are the equations of motion for 0 we should ask 

what configuration # will reproduce the result of this exact integration when 

inserted into the argument of the exponent. The point is this. Generally, the 

functional integral is approximated by expanding the action about a background 

configuration. The obvious choice is to take that configuration to be a solution 

to the equations of motion. Since the action for 0 is quadratic, the result will 

be independent of the choice of background. But what will play the role of the 

solution to the equations of motion will be a background such that the integral 

doesn’t have to be performed. Thus, the background is chosen to satisfy 

8=;$ (‘3) 

We see now how to reconcile eqs. (2) and (4). Inserting eq. (6) into the action, 

including the surface term gives, by design, &I, and therefore is the basis for 

the correct semiclassical approximation. On the other hand, the T equation of 
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motion is still given by (3), since it gets no contribution from the added ‘surface’ 

term. But now substitution of eq. (6) into (3) yields precisely the expression 

that is obtained from varying I.tf. We must stress that we are not rotating the 

functional integral for the angular variable into the imaginary axis. 

3. The full-fledged field theoretic model is dealt with in much the same way as 

the simple example above. As in ref. [II] we compute the transition amplitude 

between geometries C and C’ on which ~0, the momentum conjugate to 6 is de- 

fined. To remove the boundary conditions for the integration over the goldstone 

boson 6 we introduce a vector +’ satisfying 

nru = 0 (7) 

“p&(~) = m(‘) (8) 

The latter of these equations might be too strong. Physically, we want to restrict 

only the global charge Q, so we need Jz(,, dD‘x, = (-)Q. In analogy with our 

simple model above, we have 

(C’lr;lCas) = /[&J,][dt%] exp(i/E, dZGr~& - i/, dDr&‘,)~C,[d8] /[dp(fields)]e-’ 

= /[d6’] /[dp(fields)] exp(-1 + i / d’z &&J;,,). (9) 

Again the integration over 6 can be done exactly, and the result corresponds to 

a ‘would-be’ background field 8 satisfying 

Here p is the modulus of the complex scalar, which we take to be a constant. 

It may be proved in a variety of ways that the vertex operator for this 

theory is proportional to exp(;Qe(r)). Using eq. (10) we may give two new 

derivations of this result. These new derivations are interesting to us because 

they share features with the calculations we will present later for other factors 

of the vertex operator. The wormholes in this theory have size ~0 - $?%G 
where Mp is the Planck mass. For fixed Q, if we consider the physics on length 

scales L > T,,, we can imagine integrating them out. In constructing an effective 

theory for wavelengths longer than L we introduce the vertex operator by the 
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requirement that it correctly reproduces expectation values when the fluctua- 

tions are restricted to not include wavelengths shorter than L. In particular, 

wormhole fluctuations are not included in the sum over configurations. One 

assumes that the expectation value in (9) factorizes, at least to leading order in 

TO/L. Each factor is of the form 

(CTOIV) = /[de] /[dp(fields)] exp(-I + ;/d’z &(r’B),,)V 

Here the integral over the metric is thought of as dominated by fluctuations 

about flat space (the cosmological constant is taken to vanish, for the mean 

time). Again, +‘ is chosen to satisfy the boundary condition a%,,/~ = r#. 

But now we cannot insist on rzlr w = 0 everywhere in the manifold, for this is 

inconsistent with Jz dC’rr,, = Q # 0. Instead we must have charge flowing in 

somewhere. Naturally we want it to flow in from the wormhole at zO, 

Therefore 

~5 = QS(l: - m)/,& (11) 

J ds dW% = ~flb~) + J A ,hi+%, 
and to compensate for the first term on the right hand side we must have V - 

exd--iQB(ro)). 
This derivation was a bit sketchy and imprecise, but one gets away with 

this because the result relies ultimately on symmetry. If we want to nail down 

the vertex operator more precisely we will have to proceed with some more care. 

We will restrict our attention to the case of vanishing cosmological constant. 

