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Abstract

The holographic ratio in Pre-big bang string cosmology is obtained in the
presence string sources. An iterative procedure is adopted to solve the equa-
tions of motion and derive the ratio in four dimensional world. First the
zeroth order ratio is computed in the remote past, i.e. at ¢ = —oo, then the
holographic ratio is obtained taking into account the evolution of the back-
grounds following the iterative procedure. The corrections to the zeroth order
value of the ratio depends on the form of the initial number distribution of
the strings chosen. Moreover, we estimate the holographic ratio in the recent
past (i.e. when v = —21) and in the remote past (i.e. when v = 0), v = g,
in different dimensions in the Einstein frame and in the string frame. We
find that in the first case it has similar time dependences in both the frames,
especially in four dimensions the ratio is explicitly computed to be the same

in the two cases, whereas for v = 0 case the time dependence is different.
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I. INTRODUCTION

Recently, holographic principle [[[] has attracted a lot of attention in the context of
black-hole physics, AdS/CFT correspondence [f] and cosmology. It has been recognised
that theories with gravity are endowed with features different from those in the flat space.
This could be realised from the fact that entropy of a black hole is proportional to the area
of its horizon according to Bekenstein-Hawking formula. The holography proposal states
that information for such theories reside on the boundary of the spatial volume with one bit
of information per unit Planck area. Thus, if S is the total entropy of the system enclosed
in volume V' and A is the area of the boundary, the holographic bound is given by % <1
in suitable units. This bound is saturated for a black hole. Indeed, for special class of black
holes, in the string theory framework, the entropy can be computed microscopically also,
hence the saturation of the holographic ratio for this class can be checked from an underlying
microscopic theory.

The principle of holography has been examined in the cosmological context by Fischler
and Susskind [[J]. Bekenstein has examined the consequences of the boundedness of % in
the cosmological scenario [ almost a decade ago. He suggested that the boundedness of
the entropy could be utilised as a constraint to circumvent cosmological singularities. Sub-
sequently, there has been considerable interest to study various properties of holography in
cosmological situation [B-f]. It is worthwhile to mention that there have been interesting
developments to bound the entropy and invoke thermodynamical considerations in the cos-
mological context. Recently, a Hubble entropy bound was envisaged [[[0,§] and cosmological
singularties from the string theory view point were analysed [[T]. Therefore the holography
principle and generalised second law of thermodynamics in cosmological scenario could be
used as additional constraints on cosmological models. Thus, these features have stimu-
lated study of string cosmology from a new perspective. In another development, adopting
holography as an additional principle, a holographic covariant description of cosmology was
proposed and is being pursued actively [[J].

The present investigation is a sequel to our previous efforts [[] to study consequences

of holography in the Pre-big bang (PBB) cosmology. Since string theory describes gravity



in a natural manner it is desired that the theory will be able to resolve issues pertaining
to physics of black-holes as well as the evolution of the Universe. In the PBB scenario
[[4] inflation is recognised to be due to stringy mechanism which has no analogue in the
Einstein gravity. It is well known that decelerating, expanding (FRW) type solution in
t > 0 region can be related to an accelerating and expanding solution for negative ¢ through
scale-factor duality(SFD) and time inversion. Thus, the accelerating power law expansion is
driven by the kinetic energy term of the dilaton towards singularity whereas the decelerating,
expanding (FRW) type solution for ¢ > 0 has singularity in the past. This is the scenario in
the so called string frame metric. It is proposed that a cold, flat, weakly coupled Universe
proceeds towards a hot, curved and strongly coupled phase and then it goes through graceful
exit to the FRW-like phase.

In the weak coupling approximation, the tree level string effective action, in cosmological
scenario, can be used to describe the evolution of scale-factor, dilaton and other matter fields.
However, as one approaches the high curvature, strong coupling regime, this approximation
is unlikely to hold. Therefore, when one approaches t — 0_, it is necessary to account for
the higher order correction in o’ as well as higher genus correction.

There have been attempts to study cosmological evolution of graviton and dilaton in the
presence of classical stringy matter source by several authors. For an early account in the
context of PBB scenario we refer the reader to ref. [[[J]. In the string theory, this stringy
matter source is taken care of by a phenomenological source term in the string effective
action. The dynamical equation of such extended objects have interesting features in the
presence of time-dependent metric, especially if there is a horizon. When these objects are
well within the horizon, the ratio of pressure and the energy density denoted as ~ is zero
and the evolution equation is described by the motion of the center of mass of the string
and the oscillatory terms. On the other hand, if a string crosses the horizon its dynamical
degrees of freedom gets frozen, it increases in size linearly with time and triggers Jean’s like
instability [[§. Then it is termed unstable string. When all the strings exceed the size of
the horizon in the (1 + d)-dimension, v becomes —é. Here, in this paper we will be studying
the effect of such stringy sources on the holographic properties in the cosmological context.

We shall confine our attention on the PBB scenario, particularly in the PBB phase. We will



see that the effects of this stringy matter sources are felt reasonably only for negative time
far away from the singularity.

The organisation of the paper is as follows:

In the section II, we review in detail the isotropic, homogeneous solutions for v = 0 and
v = —%. 7 is zero in the far past (i.e. at t = —o0) and the second case occurs in the recent
past i.e. in the vicinity of —¢. (see Fig.1).

Then in the section III, we discuss about the models of initial distribution of string sources,
consider the relevent iteration procedure to obtain background field configurations from the
zeroth order solutions and derive the form of the the holographic ratio that we will be using
in the later sections. Subsequently, we use this form to estimate the holographic ratio in the
zeroth order and discuss the features associated with finite value of the ratio.

In the next section IV, we compute the corrections to the holographic ratio for the power
law and exponential distributions and study their properties for the two cases.

