
ar
X

iv
:h

ep
-t

h/
92

06
01

7v
1 

 2
 J

un
 1

99
2

IP/BBSR/92-38

May, 92

SYMMETRIES OF STRING EFFECTIVE ACTION

AND SPACE-TIME GEOMETRY

S. Pratik Khastgir⋆

Institute of Physics, Bhubaneswar-751005, INDIA

and

Jnanadeva Maharana†

California Institute of Technology, Pasadena, CA 91125

Abstract

Two dimensional charged black hole solution is obtained by implementing an O(2, 2)

transformation on the three dimensional black string solution. Two different monopole

backgrounds in five dimensions are related through an O(2, 2) transformation. It has been

shown in these examples that the particular O(2, 2) transformation corresponds to duality

transformation.
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I. Introduction

The string theory offers the prospect of unifying all the four fundamental forces of

nature. In the first quantized framework, one considers the evolution of the string in

the background of its massless modes. This approach has proved to be quite powerful in

undrstanding various aspects of the string theory. The requirement of conformal invarience

of string theory imposes stringient constraints on the configurations of the background

fields. In other words, if we require the beta-functions associated with these backgrounds

to vanish, then we arrive at differential equations known as the equations motion for the

background fields. It can be argued that so long as we are interested in the low energy

effects of the string theory, it suffices to take into account the effects of the massless modes

of the string. We can construct the tree level string effective action involving only the

massless excitations in such a way that the equations of motion derived from the effective

action exactly correspond to the requirements of the vanishing of the beta-functions [1] as

discussed above.

Recently, there has been an extensive study of the properties of the string effective

action in order to explore the consequences of string theory in cosmology [2] as well as to

investigate properties of black holes [3]. Other interesting types of space-time structures like

strings and branes [4,5] have also emerged in this investigation. The monopole and dyon

[6,7] solutions were also obtained in this context. Furthermore many of these solutions can

be shown to correspond to exact conformal field theory [5,8,9]. In this context, a rich sym-

metry structure of the string effective action has been unravelled. Indeed, these symmetry

properties have played an important role in discovering new vacuum configurations of the

string theory ( in general they correspond to inequivalent string vacua ). These vacuum

configurations are identified as different spacetime geometries.

We may recall that target space duality is a very important symmetry property of the

string theory. A familiar example is the R duality [10]: when we consider a compactified

string on a circle of radius R, the spectrum of this string remains invariant under the
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transformation R → λ2
s/R (λ2

s = 2α′h̄). The consequences of duality are far reaching than

that meets the eye and have been explored in several directions. It has led to introduction

of a minimum compactification scale. The idea of duality has been employed to restrict the

form of scalar (or super) potentials and to study nonperturbative supersymmetry breaking.

Furthermore, the consequences of duality in cosmology [11] have turned out to be quite

interesting and imoprtant.

Another important symmetry property of the string efective action has been discov-

ered by Meissner and Veneziano [12] when the massless backgrounds are only allowed to

depend on time. It was shown that that the effective action is invaraint under global O(d, d)

transformations where d is the spatial dimension and spacetime dimension, D = d+1. Sub-

sequently, it was shown that one can generate new cosmological solutions [13] from a given

solution. In particular, it was demonstrated that it was possible to generate spacetime with

nontrivial geometries by implementing O(d, d) transformations on an initial background

with trivial (flat geometries [13]). Furthermore, a large class of black hole solutions have

been generated through suitable choice of O(d, d) transformations [14].

The purpose of this article is to explore further the consequences of the O(d, d) trans-

formations in string theory. We demonstrate that given a background space-time geometry

which satisfies vanishing beta-function constraints, it is possible to generate a new class of

background configurations through O(d, d) transformations. It is shown that a two dimen-

sional charged black hole solution [9] can be obtained by implementing a suitable O(d, d)

transformation on the three dimensional black string solution of Horne-Horowitz [5]. Fur-

thermore, we explicitly demostrate that starting from a generalized Kaluza-Klein monopole

solution obtained by Sorkin and Gross and Perry [6] and studied by Banks et al. [15], in

the context of string theory, another solution of Ref. [15] can be generated by an appropi-

ate O(d, d) transformation. Moreover, we are able to provide an interpretation of these

transformations from the duality point of view discussed in Refs. [16,17].

The paper is organized as follows: In section II we recall some of the important results
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of Meissner and Veneziano in the context of O(d, d) symmetries of string effective action

and discuss how to generate new solution. Then we describe briefly isometries of target

space backgruond fields and their relation to duality transformations. Section III deals

with the specific string theoretic models we are interested in and the configurations of

the background fields. We introduce explicit O(d, d) transformations and obtain the new

background field configurations. The sigma model interpretation of the newly generated

backgrounds is discussed. Next, we elucidate on the relations of our work with the results

of Ref [16,17]. The summary and conclusions are given in Sec IV.