Thus, in the semiclassical approximation we will always be able to take the 

wormhole to join two asymptotically flat regions. We can then ask questions 

about correlations for field operators inserted in these asymptotic regions. In 

the semiclassical approximation, if these field operators don’t involve the metric, 

they may be computed as correlations in a fixed background metric. If the back- 

ground metric is that of a wormhole, we will denote such correlations by (. . .),. 

The ellipses stand for a string of operators located at either asymptotically flat 

region. A prime will be used to distinguish between the two regions. For a flat 

background we will use (. . .)o. 
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The vertex operator is obtained from the requirement that 

((...)(...)‘), = ((..*) x V), ((. ..)’ x V), (12) 

In particular, one must have 

w, = (lV)i, 
where 1 is the unit operator. There is a constant term in the vertex operator, 

V=c+ . . ., and it satisfies 

es - (l)w 
0);. 

(14) 

Comments: 

1. Eq. (12) must be interpreted carefully when the wormhole background 

breaks symmetries. The corresponding integrals over zero modes must be 

extracted explicitly. The left hand side in (12) then depends explicitly 

on the particular configuration. Correspondingly, the vertex operator on 

the right hand side will generically depend on the parameters that specify 

such configuration. The full effect of the wormhole is then reproduced 

not just by introducing the vertex operator, but by summing over the 

corresponding parameters. A prototypical example is the translational 

invariance of the center of the wormhole when viewed from either end. 

This gives eight zero modes, and the vertex operators will depend on eight 

parameters zo, zb. The sum over parameters corresponds to the volume 

integrals J d%, fi J d%$, a. In going to the integral over parameters, 

one must also include other appropriate factors such as m for each 

zero mode, where 1s is the value of the effective action at the saddle point. 

We have implicitly absorbed these into 3. 

2. Generally one is not interested in the case of vanishing cosmological con- 

stant A. If not vanishing, it must still be small enough for wormholes to 

make sense. A sensible criterion is that the de-Sitter radius Mp/& be 

much larger than the throat size T 0. The wormhole solution is much like 

a bridge between two half-spheres. The correlations are then computed 

for operators inserted on the maximal sections, three-spheres that become 
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our asymptotically flat spaces as A + 0. In the expression (14) for the 

constant c* the denominator can therefore be replaced by (l):,, where the 

subscript stands for ‘half-sphere’. This result is reminiscent of the normal- 

ization factors usually encountered in instanton physics[l5]. We find this 

reassuring. 

3. The computation of cs is hard, and we do not undertake it here. It is 

tempting to conjecture what its phase is. First, we naively replace (l):, 

by (I),> where the subscript now refers to the whole sphere. The phase 

of this object was computed by Polchinski[l4], given an assumption about 

the contour of integration of the conformal mode. The result obtained in 

ref. [14] was 9+fdf11 in d dimensions. The fust factor arises from the eero 

mode of the scalar laplacian, while the next d + 1 factors correspond to 

similarly many conformal killing vectors of the (O(d + 1)symmetric) d- 

sphere. Using the same assumptions one may attempt to obtain the phase 

of the numerator. We have not done so, but it is tempting to guess that 

the result is i’+(d). The first factor is always there and comes again from 

the zero mode of the laplacian. The second factor is suggested by the O(d) 

symmetry of the Giddings-Strominger wormhole. If this is correct then cs 

is -i times a positive number. Perhaps this is the phase we should expect 

if the wormhole is the leading contribution to the decay width to states of 

different topology. 

Of course, the constant e must appear in V multiplied by exp(-iQB(zs)). 

We now present a second derivation of this fact. The method will be instru- 

mental in deriving the contribution of other fields to the vertex operator. The 

expectation value of a string of operators Or(rr) .. . O,,(z,,) in the semiclassicsl 

approximation is given, to zeroth order in Planck’s constant, by their saddle 

point values. Therefore we may write 

(e(q). . . qz”)), = (l), e(Q). . . e(G) + O(h) 

As argued above, the appropriate ‘saddle point’ value for the angular variable 

is given by e satisfying eq. (10). This is equal to 

M4 * * ’ ~(4V(4), ov(4))o 
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From the unprimed asymptotic region point of view, the wormhole is essentially 

at the point es. Thus xfi may be taken to satisfy eq. (ll), or 

O/j(Z) = i$6(z - GO)/& 

Up to a normalization factor of -iQ/p’, this is the same equation satisfied by 

the Feynman propagator AF(z, ze) for the (properly normalized) field p#(r). 