In the section V, we estimate the holographic ratio when all the strings cross the horizon in
both the string and Einstein frames in four dimensional world and explain in some detail
the known [20] procedure of going to the Einstein frame.

In the following section VI, we deal with the holographic ratios in the general D-dimension
in both the remote and recent past in the string as well as in the Einstein frames.

We end with a discussion in the section VI.

II. ISOTROPIC AND HOMOGENEOUS SOLUTIONS IN THE STRING FRAME

The low energy effective action in the four dimension in the string frame is given by [[7]

1

-lgs _ =
nSt =~

[ d'sv=ge*(R+8,60"6) + 5, (2.1)

where, [ is the string scale, R is the curvature scalar computed in the string frame metric.
¢ is the dilaton. The string coupling constant, g, is defined by the relation g, = e%. The
last term in eqn.(2.1) is due to the string source and its effects are treated classically. The

string source part of the action is

1
4o

So

, / P00, X O X" g, (2.2)



The corresponding equations of motions are

2(R; +V, V") = 22T, (2.3)
R — (V,0)* +2V, V' =0 (2.4)
where,
2 69,
w — T = L (25)
Vg

is the stress-energy-momentum tensor following the definition of ref. [[].
We work in isotropic and homogeneous space, therefore the line element in the string

frame metric is
ds* = dt? — a*(dx")? (2.6)
The energy and pressure are defined as follows
T = (13, T}) = (¢, —p, —p, —p) (2.7)

Then equations of motion in time-dependent form [[[GPT] are

o —2+3H2 =0 (2.8)
8~ 3H? = 2%5¢? (2.9)
2(H — He) = 202pe? (2.10)

where, the SFD invariant variables are defined as

6=0-3la, a=0/lg, 5=p/lgl=10 (2.11)

and ¢ is the shifted dilaton. The covariant conservation of stress-energy-momentum tensor

takes the form

0+3Hp=0 (2.12)

%d—w and

Let us now introduce a new dimensionless time parameter x, such that 2125 = it

define I' by v(z) = 2. Eqn.s (2.8)-(2.10) on integration reduce to [[3,I9-21]



dlna B 2r

dr (x4 x0)% — 302 (2.13)
dp 2(x + xp)
dr (x4 z)? — 3072 (2.14)
220 = %[(m + 20)* — 317 (2.15)

Note that I' = yx+ X for constant v, where X and x( are constants of integration. Obviously,
xo is chosen such that ¢ reaches its maximum at x = xy. Again, this set of first order

eqn.s(2.13)-(2.15) can be integrated for constant v to give [[3,[9,27]

r, r—
0= aol(@ — 2w — ) F| T
- Iy 1. T —T
& = (@ — )@ -2 ) = ;|
25 ¢>0 _ _ = —c
2050 = 412 (@ —24)(z — 2 )" —— x_l (2.16)
where,
1
—1-3v2, o=v3L a=-— 217
o y o 5 @ T3 (2.17)
and
1
L= a[\/@((ﬁq +1) — zo(1 £ v37)] (2.18)

Now, in the remote past, v =0, so I' = X. Let us take v = 0 to start with and examine

the consequences. Then we will get the zeroth order solutions [[J], which are given below:

a = ag| ——*|7 (2.19)
T xX_
e =eP|(x—xy)(x—z_ )" (2.20)
2020 = e (2.21)
MTE
Wlth, Ty = :i:\/gX — Xy.
Setting
€¢O
- =0, x= _ﬂT’ (2.22)

one arrives at [[[921]



a=ap(l— T)\/@ (2.23)
- 16[2¢=%0
¢ _ - 2.24
“ = -] (2:24)
l2 6¢O
200 = — 2.2
o= (2.25)
0 efi)o
X=1"= T 2.26
W (2.26)

As the Universe crosses the time —T', kinetic energy of the dilaton and the curvature becomes
comparable to the source energy density i.e. 552 ~ H? ~ pe®. We assume the source energy
density per unit comoving volume to be small [[9,R1]. So it does not affect the initial
curvature of the Universe. We note that the solutions(2.23)-(2.25) go over to the dilaton
driven vaccuum solution in the ¢ — 0_ limit. Moreover, we will see that this solution acts
as good string perturbative vaccuum. In other words, corrections to zeroth order solutions
is rather small. This observation is valid, at least, for very large negative t. Let us proceed
to discuss about the corrections in the presence of classical string sources. The length of a
string will vary, in principle, from [, to oo. At the time ¢ = —o0, horizon is of infinite extent.
All the strings are within the horizon. As time progresses, the horizon shrinks. So strings
also start crossing the horizon, making pressure negative and ~ non-zero. This non-zero vy
will introduce corrections on the top of the zeroth order solution. Moreover, v will be small

at the beginning.
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FIG. 1. Temporal History Of The String-driven Pre-big-bang Phase

Untill now we have been discussing solutions in one limit. Now let us consider the
background field configurations in another limit, namely when all the strings are outside the
horizon and 7 is —%. Let —t. be the time when v approaches —%. Then t. is l; when the

mean length of the strings is of the order of [,. If the mean length of strings is more, %,

has higher value. Now the critical density parameter [[9,R0 Q(z) = é’;;; has the following

expression,

Q) = 1 _(;i)g(;f‘” (2.27)

So at = x4 or, t ~ Ig, Q(x) goes to zero. Then the string sources become unimportant
compared to curvature. The tree level string effective action is not reliable in this regime.
Hence we consider the large |z| limit i.e. |z| >> x4, then [t| >> [,. Let us denote the
corresponding x — time and the ordinary time by z., and —t.;, where the tree level action is
reliable. But at t = —t,;, 7 need not coincide with —%. v = —% if t,; = t.. This situation is
represented by an arrow in the Fig.1.

