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1 Introduction

The cosmological solutions of the low-energy string effective action, and their duality symme-

try properties, have recently motivated the study of an inflationary scenario [1]-[3] in which

the universe evolves from the string perturbative vacuum to the high curvature, strong

coupling regime. One of the main problems, in this context, is the “graceful” exit from

such an accelerated (also called pre-big-bang [1]) phase to the decelerated, decreasing cur-

vature phase typical of the standard (post-big-bang) cosmological evolution. Both phases

are present in the exact solutions of the tree-level, lowest order in α′, string effective ac-

tion [2, 3]. However, for vanishing torsion and dilaton potential, these phases correspond to

different (duality-related) branches of the solution, defined over disconnected ranges of the

time parameter and separated by a singularity of the curvature and of the coupling.

The graceful exit problem would be solved, at the classical level, by an exact cosmological

solution connecting smoothly the two branches, and thus describing a continuous evolution

from accelerated to decelerated expansion. Unfortunately, confirming a previous conjecture

[4], it has been rigorously proved [5] that such a change of branch cannot be simply catalyzed

by any (realistic) dilaton potential, if we limit ourselves to lowest order in the α′ expansion

of the string effective action. Such a no-go theorem has been recently extended, for spatially

homogeneous and isotropic manifolds, to the case of non-vanishing torsion background [6]

and non-vanishing spatial curvature [7].

A possible way of incorporating branch-changing in the pre-big-bang scenario is thus to

resort to the conformal field theory approach [8], where all higher orders in α′ are taken

into account. On the other hand, in such a “stringy” regime dominated by higher-derivative

terms in the effective action, the curvature is expected to approach the Planck scale and

thus the quantum gravity regime. This suggests a quantum approach to the graceful exit

problem (quantum cosmology methods in a string theory context were previously introduced

also in [9, 10]).

By applying the Wheeler-De Witt (WDW) equation to the gravi-dilaton system, we show

in this paper that the transition from a pre-big-bang to a post-big-bang classical solution

corresponds to a reflection of the wave function in minisuperspace. A classical configuration

describing branch-changing gives a reflection coefficient R = 1. The reflection probability

is in general non-vanishing, however, even if the given classical background forbids branch-
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changing. This is the main result of this paper, which may allow a systematic classification

of the initial conditions compatible with the present state of our Universe, even ignoring

kinematical details during the quantum transition era.

The paper is organized as follows. In Section 2 we derive from the low energy string

effective action the WDW equation for homogeneous, spatially flat cosmological backgrounds,

including a non-trivial antisymmetric (torsion) tensor. We show, in particular, that the

operator ordering problem is trivially solved because of the O(d, d) covariance of the kinetic

part of the Hamiltonian, which implies a globally flat minisuperspace metric. In Section 3 we

study the free wave equation, and we identify the left and right moving modes in superspace

with the two branches of the classical vacuum solution. The reader not interested in technical

complications due to the presence of a non-trivial torsion background can move directly to

Section 4, where we give two self-contained examples of “quantum” branch changing, in the

two-dimensional minisuperspace parameterized by the dilaton field and by the (isotropic)

metric scale factor. While the first example has a classic analogue, the second corresponds

to a background configuration in which branch changing is classically forbidden. A brief

summary, and our concluding remarks, are finally presented in Section 5.

2 O(d,d)-covariant Wheeler-De Witt equation

At low energy, the tree-level, (d+1)-dimensional (super)string effective action can be written

as [11]

S = − 1

2λd−1
s

∫

dd+1x
√

|g|e−φ
(

R + ∂µφ∂
µφ− 1

12
HµναH

µνα + V
)

. (2.1)

Here φ is the dilaton field, Hµνα is the field strength of the two-index antisymmetric torsion

tensor Bµν = −Bνµ, and λs ≡ (α′)1/2 is the fundamental string length parameter governing

the high derivative expansion of the action. Note that we have included a possible dilaton

potential V , and we have chosen to work in the String (or Brans-Dicke frame), whose metric

coincides with the sigma-model metric to which strings are directly coupled. The more

conventional choice of the Einstein frame leads to an equivalent description of the same

cosmological scenario [3, 12], but it is less convenient for exploiting the duality symmetries
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of the underlying theory.