II. The symmetries of string effective action

In this section we shall try to summarize some of the important results obtained by

Veneziano, Meissner, and Sen [12,14]. We shall also discuss the duality transformations

briefly [16,17] at the end.

We consider a closed bosonic string in the background of its massless modes such as

graviton, dilaton and antisymmetric tensor fields. The equations of motion of the tree level

string effective action given below corresponds to the requirement of the vanishing of the

beta-functions associated with these background fields.

S = −
∫

dDx
√
−detGe−φ

[

R+Gµν∂µφ∂νφ+
1

12
HµνρH

µνρ − V
]

(1)

where V is the cosmological term proportional to D − 26 (proportional to D − 10 for

superstring), φ is the dilaton field, Gµν is the D-dimensional metric and Hµνρ is the field

strength for the antisymmetric tensor field Bµν :

Hµνρ = ∂µBνρ + cyclic. (2)

If the backgrounds G, B, and φ are functions of only one coordinate (say time t), then

the metric G and the antisymmetric tensor B can be written in the following form imple-

menting the general coordinate transformations and the Abelian gauge transformations on

4



G and B respectively.

G =

(

−1 0
0 G(t)

)

, B =

(

0 0
0 B(t)

)

, (3)

where G(t) and B(t) are d× d matrices with d = D − 1. Then the reduced action obtained

from eqn. (1) can be written in a manifestly O(d, d) invariant form obtained by Meissner

and Veneziano [12].

S =

∫

dte−Φ[V + Φ̇2 +
1

8
Tr(ṀηṀη)], (4)

with

Φ = φ− ln
√
detG, (5)

M ≡
(

G−1 −G−1B
BG−1 G − BG−1B

)

, (6)

and

η =

(

0 I
I 0

)

. (7)

In last expression I stands for d-dimensional unit matrix.

The action (4) is manifestly invariant under the global O(d, d) group [12] acting as,

Φ → Φ, M → ΩMΩT . (8)

Here Ω is an O(d, d) matrix satisfying

ΩηΩT = η. (9)

This O(d, d) transformations relate different string vacua (geometries) which are not

equivalent in general. Recently, Sen [14] has shown in the frame work of string field theory

that the space of solutions has O(d) × O(d) symmetry, which is a subgroup of O(d, d).

Moreover, it is argued that the diagonal subgroup O(d) of O(d) × O(d) generates only

spatial rotations. Thus, the coset is equivalent to (O(d)×O(d))/O(d) and has dimensionality
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d(d− 1)/2 in contrast to the time independent case where the dimensionality is d2. It was

shown [14] that O(d) × O(d) symmetry persists to all orders in string tesion α
′

. Recently,

several interesting solutions (both cosmological [13] and black hole type [14]) were generated

from known backgrounds exploiting this symmetry.

Next we briefly describe the isometry and duality [16,17]. Starting with graviton (gµν),

antisymmetric field tensor (Bµν), and dilaton (φ) background, which has a translational

symmetry (isometry) in x, one can generate a dual background given by [16],

g̃xx =
1

gxx

, g̃ax =
Bax

gxx

, g̃ab = gab −
gaxgxb +BaxBxb

gxx

B̃ax =
gax

gxx

, B̃ab = Bab −
gaxBxb +Baxgxb

gxx

, φ̃ = φ− ln gxx, (10)

where a and b run over all directions except x. The original background and its dual satisfy

the same equations of motion. This duality of low energy field equations exists whether

or not x is compact. Recently it has been shown [17] that if x is compact, the original

solution and dual are both low-energy approximation to the same conformal field theory.

This completes our recapitulation.

III. Applications of O(d, d) transformation

In this section we present two explicit examples where O(d, d) transformations are

implemented and dual solutions are generated. The first example is in three dimensions

and the other is in five dimensions. The similarities of these two examples will be distinct

when we describe the examples.

Our starting point is a classical solution which was first obtained by Horne and Horowitz

[5] as an exact conformal field theory. This result was obtained by gauging a one dimensional

subgroup of G = SL(2, R) × R. In this consruction, which is a generalisation of Witten’s

[8] construction, a free boson x is added to the theory. The action is,

S =
1

π

∫

Σ

d2σ
[ k′∂+r∂−r

8r2(1 − M
r

)(1 − Q2

Mr
)
− (1 − M

r
)∂+t∂−t
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+(1 − Q2

Mr
)∂+x∂−x+

Q

M
(1 − M

r
)(∂+x∂−t− ∂−x∂+t)

]

(11)

The space-time metric has the form,

ds2 = −(1 − M

r
)dt2 + (1 − Q2

Mr
)dx2 + (1 − M

r
)−1(1 − Q2

Mr
)−1 k

′dr2

8r2
(12)

whereas the antisymmetric tensor field and the dilaton are given by,

Btx =
Q

M
(1 − M

r
), φ = − ln r − 1

2
ln
k′

2
, (13)

Q and M are the axionic charge and mass per unit length of the black string. The k′ is the

WZW level. The central charge of the theory is 3k′

k′−2 . The equations of motion of the low

energy string effective action,

S =

∫

d3x
√
detGe−φ

[

R +Gµν∂µφ∂νφ− 1

12
H2 +

8

k′
]

. (14)

are the conditions for vanishing of β-functions. Here 8
k′

plays the role of cosmological

constant.