Now let us assume that the mean length of our string sources is of the order of |t,|. Let us
also assume that the source energy density to be a reasonable fraction of curvature at that

time. The corresponding field configurations around x; are [[9,20]

a = aol(@ - a4)(x — a)| H=—2| ¥
3 y _3, X — T4 3
¢ = ez — )@ — z)[H L
25 = 156%|(w — w2) (@ — 2 )[TF| 1 (2.28)
where,
re = 2X (14 V3) — 2(1F —=) (2.29)
2 V3



Now we set x_ = 0, keep the leading contributions of x only and express the background

field configurations in terms of ordinary(cosmic) time. Then the solutions become [[5,I920]

—t._1 —t —t
as(t) = <t_) = on — 3ln(t_)’ o= —3p= Qo(t_) (2.30)
0 0 0
with,
%o P 1
_ 2.6 1 o G
to = ao(g) » Qon = ¢o —3Inap, 00 = 617%2—13- (2.31)
The constants in the eqn.(2.31) are related as
vt = — 2.32
So far we have considered solutions in two cases: (i)y = 0 and (ii)y = —3. It is important

to examine the background field configurations when ~ varies between these two extrema.

This will be dealt with in the following sections.

III. CLASSICAL STRING SOURCES, ITERATION AND HOLOGRAPHIC

RATIO

In this section we look for a simultaneous solution of the background equations of motion
and equations of motion for the string sources as 7 decreases from zero to —% with time
proceeding from —oo to —t.. The nature of the evolution equations are such that we cannot
get an analytic exact solution for 0 > v > —%. Therefore we start from the v = 0 end.
There we have the exact solution for the background fields. If we put back this solution
in the sigma model action to evaluate «y, we recover the value v = 0 [[Lf], only in the
limiting case ¢ — —oo which is same as a — ag. In other words, our exact solution is
not simultaneous solution of background as well as string equations of motions for time not
exactly —oo. Moreover, we cannot dispense with the position coordinates in the expression
for pressure and energy density. To get a simple expression for v as a function of time
we assume, following Gasperini etal [BT]], that the source term represents an ensemble of
classical strings. Initially all the strings are within the horizon, hence pressure and v are

zero. The two types of initial distribution of the lengths of the strings, we consider, will give

different expressions for ~v. Here, first we review the basic elements of the model, then derive



the expression for v from the model to be used in the iteration procedure, to obtain the
background fields. Then we utilize these solutions to evaluate the corresponding holographic
ratios and subsequently compare and contrast the features of the two types of distributions.

Now let us briefly recapitulate some of the essential features of the model. For further
details we refer the interested reader to the ref. [P1]. We consider an ensemble of large
number, say N, of classical strings. Moreover, let the length of i-th string at an instant of
time ¢ be L'(t), and number density of strings of length L at that instant be n(L,t). Then

N = [°n(L,t)dL. Here, the differential equations satisfied by L'(t) and n(L,t) are,
Li(t) = H(t)L'(H)O(L () — D(1))
ad,n + 0, [n(L,a)LO(L — D)] =0 (3.1)

where, D = H~! is the Hubble length and H is the Hubble parameter. The energy density

of stable and unstable strings (i.e. length less or greater than the horizon) are given by

E, = / &Py /Gps = ia / Ln(L,a)8(D — L)dL (3.2)

™

E, = / By /Gp, = % / Ln(L,a)(L — D)dL (3.3)

Note that in the far past when all the strings lie within the horizon, v = 0 and E, = 0. On

the otherhand, v = —% corresponds to the situation Es = 0. So, v could be approximated

by
1 E,

_ 1 4
1) = g (3.4

From the definition(3.3) it follows that E, = ma’E, satisfies a differential equation

~ 1 Olna -

Oopby, — =——F,=—Dn_(D 3.5
PE T Dam D n-oo(D) (3:5)
where, n_o(D) = n(D,t = —o0) expresses the number density of strings of size of the

horizon at time ¢ according to the distribution of number density at the far past. Note that
this is the differential equation for evaluating E, at any time and we will be using it again
and again. On the contrary, once we assume the form of the distribution of number density
at the remote past, E; can be directly evaluated from the definition(3.2). So let us discuss

the two types of distributions,



N_oo(L) = A’L73, (3.6)

n_ool(lL) = f—;exp<—§o> (3.7)

where, A and N’ are related to the total number of strings. The mean length of a string in
the two cases are respectively 2/, and [, + Lqg.

Now for the first type of number distribution v goes to —% as t. is of the order [, whereas
for the second type t. can vary. Let us see how this happens a la Gasperini etal [PT]]. First

—L or, almost all strings cross the horizon, a(—t) ~ (—t)*

we note that when v becomes —3

[[9], a being some negative fraction. Then we find

oy :
(14 «)
Es = Az[(ZS)_l - H]a
1 1
7__5 1H_|_l,:_a (38)

So, v tends to —% only when D ~ [,.

Let us now consider the exponential distribution. The differential equation for E, near

v = —% yields,
. D D
E, = N'Ly(—)*T {2— —} 3.9
whereas,
~ l l D D
B, = N'Lo[(1 + ~2eap(—-2) — (1 + ~=)eap(—— 3.10
o[+ P)ep(—5) = (1 F)eap(—) (3.10)
and as a result,
(2)°T [2 -, 2]
N = l Lo L Lo (3.11)
31+ )eap(—15) = (L4 Reap(—2)) + (£)°T [2— o, 2]
where, I’ [2 —a, L%} is incomplete gamma function. So if L is such that it is greater than

ls as well as t. (i.e. Ly > l; and Ly > t.) then v becomes —% at the time ¢ for a particular
value of Ly, say WT’;tcl. On the contrary, if Ly ~ [; then 7 becomes —% when t. ~ [;. We
note here that for the exponential distribution of mean length I, v falls off faster than that
of power law.