We shall consider, in this paper, homogeneous backgrounds with d Abelian isometries,

for which a synchronous frame exists where g00 = 1, g0i = 0 = B0i, and the fields are

independent of all space-like coordinates xi (i, j = 1, .., d). We also assume spatial sections

of finite volume, (
∫

ddx
√

|g|)t=const < ∞. For such backgrounds the action can be rewritten

as [13]

S = −λs

2

∫

dte−φ
[

(φ̇)2 +
1

8
Tr Ṁ(M−1)̇ + V

]

(2.2)

where a dot denotes differentiation with respect to the cosmic time t, and we have chosen to

express length and energies in string units through λs. Here φ is the “ shifted” dilaton field,

φ = φ− ln |det gµν |1/2 (2.3)

(we have absorbed into φ the constant shift − ln(λ−d
s

∫

ddx) required to secure the scalar

behaviour of φ under coordinate reparametrization). Finally, M is the 2d× 2d matrix

M =

(

G−1 −G−1B

BG−1 G− BG−1B

)

(2.4)

where G and B are, respectively, matrix representations of the spatial part of the metric

(gij) and of the antisymmetric tensor (Bij).

For constant V , the whole action (2.2) is invariant under global O(d, d) transformations

[13]

φ→ φ, M → ΩTMΩ (2.5)

where

ΩTηΩ = η, η =

(

0 I

I 0

)

. (2.6)

In addition, M satisfies

MηM = η. (2.7)

This O(d, d) symmetry is preserved in the presence of bulk string matter [14] satisfying the

string equations of motion, and it reduces to the scale factor duality symmetry [15, 16] (for

torsionless, diagonal metric backgrounds) in the particular case in which we restrict Ω to η

in eq. (2.5).

By using as time parameter τ , with dt = e−φdτ , the action (2.2) leads to the Lagrangian

(a prime denotes differentiation with respect to τ)

L(τ) = −λs

2

[

(φ
′
)2 +

1

8
Tr M ′(M−1)′ + e−2φV

]

(2.8)
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whose corresponding Hamiltonian is

H = − 1

2λs
Π2

φ
+

4

λs
Tr (M ΠMM ΠM) +

λs

2
V e−2φ (2.9)

where Πφ and ΠM are the (dimensionless) canonical momenta

Πφ =
δL

δφ
′ = −λsφ

′
, ΠM =

δL

δM ′ =
λs

8
M−1M ′M−1. (2.10)

The variation of the action (2.1) with respect to the “lapse” function,
√
g00, provides the

canonical constraint H = 0. The WDW equation [17], implementing in superspace such a

constraint through the differential representation Πφ = ±iδ/δφ, ΠM = ±iδ/δM , would seem

to be affected (as usual) by problems of quantum ordering, as [M,ΠM ] 6= 0. In our context,

however, the problems actually disappear because our (d2 + 1)-dimensional minisuperspace

is globally flat, as a consequence of the O(d, d) symmetry. Indeed, by using the O(d, d)

property (2.7), we can always rewrite the M-dependent part of the kinetic operator as

1

16
Tr M ′(M−1)′ =

1

16
Tr (M ′η)2. (2.11)

The corresponding Hamiltonian

H = − 1

2λs
Π2

φ
− 4

λs
Tr (η ΠM η ΠM) +

λs

2
V e−2φ (2.12)

has a flat metric in momentum space, and leads to a WDW equation
[

δ2

δφ
2 + 8Tr

(

η
δ

δM
η
δ

δM

)

+ λ2
sV e

−2φ

]

Ψ(φ,M) = 0, (2.13)

which is manifestly free from problems of quantum ordering.