Therefore we have 

(~J(zI)...~(z,)), = (l),(-iQ)“~A~(~i,20). 0‘3) id 

This is reproduced by the vertex in eq. (15) if we take 

V(r,,) = ~$-iQ)~8(z,)- 

Since this is valid for arbitrary n, we may sum up the series, obtaining 

V(q) = cexp(-iQB(ro)). 

More comments: 

1. The result is independent of the details of the wormhole metric. A similar 

argument has been given elsewhere using the explicit form of the Giddings- 

Strominger background (which, of course, has the same functional depen- 

dence as a Feynman propagator). Our derivation sidesteps the need for 

such explicit knowledge. Moreover, the all important factor of i is often 

missed. It can be seen to arise, of course, only through the argument given 

above’. 

2. Counting A’s is instructive. The propagator AF is linear in tL, and one 

must therefore introduce a factor of (l/h)” in eq. (16). Thus the vertex 

is V = cexp(-iQO/h). This is again expected. The integrally quantized 

charge p is related to the classical charge Q through p = Q/fi, which 

diverges as tr -+ 0. 

‘Calculations of wormhole-wormhole correlations[l6,17] that have been given usually don’t 

include the factor of i. The results may be incorrect by (L factor of i’ = -1. We have not 

checked this. 
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4. It is now straightforward to introduce additional matter fields, +,, not directly 

responsible for the stabilization of the wormhole. Since we are interested in long 

distance effects, we shall take such fields to be massless. This is an oversimplifi- 

cation, for it should suffice to consider massive fields with m << r;‘, where m is 

the mass of the field. But our calculations will be simpler with the choice m = 0. 

These fields have trivial saddle point configurations, so that ($(zi) . ..$(z,,)), 

has no contribution to zeroth order in fL. We must therefore understand the 

propagator of these fields in the wormhole background. To this end we specify 

the metric to be the conformally-flat Giddings-Strominger solution 

ds’ = C(z)&,,dz’dz” 

with conformal factor 

4 
C(z) = If IE _ 20,4 

Here 
GQ’ F; = - 

12xaps 

and G is Newton’s constant. The unprimed region z is characterized by ]z - 

es] > r. while the primed one I’ is characterized by I+‘- zc) < ~0. Now the two 

point function (1/)(zi)$(~s))~ is given, to good approximation, by ((1)w / (l),) x 

($~(z~)$(ts)),, since the points ei are both in the asymptotically flat region and 

satisfy lo;--+s/ > TO. More generally, to leading order in ra/]ei-to], the correla- 

tion ($(tl) ..-$(G,)), is properly appro~matedby (ti(zl) . ..$(+.)V(ZO)), (V(Z~))~, 

with V given as before (and only the constant term contributing). Moreover, 

the same is true if any number of 0 fields are introduced into the expectation 

value. 

It is more interesting to consider ($(z)$(z’)),. Now the leading contri- 

bution is at best of the order of l//e - ~1s. Moreover, it is not obvious that 

such correlation factorizes according to eq. (12). To go any further we need 

the propagator for the field ?i, in the wormhole background. This is generally 

difficult to compute. But since the wormhole is conformally flat, one can easily 

compute it for conformally coupled fields. For them[lS], 

(qqiT)J6(z’)), = (l), C”“(Z)CQ”(Z’)Li,(Z,e’) 
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where & stands for the flat space Feynman propagator appropriate to the field 

in question and the a is the corresponding conformal weight. For example, a is 

-1 for scalars and -3/2 for spin-l/2 fermions. Take, for example, the case of 

scalars. The propagator is 

1 1 
AF(z,+‘) = -- 

4+ (z - z’p ’ 

so that, to leading order in yO/Iz - +,,I and 11’ - rol/ror 

(4I(~M,(4L = PL (-&) (= -lzo,a ‘y-y”. 