Again as we are considering the situation almost in the far past i.e. near t — —oo where



the horizon is very large, almost all strings of any size are within the horizon. It should not
matter much whether we take strings of mean length [, or, larger and we take power law
distribution of number of strings or, exponential distribution. We will see how far this is
true in the following. Before we move on to estimate the holographic ratio, let us describe
the way we calculate the background fields, the prescriptions for the iterations and how we
put the holographic ratio in proper form to compute it at each stage of iteration.

In order to obtain the background field configurations order by order through iteration,
it is suitable to use a varaible Y = In - instead of z, along the line of ref. [R1]. In terms of

the variable Y, eqn.s (2.13)-(2.15) are rewritten as

Wo(Y) = (7))~ Ju? (3.12)
P(Y) = ¢o +2Inw(Y) (3.13)

" r 3 =0 3.14

w +Fw — Y= (3.14)

where, w(Y) is an auxiliary function introduced through the relation
w/
r+xy=—-20— (3.15)
w
Our main aim will be to solve the w equation using the expression for I'. Note that putting

v =0 or, I' =I'% in the differential equation for w we get

41
w = ?6_¢°sinh\/7§Y (3.16)

We use the expression(3.16) for w to find the first order corrected . Moreover, for noncon-

stant v, I" is given by,

r—r0+/y ()% qy. (3.17)
- o ay '

Let us now explain the procedure for iteration as we carry it out for power law distri-
bution. In that case, putting the zeroth order expression for w we get v which involves the
parameter €. Once we put the first order corrected v in the differential equation we obtain
w corrected to order e. This procedure is repeated to get higher order corrections in w. For
exponential distribution procedure is similar. Due to the presence of El’p(—f—xl/z), there is

no analog of the parameter €; though at the first sight it might appear that % or, f can be



used as expansion parameter depending on whether f is greater or less than one. There,
improvement on the zeroth order result through iteration is relevent in the powers of Y only.
Whatever be the distribution, at each stage we utilize the w to evalute the holographic ratio.
To achieve that we write the holographic ratio in a proper form. Moreover, let us keep in
mind that we are considering the Hubble horizon throughout ( We mention in passing that
in the remote past the event horizon goes as square root of the Hubble horizon and for small
time both converge). Now in the string frame, Plancklength, [,(t), is time-dependent and
is given by [R4]

(1) = j;zexpwm) ~ leap(6/2) (319)

18

We have taken % to be one in eqn(1.1). The ratio of entropy contained within the Hubble

Horizon to the horizon area is given by

where, 7" is defined to be the temperature. It follows from the covariant conservation of 7},
in the string frame that the time development of string sources is adiabatic. So v changes

with time keeping entropy per comoving volume constant. Consequently,

V)34
cxp(dy)  w?
lsexp(go) (22)(4123) 34X
_ 1w
~ V30T 3(E)y
S
~ VBAT3(E)y -

where, ging, 1},, are factors independent of Y in g, T respectively. On the otherhand, we

write Y-dependent factors of w and ‘% as wy and (‘Z—’;)y. [ is the temperature at Y = 0,

or equivalently at t = —oo0.



Let us estimate the holographic ratio in the zeroth order. This comes out as

S__ 1
A /33T

Now (3 and T" are constants. Hence the holographic ratio also, in the zeroth order, is constant,

12(t) (3.20)

for all time. So entropy per unit Planck area of the horizon is also constant. It is given by
the above expression. This result is valid when the horizon is finite. Now the same solution
describes the Universe in the early phase i.e. when ¢ — —o0 or, a — ag; the horizon tends
to infinite then. Hence we infer, as a limiting procedure, that the entropy per unit Planck
area of the horizon is given by the expression(3.20) when the Universe is flat. Since the area
is tending to infinity, entropy within the Hubble horizon also must be very large. As the
Universe is cold at the begining, it may appear contradictory. But the energy density per
unit comoving voulme is also constant. Hence entropy per comoving volume is constant. As
the number of comoving volumes within the horizon tends to infinity, entropy within the
Hubble horizon also tends to infinity.

This ratio has good physical implication. If this zeroth order ratio is one (as is taken in
time —7 in the paper [§]), or, at least bounded from above, then ST = finite number.
Again in the PBB cosmology (i) T which is the duration of dilaton driven phase is very large,
(ii) B, the temperature at the begining of the Universe, is very low. Hence product, 87 is also
a finite number. So two independent considerations lead to the same conclusion. Recently
Veneziano has shown [§ that the ratio assumed of the order one, explains the entropy
budget of the Universe from the PBB cosmology quite accurately upto some numerical
factors. Therefore it is quite reasonable to assume that the ratio is of the order one. In

other words, the Universe in the flat beginning seems to show holography as in AdS spaces

B2

IV. HOLOGRAPHIC RATIO NEAR THE REMOTE PAST

After discussing the features associated with the zeroth order holographic ratio being
bounded let us see how the ratio changes with time as the Universe evolves from the remote
past. The evolution will depend on the number distribution of strings at the remote past. As

a result the holographic ratio will also be getting modified differentially. Now the holographic



ratio lf,% is roughly ed’% . As the Universe evolves the first factor increases whereas the
second factor decreases. Hence the holographic ratio will increase or decrease depending
on whether the relative increament of the first factor is more or less compared to relative
decreament of the second factor. We will see in our study below that in the case of power
law distribution the scale factor dominates whereas in the case of exponential distribution it

is the coupling constant which initially dominates, though very weakly, for a short interval

of time before being overtaken by the scale factor.