If we introduce curvilinear coordinates in minisuperspace, adopting for instance the

parametrization of eq. (2.9), the ordering imposed by the O(d, d) symmetry is equivalent

to the general covariance of the Laplacian operator, as can be easily checked for the simple

isotropic case B = 0, Gij = −a2δij . In that case the kinetic part of the Hamiltonian (2.12)

is represented as

λsHKin = −1

2
Π2

φ
− 4Tr (ηΠM)2 ≡ 1

2
∂2

φ
− 2d(a∂a + a2∂2

a). (2.14)

The parametrization of eq. (2.9), on the other hand, corresponds to the metric

γµν = diag

(

−2,
a4

4d
,

1

4da4

)

, µ, ν = 1, 2, 3 , (2.15)
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in the three-dimensional space spanned by the differential operators

Πµ = i∂µ = i

(

∂

∂φ
,

∂

∂a−2
,

∂

∂a2

)

(2.16)

and the covariant Laplacian gives

−∇µ∇µ ≡ − 1
√

|γ|
∂µ

(

√

|γ|γµν∂ν

)

=
1

2
∂2

φ
− 2d(a∂a + a2∂2

a) ≡ λsHKin. (2.17)

The ordering fixed by the scale factor duality symmetry of the classical Hamiltonian is

thus the same as that imposed by the requirement of general reparametrization invariance

in minisuperspace (note that in our case there is no possible contribution to the ordered

Hamiltonian from the scalar curvature of superspace [18], as the metric is globally flat).

3 Branch changing as wave reflection

We shall apply, in this paper, the WDW equation (2.13) to study the probability of transition

from a given initial background configuration of the pre-big-bang type, to a final configu-

ration typical of the standard cosmological scenario. This amounts to solving eq. (2.13)

for a given value of the dilaton potential V (φ), with appropriate boundary conditions. The

systematic study of the transition probability for a “realistic” (supersymmetry breaking)

non-perturbative dilaton potential is postponed to a future work. The main goal of this pa-

per is to show that in a quantum cosmology context it is possible to tunnel from one branch

to another of the low energy classical solutions, even if the two branches are not smoothly

connected, but they are separated by curvature singularities and unphysical regions of finite

size.

To this aim we shall work in the simplifying hypothesis of O(d, d) symmetry of the whole

(in general non-local) action, assuming V = V (φ), because in that case the WDW equation

(2.13) can be separated by setting

Ψ(φ,M) = χA(M)ψA(φ) (3.1)

where

(MΠM )χA ≡ iM
δ

δM
χA = −

(

1

8
Aη
)

χA (3.2)
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and
[

δ2

δφ
2 +

1

8
Tr (Aη)2 + λ2

sV (φ)e−2φ

]

ψA(φ) = 0. (3.3)

We have used here the momentum conservation [MΠM , H ] = 0, in agreement with the

classical equations of motion obtained from the Lagrangian (2.8), which imply [13, 14]

MΠM = −λs

8
MηM ′η = −1

8
Aη (3.4)

where A is a constant 2d× 2d matrix satisfying

MηA+ AηM = 0. (3.5)

If we consider, in particular, the “free” wave equation (V = 0), eq. (3.3) is easily solved by

a linear superposition of left and right moving waves,

ψ±
A(φ) = exp

{

± i

2
φ
[

1

2
Tr (Aη)2

]1/2
}

. (3.6)

For simplicity, we shall restrict our subsequent discussion to a diagonal, Bianchi I type

vacuum background with Gij = −a2
i (t)δij and B = 0, corresponding to [13]

A =

(

0 −Ad

Ad 0

)

, (Ad)ij = ciδij , (3.7)

where ci are arbitrary constants. The metric-dependent part of the wave function becomes

in this case

χA(aj) = N exp







− i

2

∑

j

cj ln aj







, (3.8)

as one can check after realizing that the operator MΠM contains in this case only d inde-

pendent variables. By defining

αj = cj





∑

j

c2j





−1/2

≡ cj

[

1

2
Tr (Aη)2

]−1/2

,
∑

j

α2
j = 1 (3.9)

the solutions of the WDW equation can finally be written in the form

Ψ
(±)
A (φ,M) = χA(M)ψ±

A(φ) = N± exp







− i

2

[

Tr (Ad)
2
]1/2





∑

j

αj ln aj ∓ φ











, (3.10)

where N± is an overall normalization coefficient.
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For fixed αj, namely for a given eigenstate of MΠM , the left and right moving modes

