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ABSTRACT

The BRS quantization of the closed bosonic
string in d compact and (D-d) non—compact
dimensions is shown to require D = 26 and to
restrict the form of allowed compactifica-
tions. Suitable canonical transformations in
the phase space path integral generate the
Ward identities of Eg (d = 8) and of Eg X Eg
or Spin(32)/Z, (d = 16).
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t. One of the most striking resuits obtained during the dormant
decade {'74-'84) of dual-string theoryl1] has been the discovery [2] of huge
internal symmetry groups resuiting from compactification of a number d
{out of the total D) of string coordinates on particular tori.

This  development is a crucial ingredient of new anomaly free
superstrings {3], which offer better phenomenological prospectsid] than the
one originelly proposed by Green and Schwarz [5].

in the case of closed strings the groups thus generated correspond to
unbroken local symmetries of the theory and manifest themselves, in
perticular, through the presence of massless vector-bosons in the adjoint
representation of a gauge group 6.

while the emergence of a (1) gauge group is expected on the ground
of standard Kaluzo-Klein-type considerations ,if the uncompactified
theory is inveriant under general coordinate transformations (GCT), the
completion of U(1)d to a much targer group of rank dior 2d) is still highiy
mysterious.

Recently, one of us {6] has proposed a simple method for deriving the
Ward identities (wi) of GCT (and possibly more) from suiteble canonical
transformations in a (first quantized) phase-space path integral
formulation of the theory.

in this note we shall extend that approach to the above mentioned

gauge symmetries showing that, under particular conditions, EB'

Spin(32)/Z, and EgxEg WI's are indeed genersted and give the vertex

operators of the corresponding massless gauge bosons.
we shall only deal here with purely bosonic closed strings in D=26. A
crucial ingredient of the construction is that left and right moving compact

coordinates Xl'.("r—cr) and X‘g{(ﬂc){l,dzl...d) are to be treated as completely



independent. ‘We thus foilow the fremework of the heterotic string [3]
except for the fact that we do  not replace right movers by
fermionic-string coordinates (generalization to the heterotic case looks

however straightforward).

The allowed eigenvalues of p (pp) in X| (Xp) will play both the roie of

ordinary momenta and thset of winding numbers. This, plus self-consistent
interactions, forces [3] the allowed momenta to lie in an even, self dual
Euclideen lattice, which exists only if d=8n . Surprisingly, if we don't fix d
8 priori and proceed to a BRS quantization [7,8], we find a similar
constraint on d ,if we require integer Regge intercepts (massless states).
The peth integral over X involves arbitrery functions of o,7. It is only
the classical solutions which obey the second-order wave equation X=X

Similarly, in the case of independent left and right moving compact

coordinates, we should have the constraints iR L:«:k{;z L Only as classical

equations. This suggests the usefulness of a formulstion [3] involving
fermionic coordinates which obey the two-dimensional Dirac-equation.
Fortunately,this formuiation is also the one best suited for generalizing
the approach of ref [6].

2. BRS formulstion with fermicnic compactified coordinates

The fermionic coordinates needed in order to describe the compact
bosonic coordinates X', %! (I,J=1..d) are a set of two dimensional Majorana
spinors llJi(G,T) (i=1.2d, two-dimensionsl Dirac index understood). An

invariant action cen be written easily [9,3] as (o'= 1/2):
z M Vg RV S, v
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vhere p, v = 0,1..25-d; i=1..2d; a.§ = 0,1 and a,b,\, v indices are raised

and lowered by the flat Minkowski metric with n,="1 Furthermore



G(0.T), e=det el = vG, ¢*P - eaB and y2 are two dimensionai
y-matrices with (y "2z ~(y9)2- yiz by 'y92 - 1 and T =UTy° . We have
also rescaled X, s to get rid of a trivial factor 1/7 in S. Note that the

two components 2l|1!_1 R={1xys) dji decouple from each other.

S is invariant under oa' reparametrizations since the additional spin

connection term needed to transform /—DC{ into Dcx vanishes [9] between

Majorana fermions. It is also invariant [9] under conformal (Weyl)
transformstions e:-—pl:e;‘ with %X, | /T
In order to perform correctly a cancnical quantization we need to find
the first-class constraints of the system. Defining as usual canonical
momenta Piz == 3"@ , we find the algehrmc constraints
a qou
(2)03, =0 ZPu:ﬂT—*-"e(// é/ b
«{ =
and also, upon use of J,S‘/Jg = o,

[_+=_-_* 2’:( ‘f‘X/M_)-I— //R ,%L:O

L=t (B-xL)=T 9 ¢4 -

L,, L_ obey the usual Poisson bracket algebra

(4) {Lt (U‘)/ L+ (o*’)j =t (/_._,,{0‘) -+ Li/o"ﬂ 90. A? -O'D
hence constitute first-ciass constraints. Finally, the canonica)
Hamiltonian H, vanishes.