A. Power Law Distribution

Let us now first consider the power law distribution, n_.(L) = A*L™3 [E]]. Then

equation(3.5) becomes
dE, — E, =AdyD™! (4.1)
and on integration we get,

Y
T =H+e" | He™ (4.2)

Hence, in this distribution, the expression for v takes the following form,

1H+e" [y He Y
7= 7371 Y 2/ v (4.4)

where, H is the Hubble parameter of the Universe given by

= (45)

Now from eqn.s(3.12)-(3.15) we get
Oil—)t/ = \/%T(cosh\/gY —1) (4.6)
% = gl“o(cosecth)2 (4.7)

where we have used the zeroth order expression for w,



4] V3

w = ?€_¢08Znh7y
and then substituting eqn.(4.6) in eqn.(4.4), we get v to order € as,

v= —%[cosh\@Y —e¥ + %sinh\/gl/] + o(e)? (4.8)

Here, integration of the R.H.S. of the expression (3.17) for I is not possible if we keep terms
upto all orders in Y. So to start with, in the first step of iteration, we keep terms upto Y2,

for the sake of simplicity and we get,

. %Y +o(Y)30(e)?] (4.9)

where, € = \/%T Now, in the remote past Y is small. So whether T is large or small,

correction term in the above expression is small compared to one. Zeroth order solution acts
as good perturbative vaccuum near the remote past. Moreover, if T' is large, zeroth order
solution acts as good perturbative vaccuum for all Y.

To carry on iteration, let us assume the I' obtained in eqn.(4.9) to hold good for all

orders in Y. We put this I in the background equation to get w with o(e) correction,

4] € V3
— %0 _ mh——
w= e (1+ 2Y)smh 5 Y (4.10)
Consequently,
dy
v fT —(cosh\/3Y — 1) (4.11)
dr 3, V3., € .
i §F (cosechTY) [1—¢€Y + %smh\/gY] (4.12)

Then, the model which takes care of string equations of motion, gives

€ cosh\/3Y —e¥ + L sznth

T="5

4.13
21+ i[ﬁsznth + cosh\/_Y + 2 —3€eY] ( )

Let us determine w to order €2. Note that when we keep terms upto Y4 the expression for

~ does not come with €. Therefore, retaining terms upto Y we find,

YZ ys oyt o7ys @
y?d Y)%(€)? 4.14
6 36 240 3600>+40 +o(Y) o(e)’] (4.14)

*By all Y we mean that for all Y for which power series converges



Let us use the expression for I' in the background equations of motion (3.12)-(3.14) to find
the w and the corresponding fields upto €2. Assuming that this I" holds for all order in Y

we get the expression for w as in below:

41
w = ?6_%

V3 \/3 \/3 Yy 2v?2 y3 7yt

1 Y h—Y I S SR

[1+ Y ]sin +el5cosh =Y (=75~ 135 T 180 t 2160
1 2 1 1

+sz'nh\/7g Y(—=+-—Y+ 5 il Y BT Y4 R, Y . LYS)]

10 135 40 135 480 7200

V3 V3. 119303 1 52883 403
V9 hsh Yy Y+ —y? ys_ 20
+e=5cos (ra00” T 3227 T &74800 9720

2 2
6997 s 98 g 6T A
5832000 3888000 27216000 1296000

49 o /3110303 1 269423 _
320920007 ) T 5 Y (zma00 t 324 583200

2
829 g, 68243 ., 16301 ; M4l 11 g
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We can use this result to get v and I" for third order or, upto €* and higher order in Y. In
other words, this procedure, in principle, could be used to determine higher order terms in e.
However, we compute terms upto €2. Now, we can use the first and second order expressions
for w to estimate the holographic ratio.

Let us evaluate the holographic ratio for the first order i.e. including the e correction

I2(t )A fﬁT( + €Y) (4.16)

The holographic ratio in the second order(i.e. when we include terms upto €?) is

s 1
A /3BT

V2 oy oyt oqys

loe(Y +— 42 _

L—eY + 5+ 35~ 220 ~ 3600

—720 — 240Y — 60Y2 + 12Y3 + 7Y%
=720 0 60Y?% + +7 sinh/3Y)
360v/3

139 521y 5233Y2  16297Y3

_ 2[___ _ _

405 2430 4860 48600
5429Y*  1501Y°  1877Y°

72900 64800 * 388800
n Y7’ n 23Y8 B 7Y B 49Y'10
1296 ~ 388800 432000 12960000

(1)




~ 139(=720 — 240V — 60Y? 4+ 12V + TY*)cosh/3Y
145800

—(1601280 + 1000320Y + 358080Y2 + 9312Y"

cosh2+/3Y

—41344Y* — 12888Y° — 1500Y 4" + 14778
3 888 500Y° 4 504Y 7 + 147Y'®) 1665600

, Y3 55Y4  73Y5 133y
H2Y -y T3 T 206 T 1800 T 14400
4777 7Y8 49Y?  sinh/3Y
+13200 ~ 32000 364000 V3
1 17y Y%  287Y?3
30" 370 T 618 ~ 16200
31Y*  53y5 49y 497 sinh2v/3Y

4320 48600 i 129600 * 388800) V3

We observe that coefficient of € in the above equation(4.17) is of opposite sign compared

I (4.17)

to that of first order eqn.(4.16). This sign difference arises due to the following reason. In
obtaining the expression(4.9) for I' we have kept terms, upto Y. But while calculating w,
eqn.(4.10), we have kept terms upto all orders in Y. Then we have used this expression
(4.10) for w in the holographic formula. It gives rise to the apparent discrepency. If we
had strictly kept terms upto Y2, coefficient of € would have been absent in the first order
holographic ratio. Again in the second order formula(4.17) there is no term in the coefficient
of € upto Y'2. Hence the second order result is consistent with the first order one. Moreover,
if we had kept terms in the expression for w upto Y, strictly, the holographic ratio with €2
correction would have contained terms upto Y. Now in the expression for the holographic
ratio(4.17), coefficient of € decreases and that of € increases with Y, if terms upto Y3 are
considered. This feature will be manifest from the plots below. Again as a next step, if we
go on to consider the third order in €, to start with we have to keep terms higher order than
Y? in the expression for I'. And this will not change the coefficients of terms upto Y in
the expression for w and the coefficients of terms upto Y2 in the expression for holographic
ratio. Hence, we conclude, that as the Universe evolves form t = —oo, the holographic ratio
decreases, at least upto the time terms from Y® onwards are negligible.