Ψ(±) correspond to different branches of the exact solution of the vacuum string cosmology

equations [2, 3, 13, 15, 16, 19]

aj = aj0|t/λs|±αj ,
∑

j

α2
j = 1, φ− φ0 = − ln |t/λs| = ∓

∑

j

αj ln aj, (3.11)

where ai0 and φ0 are integration constants. What is important, for our purpose, is that if

we apply the momentum operator Πφ = i∂/∂φ to the right moving wave Ψ
(+)
A (the opposite

sign with respect to the standard convention is due to the definition of Πφ, eq. (2.10)), we

reproduce the canonical momentum

Πφ = −λsφ̇e
−φ = −e−φ0 < 0 (3.12)

of a classical configuration corresponding to an accelerated, expanding background, with

growing curvature and dilaton coupling:

ai ∼ (−t)−αi , t < 0, αi > 0, φ− φ0 =
∑

j

αj ln aj, φ̇ > 0. (3.13)

By applying Πφ to the left mover Ψ
(−)
A , labelled by the same eigenvalue A, we find instead a

configuration with the opposite canonical momentum,

Πφ = −λsφ̇e
−φ = eφ0 > 0 (3.14)

corresponding again to an expanding branch of the same classical solution, but decelerated

and with decreasing curvature:

ai ∼ tαi , t > 0, αi > 0, φ− φ0 = −
∑

j

αj ln aj , φ̇ < 0. (3.15)

A branch transition of the type required to solve the graceful exit problem, involving a scale

factor duality transformation and time reversal [1], namely a(t) → a−1(−t), is thus equivalent

in this context to the spatial reflection of the WDW wave function in minisuperspace, Ψ
(+)
A →

Ψ
(−)
A .
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4 Two simple examples

As no reflection is possible for free waves, let us introduce an appropriate dilaton potential,

considering for simplicity a d = 3 isotropic background, and setting

B = 0, a(t) = exp
[

β(t)/
√

3
]

. (4.1)

The lowest order gravi-dilaton effective action,

S = − 1

2λs

∫

d4x
√−ge−φ (R + ∂µφ∂

µφ+ V ) , (4.2)

after integrating by parts, and using as before the convenient time parameterization dt =

dτe−φ, reduces to (in the gauge g00 = 1):

S = −λs

2

∫

dτ
(

φ
′2 − β ′2 + V e−2φ

)

(4.3)

where

φ = φ− ln
∫

(d3x/λ3
s) −

√
3β. (4.4)

The corresponding Hamiltonian

H =
1

2λs

(

Π2
β − Π2

φ
+ λ2

sV e
−2φ

)

, Πβ = λsβ
′, Πφ = −λsφ

′
(4.5)

is a particular case of eq. (2.12), for the torsionless isotropic background considered here. The

WDW equation then takes the general form of a two-dimensional Schrödinger-like equation

in the plane (φ, β):
[

∂2
φ
− ∂2

β + λ2
sV (φ, β)e−2φ

]

Ψ(φ, β) = 0. (4.6)

As anticipated in the previous section, we shall assume in this paper V = V (φ), in order

to separate variables. Let us discuss first the particular case

V (φ) = −V0e
4φ, V0 = const, V0 > 0 (4.7)

as a toy example of classical gravi-dilaton configuration allowing branch changing. A negative

non-local dilaton potential, V (φ) < 0, although hard to motivate in a realistic superstring

theory context, is indeed the only case in which exact analytical solutions are known [1, 20]

connecting smoothly the pre- to the post-big-bang regime.
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With the above potential, the classical equations of motion following from the Hamilto-

nian (4.5) imply momentum conservation along the β axis,

Πβ = λsβ
′ = λsβ̇e

−φ = k = const (4.8)

and are solved exactly by

φ = −1

2
ln

(

λ2
sV0

k2
+
k2t2

λ2
s

)

, a = a0





k2t

λ2
s

√
V0

+

(

1 +
k4t2

λ4
sV0

)1/2




1/
√

3

(4.9)

(a0 is a dimensionless integration constant). This is a regular “self-dual” solution, a(t)/a0 =

a0/a(−t), characterized by a bell-like shape of the curvature scale and of the coupling eφ.