We observe that the backgrounds are independent of two coordinates x and t. Thus one

can perform an O(2, 2) transformation to generate a new solution and we take Ω ≡ O(2, 2)

(which is also an element of O(2) ×O(2)) as [14],

Ω =
1

2

(

S +R R− S
R − S S +R

)

. (15)

Note that O(2) ×O(2) is a subgroup of O(2, 2) and S and R are O(2) matrices given by,

S =

(

1 0
0 −1

)

, R =

(

1 0
0 1

)

. (16)

We first identify the x− t block of the metric and antisymmetric tensor,

G =

(

−(1 − M
r

) 0

0 (1 − Q2

Mr
)

)

, B =

(

0 Q
M

(1 − M
r

)

− Q
M

(1 − M
r

) 0

)

. (17)
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Now performing the O(2, 2) transformation on this block of metric and antisymmetric ten-

sor, we obtain new M ′ = ΩTMΩ , M defined earlier by eqn. (6). The new backgrounds G′

and B′ as,

G′ =

(

−(1 − M
r

) + Q2

M2 (1 − M
r

)2(1 − Q2

Mr
)−1 Q

M
(1 − M

r
)(1 − Q2

Mr
)−1

Q
M

(1 − M
r

)(1 − Q2

Mr
)−1 (1 − Q2

Mr
)−1

)

, B′ = 0. (18)

The metric in three dimensions takes the form,

ds2 =
[

− (1 − M

r
) +

Q2

M2
(1 − M

r
)2(1 − Q2

Mr
)−1
]

dt2 +
2Q

M
(1 − M

r
)(1 − Q2

Mr
)−1dtdx

+(1 − Q2

Mr
)−1dx2 + (1 − M

r
)−1(1 − Q2

Mr
)−1 k

′dr2

8r2
, (19)

and the new dilaton is given by (recall Φ = φ− ln
√
detG, expression (8), remains invariant

under this transformation),

φ′ = φ− 1

2
ln
detG
detG′

= − ln r(1 − Q2

Mr
) − 1

2
ln
k′

2
. (20)

If we make the coordinate transformation

r → Q2

M
+M(1 − Q2

M2
) cosh2 r, (21)

with

Q

M
= e,

1

2
(1 − Q2

M2
) =

k′

4
, (22)

the metric elements will reduce to,

gxx =
r

r − Q2

M

→
Q2

M
+M(1 − Q2

M2 ) cosh2 r

M(1 − Q2

M2 ) cosh2 r
= 1 +

2e2

k′
1

cosh2 r
(23a)

gxt =
Q

M

(r −M)

(r − Q2

M
)
→ Q

M

M(1 − Q2

M2 )(cosh2 r − 1)

M(1 − Q2

M2 ) cosh2 r
= e tanh2 r (23b)
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grr → k′

2
, etc.. (23c)

The metric in three dimensions and the dilaton read,

ds2 =
k′

2
dr2 − k′

2
tanh2 rdt2 + 2e tanh2 rdxdt+ (1 +

2e2

k′
1

cosh2 r
)dx2 (24a)

and

φ = − ln cosh2 r + const. (24b)

If we take x as a compact direction this is exactly the 2-dimensional charged black hole

solution obtained originally by Ishibashi, Lie and Steif [9] by gauging a subgroup U(1) of

SU(2) × Ui(1), where i denotes the internal direction. The 2-dimensional metric is,

ds2 = 2kdr2 − 2k tanh2 rdt2 (25a)

and the gauge field,

Ar = 0, At = tanh2 r. (25b)

There are two scalar backgrounds such as dilaton and the “Higgs” field given by,

φ = − ln cosh2 r + const., ψ = (1 +
e2

2k

1

cosh2 r
). (25c)

We mention in passing that the parameter k′, appearing in the WZW action given by

eqn. (11) is related to the parameter of Ishibashi etal. as k′ = 4k. As a consequence the

cosmological constant is 8
k′

in eqn. (14) whereas it is 2
k

in the action of Ref. [9]. The

relation between the three dimensional black string solution and the charged black hole

solution can be envisaged from the point of view of duality transformations. Since the

backgrounds are independent of the coordinate x, there is x translation symmetry. Thus

one can apply the duality transformations on (12,13) and get (19,20). The equivalence

between momentum and axionic charge was discussed in Ref. [18] by using the arguments

of duality transformation. In (21) if one does not assume x to be compact one can think

the gxt term in eqn. (24a) as momentum along x direction. The O(2, 2) transformation
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we have used in this case is equivalent to duality transformation (10). Although we can

arrive at solution (25) from solution (12) through an O(d, d) or duality trnsformation but

the underlying conformal field theories in two cases are very different because in eqn. (12)

x is non-compact whereas in eqn. (24) the x direction was taken to be compact to arrive at

solution (25) (Ref. [17]).The space-time geometry and other properties of these solutions

are extensively discussed in Refs. [5,9].