The plots of the coefficients of € and €2 in the holographic ratio, for small values of Y, are

shown in Fig. 2 and 3 respectively.
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FIG. 2. The plot of Y — dependent coefficient of € in r = l%% against Y.
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FIG. 3. The plot of Y — dependent coefficient of €2 in r = l%% against Y.

We observe from the plots that the coefficient of € decreases whereas the coefficient of €
increases. Note that in both the cases the coefficients are indeed small. As a result the net

holographic ratio decreases as stated in the previous paragraph.

B. Exponential distribution

After discussing all about the power law distribution, let us go over to the second case,
namely exponential one. The differential equation satisfied by E, for the exponential distri-

bution takes the form,

. - D D
O E,— E,=—N'0yD—exp(——) (4.18)
Ly Ly
which on integration gives,
- D D Y D D
E, = N'Ly|—exp(——) — e:L’p(Y)/ Oy (exp(=Y)—)exp(——)dY] (4.19)
L() L() 0 LQ LQ



Since, H = D' =4 = fY2 upto order of Y2 we get,
11 1
v=3 e p(_fY_z) (4.20)

Use of the eqn.(3.17) leads to

1 exp(— fY2) Vv f
b= F0[1_§( Yy 2

(Erf(—=7) —1)] (4.21)

\/TY

where, Erf (ﬁ) is the error function [23]. Now to iterate we assume that the expres-
sion(4.21) for I' to be correct to all order in Y. We use this I in the differential equation(3.14)

and obtain w. Here, we keep terms upto Y in the expression for w and get

w = %lemp(—%)[smh(\/?g}/) +c(Y)] (4.22)
where, ¢(Y') is given by
1 V3 1 3y 1 3 3
o) = sinh () (5 + Fphean(= i) = VIR ) = DL+ 3= o)
1 V3. [V3 3Y? 1 V3 3 1
— ¢ sh(TY) [7(1 + ET) (_F> — H(l 4Of)EprntegralEz( fYQ)]
(4.23)
where, Expl ntegmlEz'(—f—;) is the exponential integral function [P3].
Then the holographic ratio becomes,
9, S 1
L(t )A \/_ﬁT[l + COR(Y)] (4.24)
with COR(Y) is given by,
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To see how the holographic ratio changes with Y, we plot the correction to ratio against Y

for f equal to 10 in figure 4.:
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FIG. 4. The plot of correction to holographic ratio l%% denoted as r, against Y for exponential

distribution with Lo = fT and f = 10.

We note that the holographic ratio, in this case, deviates slightly upward from the zeroth
order result. Let us check that this deviation is not spurious. For this purpose we plot the
correction to holographic ratio for w upto Y2 order also. We get an identical looking curve.
We recall that we have kept terms upto Y? in the expression for H. This means that the
region of Y taken in the plot is the region where higher order terms are negligible compared
to Y2. Hence this little upward deviation from the zeroth order result will remain if we
go to higher order in Y. Actually this little upward deviation is generic of exponential
distribution. Again, to come to this conclusion, we plot the ratio for f = 1. This is shown

in the figure 5:
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FIG. 5. The plot of correction to holographic ratio l%% denoted as r against Y for exponential

distribution with Lo = fT anf f = 1.

We see that the domain of the initial plataue or, rectangular shaped region in the above
figure, F'IG.5, shifts with respect to the previous plot, F'IG.4, to slightly larger value of Y.
Hence we infer that if we go on decreasing f to € this nature of the curve will remain, only
the domain of the curve will shift to larger value of Y. This plataue occurs due to first order
correction. So the initial rise will remain if we include the higher order corrections also.

Note the magnitude of smallness in the initial rise in the holographic ratio. We mention in

Lo

Lo ls
T

= % has to be much greater than =

passing that for v = —% solution to be valid, f =
but less than one, as t; < T

Uptill now we were concentrating on how the holographic ratio evolves over small time
interval near the remote past. In this regime, only few strings cross the horizon. Perturbative
techniques are useful also. But we don’t have an easy way to study the holographic behaviour
when, arbitrary number of strings say, half of the total number of strings are more than the

size of the horizon. Obvious possibility is to go to the other extreme i.e. when all the strings

became nondynamical. This is what we are going to do in the next section.

V. HOLOGRAPHIC RATIO FOR ~ = -1

1
3

, S 1t

The holographic ratio is given by (for v = —= or, t ~ —t)

1
Io(t)— = —)72 5.1
0= 3555 (51)
where, (3, is the temperature at the time ¢ = —%;. So the holographic ratio at the time
t = —ty is given by ——L———. Hence the ratio of the holographic ratios, denoted by

3ﬁtcl (_tcl)g (tO)E



Ry, at the time —t., and —oo is

Ry(=ta) 3V3 T e™.
Ry (—o0) 4 (—ty)z 3l

[¥]

(5.2)

where we have used the constancy of comoving volume entropy. Now assuming that the
holographic ratio is one at the remote past we find that the ratio at the time —¢,; is also one
e®o

provided the parameters of the theory ¢, and [ are constrained by the relation (7)_% =

%ﬁ. Note that T is larger than |t.| (see the Fig.1).