It describes a background that evolves from an initial state of accelerated expansion and

increasing curvature,

t→ −∞, a ∼ (−t)−1/
√

3, φ ∼ − ln(−t) =
√

3 ln a = β

ȧ > 0, ä > 0, Ḣ > 0 (4.10)

to a final state of decelerated expansion, decreasing curvature,

t→ +∞, a ∼ t1/
√

3, φ ∼ − ln(−t) = −
√

3 ln a = −β

ȧ > 0, ä < 0, Ḣ < 0. (4.11)

For the background generated by the potential (4.7), the WDW equation (4.6) can easily

be separated by putting Ψ(φ, β) = e−ikβψk(φ), where k belongs to the continuous eigenvalue

spectrum of Πβ,

ΠβΨk = i∂βΨk = kΨk, [Πβ , H ] = 0 (4.12)

and ψk satisfies
(

∂2
φ

+ k2 − λ2
sV0e

2φ
)

ψk(φ) = 0 (4.13)

(note the role of time-like coordinate assigned to β, monotonically ranging from −∞ to +∞).

The general solution for ψk is then a linear combination of modified Bessel functions Kν(z),

Iν(z) [21], of complex index ν = ik and argument z = λs

√
V0e

φ. We impose the regularity

condition [22] |Ψk| < 0, corresponding to a vanishing wave function in the “impenetrable”

region of infinite effective potential, ψk(φ) → 0 for φ→ +∞. This condition uniquely selects

(modulo a normalization factor) the WDW solution as

Ψk(φ, β) = NKik(λs

√

V0e
φ ) e−ikβ. (4.14)
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For φ → −∞, i.e. in the low energy regime, this solution contains asymptotically left

and right moving waves, as [21]

lim
φ→−∞

Ψk(φ, β) = − Nπ

2 sin(ikπ)





(

λs

√
V0

2

)ik
e−ik(β−φ)

Γ(1 + ik)
−
(

λs

√
V0

2

)−ik
e−ik(β+φ)

Γ(1 − ik)



 =

= Ψ
(+)
k + Ψ

(−)
k (4.15)

As discussed in the previous section, the right movers represent the accelerated, negative

time branch (4.10), with β = φ, the left movers the decelerated, positive time branch (4.11),

with β = −φ. The reflection coefficient, Rk = |Ψ(−)
k |2/|Ψ(+)

k |2, measures the probability of

transition between the two branches of the low energy classical solution. In the low energy

limit, according to eq. (4.15), Rk → 1 for all k, as expected because we have considered an

example in which the two branches are smoothly connected already at the classical level.

Consider now an example with the opposite potential,

V (φ) = V0e
4φ, V0 = const, V0 > 0. (4.16)

In this case branch changing is classically forbidden. Indeed, the momentum conservation

(4.8) is still valid, but the classical solution becomes

φ = −1

2
ln

(

k2t2

λ2
s

− λ2
sV0

k2

)

, a = a0

∣

∣

∣

∣

∣

∣

k2t

λ2
s

√
V0

+

(

k4t2

λ4
sV0

− 1

)1/2
∣

∣

∣

∣

∣

∣

1/
√

3

. (4.17)

The low energy (large time limit) branches (4.10) and (4.11) still exist, but they are now

separated by an unphysical region, of extension |t| < λ2
s

√
V0/k

2, where the dominant energy

condition is violated, and the expansion rate (H) and the dilaton coupling (eφ) become

imaginary. A curvature singularity is present at both ends of such a region, where the

branches (4.10) and (4.11) respectively end and start.