Since iocal symmetries of the theory are also imposed at the

quantum level {see below) we can choose the orthonormal gauge e‘Iﬁ = 8‘16

in which the action becomes

(5) S:égcﬁ' [)'(7:_ X150 ( ({{_i a‘(ﬁi%;a %d)]



showing thet lefi {right) hended fermions describe left {right) movers
(Diz Do * 9! )

Using the general procedure of Fradkin and VYilkovisky [10] as in ref
[6], quentization requires anti-commuting ghost coordinates nfwith

conjugate mumentucl/?uut of which the BRS charge can be written as

@ QL R Ty ar)

and the total Hamiltonian density is given by

7) H¢ ) {9?5/ @f?

where ¢ is a gauge fixing function.

in the orthonormal gauge the non ghost part of the action should
reduce to (5) which 1s what happens 1T we take ¢ = (CJD+ C/-) ). we thus
-+ -
obtain :

H = % (Pi X’z) F 77;'-9, %c.— 77:'9, 96_‘.1“
* Cj?/af IZ+” CJ?Q/ ?——

Furthermore we have to impose the constraints (2) giving
¢ L 7L
(g) TYZIR - .—2- (6—112
In conclusion, the phase-space functional integrat in the orthonormal

oo, o AT 0 AP,
3(1—(:-,;' Ft qi,fm) QK*’G‘/‘?‘; (PX'F”Z L/f, ""‘77,; (/é +7?%"+C/?‘Z'l H+four(e9)

whose non ghost part reduces to eq.(d) after integration over P, I (in the

(8}

ahsence of sources} .

Notice that we are in phase-space for the non-compact coordinates

but, after integrating out I, o ;we appear to be in coordinate space for the



compact coordinates. This is however misieading: we shouid think of the Llﬂ
{i=1.. 2d } as replacing the phase-space original coordinates x',P’ (I=1.d)
{both in the teft and in the right moving sectors). This is quite obvious if
one looks at the details of the fermionization procedure (see also eq.(23)
betow). Eq. (10} is the starting point of our derivation of the Wl's.

Before turning to that, let us discuss an amusing aspect bf the BRS
quantizaiion of the system. We use canonical (antijcommutators for {n,?)
X, P while for { we use {in order to take (9) into account) the modified

anticommutater following from the Dirac brackets:
(an : ‘ R,
{L{/ (0-) ({/J(G;)g = 5 J(O'— o) . Sametor LR
S 1 ’

We also recall [2,11] that the yY-fields can be either of the
Neveu-Schwarz {antiperiodic) or of the Ramond (periodic) type according to

the lattice of momenta they operate on. Defining the quantum BRS charge

asl[B] +T
N + - + 1
B B QPR ek e
“r

a straightforward calculation similar to that of ref. (8) yields:
(13)

282 )5 20)Plape2e R dy) an 7?@((%7#45{’1,7.;@

where 2d§(2d§) is the number of pericdic (antiperiodic) IJJE p fields

({h_Ff +df"=d). Since 02 must be O for conformal invariance [7,8] we get
(14)

'P
D=26 /’[%r=l-"l§0lxt

[3+ are related to the spectrum by the mass shell conditions:



o) + +
{15) (L(t‘(%y_>z-él"lz+ /\/E> —.»/\4_. ﬁ/At =0

where Ng ¢ are {(integer) occupation numbers for the besonic (noncompact)

and fermionic (compact) oscillaetors. integer intercepts (massiess states)
are only obtained for cf_t = 8n ,a condition naturally satisfied if d=8n,
which is just the constraint thet follows from the need of an even

self-dual latticel

3. Ward identities for internal Gauge symmetries
Following ref [6] it is obvious how to obtain the Wi's corresponding to
GCT of the 26-8n non compactified coordinates. It is enough fo start from

the canonical change of veriables induced by the generating function:

(16) @GCT _ E fﬂ(X) /./,(:0,/,....(25_8@

The geuge ¥I's we are interested in follow from a similar canonical
transfurmatmn generated this time bg - »
(17) @ = YO EV)  §E-T g b2 tn
and mmﬂarlg for the r1ght movers. The associated change of variables is

a8 g XM - L{"'-_-_-o |
IS ey St 2 4 )

A straightforward calculation then gives
(19)

S ((premi) = [ 4o (Px 18 ¢

Taking as in ref [6] Or o :
ges ng: e’ oplek X ) ; Ko

one gets the Wi in the form (here {2 is ahy operator }

0 gl <JA7& Pk e 0= < de 2>



This is the desired Wi where the vertex for the gauge besons 6']
(21) 2 / o0 :
fola" (/E f)gk) ¢ oxp( ke X(e)) 5 k&0

has appeared on the left-hend side. The right-hand side of (20) vanishes
if we toke S-matrix elements [6].
Let us now discuss in some detail the structure of the gauge group.