Comparison with the Einstein frame ratio
Let us study another feature of the holographic ratio. This is whether the holographic
ratio is the same in both the string and Einstein frames. In the PBB cosmology, qualitative
features of the Universe like blue shift, shrinking of the horizon etc. [R0] are same in both the
frames. So the question whether similarly the holographic ratio is equal in the two frames
motivates us to study the corresponding ratio in the Einstein frame. The metrics in the

Einstein frame and the string frame are related by the following conformal transformation

o—Po

819, =€ gfy (5.3)

D is the present day value of the dilaton and we set 16mi?e® = [2. Then if we remain in

the synchronous gauge i.e. if we set

dst, = dt3 — ag(dz")? (5.4)
we get
dty = /8me 2?20t (5.5)
ag(tp) = Ve 20~ %)q(t) (5.6)
62(¢_CI>O)
E(tg) = *(t .
di(te) = oy (5.7
as, (TH)g = \/‘/gg:;(Tﬁ) Q). In the Einstein frame the equations of motion satisfied by the
fields are
v 1 v l2 12
RH — §R9H §pTu
l2
VT = L) (5.9



where, in the above, T = (T'?)/+(T*)%, and (T"), is the stress-energy tensor corresponding
to the dilaton.
These equations of motions have been derived from an action S which in turn has been

obtained from the effective action in the string frame by conformal transformation and is

given as
h1gE = —é / A2/ —g(R — %ama%) + S, (5.9)
where,
S, = ﬁ / P00, X 9" X" g, e°. (5.10)

After this short preliminary about the conversion of string frame to Einstein frame in (1+3)-
dimension, let us proceed to compute the ratio in the Einstein frame corresponding to v = —%
in the string frame. We note that in the Einstein frame [[J],

vV &1 —tE

2

agp(te) = 7 (tOE )5 (5.11)
Ote) = om — £ () (5.12)
0'(tp) = = (5.13)

2512 (—tp)?
where, in the above, ¢°(tg) is the energy density of the string source in the Einstein frame
and L, is the present day value of the Planck length. Again in the Einstein frame, the
dilaton also contributes to the energy density and the pressure. Consequently, the net

eneregy density and the pressure in the Einstein frame are

24 1 16 1

_ ’ - - 5.14
T B2 (—tp2 T BL2(—ip) (5.14)
The effective equation of state is
2
== 5.15
p=30 (5.15)
The holographic ratio turns out to be
L2§ 12 SC Q
P A p\/g 3
o 1 o(l+79) 1
PVg T 34
N G (5.16)



where, ﬂt]fl is the temperature at the time tog. Now, the string frame time and the Einstein

frame time are related by

t > eét
0= 5 /5. C toE
5 0 3 2
—t = e (top)5(—tp)5 5.17
st (tom) (i) (5.17)
we get,
_1 :
(te) > 0 %l(j)—% (5.18)

(tog)? N 2\/8_7Te to to
As a result the ratio, in the two frames eqn.(5.1) and eqn.(5.16) have exactly the same time
dependences. Again the entropy per comoving volume is the same in both the string and
the Einstein frames. Hence

10 4
E 20
ﬁtcl = (871')%6 ? /Gtcl (519)

where, ¢, = ¢o,—Po and Py is the present day value of the dilaton. Therefore the holographic
ratios in both the frames are exactly the same.

Uptill now we have been in (1 + 3)-dimension, came across nice features like constancy
of holographic ratio in the remote past, identical ratio in the string and Einstein frames in
the recent past,i.e. |t| =ty = t.. Let us now move on to diverse dimensions looking for the

similar interesting features.

VI. HOLOGRAPHIC RATIO IN DIVERSE DIMENSION

Here we write down the string effective action in (1 4 d)-dimension and the equations of
motions derived from it. The effective action in (1 + d)-dimension is

1

—1gs
hSt = — 5

/ A2/ =ge (R + 0,00") + S, (6.1)

The resulting equations of motions [[3] are

2 s
¢ —20+mH?* +nF*=0
¢ —mH?*—nF? = 215_156(’5
2(H — H@) = 2% pe?

2(F — F¢) = 2191 ge? (6.2)



First let us keep in mind that we are writing d = m + n, where, (i) m is the number of
expanding spatial dimensions and (ii) n is the number of contracting spatial dimensions in
the string frame. Scale factor of a contracting dimension will be denoted as a.,, and it
will be just reciprocal of a.,. This is the only posssibility compatible with non-zero energy
density [[§]. Here, now onwards we will be confining ourselves to consider mainly time
dependences of quantities. Moreover we will look into the following aspects, (i) whether the
holographic ratio is constant or, not in different dimensions in the remote past, (ii) whether
the holographic ratios in the remote past are the same in both the string and the Einstein
frames in (1+3) as well as in the diverse dimensions and (iii) how the time dependences of the
holographic ratios in the recent past, in the string frame, go together with the corresponding

ones in the Einstein frames in various dimensions.

A. Remote Past

Let us now start with the case when we have nine isotropically expanding dimensions.
Then we have [B] after solving the above set(6.2) of equations as in the (1 + 3)-dimensional

case with p = ¢ =0,

2T
a=ap(l— T)%
P 16[26_¢0
e = ———
|t —2T)|
e¢0
0 = 6.3
0= 3P (6.3)
And we know [PJ] in the ten dimension, Plancklength, is given by,
10\2 _ 372 _ 252
(lp ) = gs ls - 64ls (64)
So, the holographic ratio is given by,
(l10)8§ _ lgi 0 Vu
b A ° \/? /896 AH
3 1
B %696T (65)
where, k is a numerical factor coming through X—II{{ = % and [y, is the temperature in the

remote past.