Now we consider the construction of monopole background in the string effective action

discussed by Banks etal. [15]. The string effective action is a generalisation of the Kaluza-

Klein theory considered by Sorkin, Gross and Perry [6]. The string effective action could

arise from the following scenario for a closed string. We can have a configuration as envisaged

by Gaspirini, Maharana and Veneziano [13], that 21 space dimensions of the bosonic string

are flat and of the remaining five dimensions, one corresponding to x22, is compactified with

radius R0. The five dimension theory (before compactification) is endowed with graviton,

antisymmetric tensor field and a dilaton satisfying the equations of motion required to

satisfy conformal invarance. When the coordinate x22 is compactified the massless spectrum

consists of a spacetime graviton (gµν), antisymmetric field (bµν), and two gauge fields Aµ

and Bµ coming from five dimensional metric and antisymmetric tensor field. Moreover,

there are two scalar fields Φ and g55 = R. The equations of motion for the background

fields are derived from the action,

S =

∫

d5x
√
detGe−φ

[

R(5) +Gµν∂µφ∂νφ− 1

12
H2
]

, (26)

where R(5) is the five dimensional scalar curvature. The indices should run over five di-

mensions. The specific background fields which are cosistent with the vanishing β-function

conditions are given by

ds2 = −dt2 +R2(dx5 + Aφdφ)2 +
1

R2
(dr2 + r2dΩ2), (27)

where Aφ = R0 sin2( θ
2 ) and R2 = (1 + R0

2r
)−1. The dilaton Φ = Φ0 = const., and the
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antisymmetric tensor field B = 0. The direction x5 is compact. So Aφ here is like a gauge

field. This solution was obtained by solving RMN = 0, where M and N run over all the

five coordinates, so in five dimension it is a Ricci flat solution. One can verify that this

field configuration satisfies the equations of motion following from the effective action (26).

The above metric is independent of three coordinates: t, x, and φ. So one has the O(3, 3)

symmetry. O(3, 3) rotation can be performed on t − φ − x5 block and new solution can

be generated. Again we use the same Ω (defined earlier in (15)). The O(2) × O(2) is a

subgroup of O(3, 3). We want to perform this transformation on the φ−x5 block of metric.

The φ− x5 block of the metric (27) reads,

G =

(

r2 sin2 θR−2 + A2
φR

2 AφR
2

AφR
2 R2

)

, B = 0. (28)

After the action of Ω on this the new generated metric and antisymetric field tensor

are

G′ =

(

r2 sin2 θR−2 0
0 R−2

)

, B′ =

(

0 Aφ

−Aφ 0

)

, (29a)

and new dilaton is,

Φ = Φ0 + ln(
1

R2
). (29b)

So the full metric and torsion field can be written as,

ds2 = −dt2 +
1

R2
dx52

+
1

R2
(dr2 + r2dΩ2), Bφ5 = Aφ (30)

with R2 = (1 + R0

2r
)−1. This is exactly the dual solution obtained by Banks etal. [15]

using the symmetry properties of the effective action. It is interesting to note that this

solution has non trivial antisymmetric field tensor component as well as non trivial dilaton,

whereas in the original solution both this fields were trivial. This solution is similar to

the original solution of first example. We observe that in both the cases the particular

Ω(O(2) × O(2)) interchanges gauge fields and antisymmetric field tensor. Again solution
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(30) can be obtained from the Sorkin, Gross and Perry solution (27) using the duality

transformations (10). For this one uses the translation symmetry of x5 and assumes x ≡ x5

in (10). The dual solution is also a monopole solution and this time it is magnetic. Its

properties etc are discussed in [15].

IV. Summary and Conclusions

The O(d, d) transformations transform a given string background geometry to another

(in general inequivalent) geometry. Here we have presented two examples where appropi-

ate O(d, d) transformation corresponds to duality transformation eqn. (10). The O(2, 2)

transformations employed by us interchange the gauge field and the antisymmetric tensor

field in both the cases. In the first example we show that the axionic charge (in a given

background configuration) can be transformed in another background with electric charge

in a lower dimension.We are also able to relate two different backgrounds (12) and (25),

which were obtained very differently, via O(2, 2) (equivalently duality) transformation.
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