Apparently we have just generated the Wi's of a S0{16n) group {times an

anatogous one from right movers). The fermionic operators 11;['_' transform

as the fundamental ( vector) respresentation of such group :they are known

to be related to the original fields X', PLl by the "fermionization” [2]
(22) :, eI "e; . QI -2:
q/ =z (BL"'BL. JHL(BL‘-BI—)

%‘ier: 2 e fies X.): ; z= 2% (i @a))
( SCW\CQ&:‘% -Fc,(- %L)

where e=(0,0.,1,.,0) are an orthonormal Cartesian basis in d=6n

dimensions. The fosatisf yl2,t1l
(23 Bf_’ B™: = Rf=ca gk X
Comparing eqs{16), (17) and (23) we see the perfact analogy between the
U(1)8" (Cartan) subgroup of 50{16n) and that of GCT. This is just the usual
Kaluza-Klein mechanism expected upon compactification. We see however
that a Targer symmetry taking advantage of the full dimensionality (16n)
of phase space has appeared.

In fact this is not yet the end of the story. Let us consider separately
the two cases n=1 and n=2.

n=1. Here d=8 and the gauge group obtained so far is SO(16}. Its roots



are ¢ gize; (1,J=1.8). The lattice generated by these roots is even but not

self-dual. it begumes self-dual if we add to it the points [2,3]
i

(24) s 2 ter  (even#tof -'s)

T=!
which, together with the previous ones, represent the root tattice of Es.

Can we get the extra Wi's of Eg? At first sight this looks hard end
indeed, as the authors of ref. [11] have shown, there is no algebraic
construction of the extra operators in terms of the -fields. On the other
hand, if we just want to derive the extra WI's, we cen just observe that
the Eg root lattice is left inverient by a finite group of discrete
S0{4)x50(4) rotations in root space (not to be confused with SO{16)

rotetions!), which transform the vector weights = +e; into the {first or

second kind) spinor weights [11]
(25) 4 | ¢,+ ( ’F
Caslsve) ,  g=i(dre), , fantrlos a)
kB oé '# A I of -'s
at—'g =

This is nothing but the well known triality of S0(8) [12] . The extra
missing Wl's are obtained precisely as before but fermionizing the theory

after having performed such discrete rotations in the compactified space.
This gives two more SO{16) subgroups of Eg sharing with each other and

with the original S0(16) a common SO(B)xSO(B) for a total of
3x120~-2x(28+28)=248 generators which exhaust Eg.

Another way of arriving at the same conclusion is by computing the
lovest states of the theory keeping an even number of periodic or

antiperiodic {§; and \p osciilators.

Antiperiodic {; ,}p give through egs. {14,15) B+ =1, hence a singlet
tachyen (M2=-8). At M=0 onme finds an SO{17,1) graviton, a
[(l?O,l)*‘(l,!ZO)lsmm and a (120,120)Sp,-n p 01 SO{16); xS0(16). Adding



periodic | ,lip and mixed periodicity stetes, and using again eqs {14,15)

one gets the extra massiess states

[(128,1)+(1,128)]g554 ¢ + [(120,128)+(128,120)+(126,128)lgpip ¢
Altogether these states combine to give:
(1,1)“1, + [(248,!)%1,246)]“ +(248,248) of EgxEg
where the y. v indices refer to S0(17,1) Lorentz transformations.

n=2 -. In this case we haye two distinct possibilities. in the first
(EgxEg gauge group) one applies the above procedure twice and
independently to two eight- dimensional spaces.

There is however 8 second even self-dual lattice in d=16, obtained by
combining the roots of 50(32)
(26) Y E,t€5
with the pnints{ Gof length 4
27 "*7!_ Zfér /&/f_w # o{ ,_!J)
The latter are the weights of a spinor representation of S0(32) which

together with those in (26) lead to the weight lattice of Spin(32)/Z, .
Using antiperiodic Y ,yp e get again a singiet tachyon, a massless
graviton and gauge bosons in the adjoint representation of SO(32) x
S0(32)p. For periadic yy ,using (14) ,one gets B=-1. Consequently we do not
produce further massless states but only @ massive multiplet (M2=8)
belonging to a spinor representation of S0{32) (and to nontrivial

representations of S0(32)p).

In conclusion, we have shown that the canonical Hamiltonian
formulation of the compactified bosonic string, together with the

approach of ref [6], leads to a simple derivation of the gauge Ward



10

identities of these theories. This could be important in erder to understand
the possibie connection between bosonic, super or heterotic strings
recently discussed by many authors [13). As already emphasized in [6], the
question still remains of possible new terms (anomalies) affecting the
naive canonical change of variables at the quantum level. Such terms were
found to occur [14] in general beyond one loop in simpler theories . A

similer analysis in string theories moy turn out to be very rewarding.

¥e are grateful te S. Fubini for illuminating discussions on S0{B)
triality end octonions and for bringing Ref[14] to our attention. We also

thank A. Jevicki for a useful conversation and A. Schwimmer for

discussions and useful correspandence on the fermionic construction of EB-
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