To this order, Iz - IO/ is the distance from the wormhole ‘throat’ (delined by 

)z - ~1 = 70) to the point z. The factor $Iz’- 201 has a similar interpretation, 

for 

JdsF;:j&ijdz=zr; 7 $dz= ,z,~z,, 
e’ I.‘-CrJl 

Therefore, the result is the product of the inverse of the square of the distance 

from the throat to each of the points z and 2’. We can make this explicit by 

writing the second factor in the coordinate system 

(Y - Y;), = Ti (“z 1;;:. 

The correlation does indeed factorize. It is reproduced by 

if V(z) is taken to be proportional to 4(z), 

v(zo)v(Y:) = c’(-4n’T~)~(zo)~(Y~). (19) 

It is straightforward to extend this result to the case when 71 fields are inserted 

on each side 

( 
,fJ N4 li +tsl)) = ( qw (-4x%3”n! fJ 

i=l /Zi ‘20,’ ly,! ‘ye,” (20) 
kl w 
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This gives 

(21) 

Putting it all together we obtain 

We note that: 

1. After all, the ‘vertex’ operator does not seem to factorize. It can be written 

as an infinite sum of factorized terms. For large field strengths, though, 

such expansion may be troublesome. We don’t know how the wormhole 

cr-parameters may be introduced in this case. This may not be as bad as 

it seems. After all, we must keep in mind that the amplitudes do indeed 

factorize. 

2. We may again count h’s. The wormhole expectation value (20) is order 

h”, while 2n propagators give a factor of h’“. We must therefore include 

a factor of (l/h)” in eq. (21) or a factor of l/n in the argument of the 

exponential in the vertex operator (22). 

3. The constant cz appears in front of every term in the bilocal vertex oper- 

ator. Aside from this, the relative strengths of terms in the bilocal vertex 

are rather trivially computed. Fischler has suggested a rather simple in- 

terpretation for the appearance of this constant[l9]. It simply corresponds 

to the mismatch in vacuum fluctuations for fields propagating in different 

backgrounds. In a first quantized formalism, a particle propagator from 

z1 to ~1 is the sum over paths from one point to the other. In the back- 

ground of the wormhole there are paths which go through the throat, into 

the second asymptotic region and back to the first one again. As n, --t 0 

these paths are severed into two disconnected pieces. One goes from z1 to 

to and back to ~2, while the other is a closed loop in the second region. 

Thus, a factor of (l)w / (l),, appears from the normalization of paths in 

the first region, while a second factor of l/ (l), comes from the loops in 

the second region. 
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4. We omitted in (20) the leading terms which correspond to making con- 

tractions between fields in the asymptotic region. The lower order terms 

in V(z,)V(yh) automatically reproduce such terms, to leading order in 

to/l~i - ~01. One may worry that the next to leading terms are still more 

important than those kept in (20), and therefore the result may be in- 

validated. This is not the case. Take the collection of points {Zi} to lie 

on the same three-sphere Jzi - to) = T - L B rs. Then the conformal 

factors C-‘/‘(q) are all numerically the same. The physical distance be- 

tween points zi and nj as measured intrinsically (within the three-sphere) 

is then C”z(zi)lti-ejI. This is predsely what appears in the denominator 

in (29), and it is what the vertex operator in flat space reproduces. 

5. If there are N species of conformally coupled massless scalars, +i, our result 

generalizes trivially. All we need is to make the replacement $(zs)$(y!J + 

Ci ~i(~OMi,i(Y~)~ 

A similar calculation may be performed for fermions or vector bosons. If 

massless, these are automatically conformally coupled. The new feature that 

arises is that, for fixed background metric, the amplitude (+(x)$(x’)), does not 

factorize. For example, in the ease of fermions the two propagators from the 

asymptotic regions to the throat are connected through a Dirac gamma matrix. 