Next let us consider the case when three dimensions are expanding and six other dimen-
sions are contracting. Then, observing that equations of motions in terms of SFD invariant

variables remain same as in the previous case, we get

2T 1
Aey a06x|1 - 7|
(eon = gy
é 161%2e=%0
e’ =
|t(t —27)]
_ €¢O
TR (6.6)
And (lll,o)2 is written as in the nine expanding case. So, the holographic ratio
S ¢ oV
()5 = B (6.7)
A \/g 636 AH
Again, the ratio of the Hubble volume to Hubble area is given by
Vi NZS
Ay 36(T|H| + L8| F))
1 t
_ym (t — 2T) (6.8)

R
24 VT 16T
where, |H| and |F'| are the Hubble parameters of the expanding and the contracting dimen-

sions. Consequently,

(110)8§:ﬁ 11
PPAT 12T 5T

(6.9)

Therefore, we see, in both the cases as t tends to —oo, the holographic ratio becomes
constant as in the (1 4 3)-dimension. Let us examine whether this happens in any arbitrary
dimensions.

We note that for (1 4 d)-dimensional world,

21
Qey = aOem(l - T)ﬁ
& 16[2¢=%0
¥ =—
|t(t — 21|
_ €¢O

And as far as time dependence is concerned, in the large |¢| limit (i.e. |[t| >> T") we have



ld‘l(t)§ ~ ﬁi
P A A9
e? 1

V9 |H|
~ [t (6.11)
Again, in the (1 + d)-dimension, the Einstein frame scale factor and time are related to
the string frame ones [P{] as

ap(tp) = e T1a(t)

da+1

te| = [t} (6.12)

Thus the scale factor in the Einstein frame is, in the large |¢| limit, in terms of the string

frame time is expressed as
ap(tp) = [t|77 (6.13)

Note that in this limit the Universe is isotropic even if in the string frame it is mixed

isotropic. In (1 + 3)-dimension, in particular, the equation of state is

_ - 6.14
p=3e (6.14)

Then we arrive at the following holographic ratio in the Einstein frame, in the (1 + d)-
dimension

) 1  a 2-d _
g 12 —— || ~ [te] T ~ [t 1 (6.15)

A VIE s

where, |tg| corresponds to the time in the Einstein frame. So the time dependences of the
holographic ratios in the two frames in this large |¢| limit do not match in any dimension.
But we have seen that in the recent past the ratio is same in both the frames in the four
dimension. Therefore, let us check, in the recent past, whether in arbitrary dimensions time

dependences of the holographic ratio match in both the frame.

B. Recent Past

Now in the (1+d)-dimensional spacetime near the time —t, v = —é and the relevent field
configurations, namely the scale factor of the expanding dimension and the SFD invariant

dilaton [B(] are



2

a(t) = [t~

¢ = dina(t)| (6.16)

As a result the holographic ratio in the string frame becomes

4 S 1-d
1 12 ~ [t| 7 (6.17)

But now the Einstein frame time tg is related to the string frame time by
4m
[t| ~ e (6.18)

and the scale factors in the Einstein frame, corresponding to the expanding and contracting

dimensions in the string frame, are

n

A (ts) ~ |tE\27d’2”f£;f1 ~ [t i

2m—14d d—142m
apn(tp) ~ |tE‘2d2+471nt1 ~ ‘t|2 2o (6.19)

Consequently, the corresponding ratio in the Einstein frame in terms of the string time is
given by

d

L;f—lﬁ ~ |t

A

a

(6.20)

Hence in the recent past the holographic ratios in the two frames have the same time
dependences in all dimensions. We note here that time dependences of holographic ratio as

in eqn.(6) was arrived at [fi] from different consideration.

VII. DISCUSSION

In this paper, we have set out to compute the holographic ratio. First, we obtained
the holographic ratio in the zeroth order and discussed the implication of the ratio to be
bounded. Then for the power law distribution, we obtained the correction to the ratio in the
first and second order in € following an iteration procedure. We found that the correction
depletes the ratio, albeit by small amount. For the exponential distribution, the correction

increases the value of the ratio by very small amount (1073%), towards the beginning of



evolution, over a small range of time. This is due to the domination of coupling constant
over scale factor during that period. Again, we computed the ratio in the other extreme,
when all the strings crossed the horizon, assuming the mean length of the classical strings
is much larger than [,. We then showed that the holographic ratio, has the same time
dependences in both the string and Einstein frames in this limit, and taking care of all
the factors in one particular case, namely in the four dimension we found that the ratio is
identical. This gives another evidence that qualitatively the two frames are equivalent in the
PBB cosmology and Hubble horizon is a good choice in both the frames. On the other hand,
in the remote past the ratio in the string frame is constant in all dimensions. However, in
the Einstein frame, it goes as inverse of the string time. The ratio is different in the two
frames. We have checked that solutions obtained by conformal trasformation do satisfy the
equations of motions in the Einstein frame in this limit when coupling constant goes to
zero. We may mention that if one follows the proposal of ref [f], then also one gets the
corresponding holographic ratio which is inversely proportional to the string time. Thus we
find that the holographic ratio in the remote past is not on similar footing as other physical
quantities. We have studied the holographic behaviour in the presence of string sources
almost in two extreme cases in (1 4 3)-dimensions. It is possible to generalise the exercise
of getting the correction by iterative procedure to (1 4+ d)-dimension. Again, we applied
pertubative method to go away from the extremality (v = 0). It will be very interesting
to study the holographic ratio explicitly in the intermediate region. It is also desirable to
see how the zeroth order holographic ratio gets modified in presence of higher dimensional
branes. Moreover it is very much of relevence to ask about the mechanism of holography in
this case.
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