Nevertheless, the quantum probability of transition between the two branches is non-

vanishing. In fact, the solution of the WDW equation can be factorized as before, with the

difference that eq. (4.13) is replaced by

(

∂2
φ

+ k2 + λ2
sV0e

2φ
)

ψk(φ) = 0. (4.18)

The general solution for ψk can now be written as a linear combination of first and second

kind Hankel functions [21], H(1)
ν (z) and H(2)

ν (z). By assuming for the Universe an initial pre-

big-bang configuration, we impose that in the high-curvature limit z → ∞ there are only

10



right moving waves (φ̇ > 0, Πφ < 0) approaching the singularity. This condition exactly

coincides with the boundary conditions allowing tunnelling through classically forbidden

regions of superspace [22] (which select only outgoing waves at the superspace boundary,

where classical trajectories can end but not begin), and fixes the wave function as

Ψk(φ, β) = NH
(1)
ik (λs

√

V0e
φ ) e−ikβ. (4.19)

Asymptotically, in the low curvature, perturbative regime φ→ −∞, we then have

lim
φ→−∞

Ψk(φ, β) = iN csc(ikπ)



ekπ

(

λs

√
V0

2

)ik
e−ik(β−φ)

Γ(1 + ik)
−
(

λs

√
V0

2

)−ik
e−ik(β+φ)

Γ(1 − ik)



 =

= Ψ
(+)
k + Ψ

(−)
k (4.20)

and the relative amplitude of left and right modes defines the probability

Rk =
|Ψ(−)

k |2

|Ψ(+)
k |2

= e−2πk (4.21)

for transitions from the classical trajectory with β = φ to the duality-related one, β = −φ.

By recalling the definition of k (eq. (4.8)) and of φ,

k =

√
3

λ2
s

∫

d3x
√−ge−φH = const (4.22)

we can eventually express the above transition probability as

R(gs, as) = exp

{

−
√

12π

g2
s

Ω(as)

λ3
s

}

. (4.23)

Here Ω(as) and gs = eφs/2 are, respectively, the values of the proper spatial volume and of

the coupling, at the time t = ts at which H = λ−1
s . For values of the coupling gs ∼ 1 the

probability (4.21) is of order 1 for the formation of “bubbles” of unit proper size (or smaller)

in string units at t = ts.

The above example is not “realistic”, in the sense that it does not describe the formation

of a radiation-dominated or matter-dominated Universe similar to the one we live in today

(we postpone the discussion of a more realistic scenario to a forthcoming paper). Neverthe-

less, it is an example of how the Universe can emerge from the inflationary phase in the right

branch corresponding to decelerated expansion, and it is quite interesting that the probabil-

ity of such a process is peaked in the strong coupling regime, with a typical instanton-like

behaviour R ∼ exp(−g−2).
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We note, finally, that eq. (4.21) is valid for k > 0, namely for the transition between two

expanding branches with sign[H ] = sign[β̇] = sign[k] > 0, and that it implies 0 < Rk < 1

(Rk → 0 for k → ∞, as expected when the effective potential in eq. (4.18) becomes neg-

ligible). If we consider transitions between contracting branches, k < 0, the probability

becomes e2πk so that, in general, Rk = e−2π|k|. The appearance of an always negative argu-

ment in the exponential is a general consequence of applying tunneling boundary conditions

in superspace, as clearly stressed recently also in [23].

5 Conclusion

In string cosmology, a classical description of the background evolution based on the low

energy string effective action is allowed both at early and late times (i.e. at large time scales

in string units), but it is not allowed in the intermediate epoch, when the background is

expected to exit from the inflationary regime. A classical model of transition from the initial

string perturbative vacuum to the present standard cosmological regime conflicts both with

phenomenological constraints and with formal no-go theorems.

In this paper we have shown that such a transition can be studied quantum mechanically,

and can be formulated as a problem of reflection of the Wheeler-De Witt wave function in

superspace. By using tunneling boundary conditions, we find that the transition can occur

(with finite probability) even in the case of background configurations in which it would be

classically forbidden.

This quantum approach to the graceful exit problem is free from ambiguities of operator

ordering, because of the underlying O(d, d) symmetry of the kinetic part of the Hamiltonian.

It thus seems to provide an appropriate tool for a systematic classification of the initial

conditions, irrespective of the (unknown) kinematic details of the high curvature, strong

coupling, transition regime.

Various problems, in this approach, are still to be solved, such as the physical interpre-

tation of the wave function and the univocal choice of an appropriate time parameter (these

problems affect in general the WDW approach to quantum cosmology, not only our scenario).

We believe, however, that the result presented in this paper may improve our understanding

12



of the birth and of the evolution of the Universe in terms of the basic principles of string

theory.
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