The direction of this matrix is determined by the relative angle between the 

points z and I’. Now, since the wormhole is O(4) symmetric, i.e., invariant 

under 

(2 - 2& 4 o;(z - IO)“, 

one must integrate over the corresponding zero modes. So even if one can write 

an expression for V(zO)V(y;)) analogous to (19), the result will vanish when one 

averages over directions (that is, when one performs the integral over O(4)). 

In the case of scalars considered above, the result was rotationally invariant. 

We implicitly absorbed a factor of the volume of O(4) in the definition of the 

constant 2. We get away with this because this volume factor is finite. Cor- 

relations of more than two fermions will involve a multilinear gamma matrix 

structure, and so the average over directions will not vanish. In this way the 

C(4) symmetry ensures the Lorentz invariance of the flat space effective theory. 
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5. Finally we turn to the question of emission and absorbtion of gravitons by 

the wormhole. We address this question by computing amplitudes involving 

insertions of the metric in the asymptotically flat regions. Now, if we straight- 

forwardly compute correlations involving & g,,,,(zi) we will obtain a gauge de- 

pendent, and therefore meaningless, result. We get around this difficulty by 

computing correlations involving the curvature SC&~ R(z). To leading order in 

Planck’s constant the result is again trivially given by the background configu- 

ration, 

(R(Z,).~‘R(Z,)jw = (l)w(R(zt)...R(r,) + O(h)), 

where, for the Giddings-Strominger wormhole, 

R(z) = - 24~; 

Iz - +olYl + ?$/I~ - %14)3 

The computation of the corresponding amplitude in flat space is simplified by 

the observation that in the semiclassical approximation we can use the equations 

of motion. Therefore we write, 

P(4 ... R(4V(d)o = (8?rGp2)” (P‘~,,,(z~) . . . t~*e,,(z~)v(z,)), 

It is easy to check, using eq. (17), that these expressions agree. In fact no 

computation is necessary, for we could have also used the equations of motion in 

the computation of the correlation in the wormhole background. Then we would 

be comparing correlations of 0 fields only. The vertex operator was designed for 

these to work. It should be kept in mind that this result has been obtained 

to leading order in Q/L. Beyond leading order in this parameter one expects 

to have to introduce into the vertex operator terms involving derivatives of the 

goldstone boson field 9,, and/or the scalar curvature R. 

The vertex operator we obtain seems to correctly reproduce amplitudes in- 

volving the curvature scalar R(z). This is a nontrivial statement. One would 

expect that the vertex operator would itself have terms proportional to R(zo). 

In the dilute gas of wormholes approximation such term would yield a renor- 

malization of Newton’s constant. The a-parameter dependence of Newton’s 

constant could dictate the values of low energy coupling constants[20,21]. Our 
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computation indicates that no such (a-dependent) renormalization of Newton’s 

constant occurs at the wormhole scale’, to leading order in tL and Q/L. We 

should note, however, that in the semiclassical approximation it is impossible to 

distinguish the effects of the operators R(+o) and 8xGp’g”“B,,B,,. They could 

both give cancelling contributions to the vertex operator. Moreover, there is no 

reason to expect that there is no such renormalization beyond leading order in 

h and TO/L. 

6. Our conclusions are as follows. The vertex operator V(+o) for axionic worm- 

holes can be computed in the semiclassical approximation by considering corre- 

lations of fields inserted in the asymptotically flat regions of spacetime. Up to 

an overall constant c, the relative contributions of different operators to V can 

be explicitly computed. The constant c is itself computable, given a prescrip- 

tion for the evaluation of the path integral. It is expressed as the ratio 6f the 

partition function for the wormhole background to that of the flat background 

(cj., eq. (14)). For a theory with an axion B and a conformally coupled massleas 

real scalar 4, the vertex operator does not factorize. The effective bilocai action 

is given, to leading order in tr and the wormhole size ro, by (the integral over z0 

and y: of) eq. (22). 
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