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Abstract

We study the dynamics of an open membrane with a cylindrical topology,
in the background of a constant three form, whose boundary is attached to
p-branes. The boundary closed string is coupled to a two form potential to
ensure gauge invariance. We use the action, due to Bergshoeff, London and
Townsend, to study the noncommutativity properties of the boundary string
coordinates. The constrained Hamiltonian formalism due to Dirac is used
to derive the noncommutativity of coordinates. The chain of constraints is
found to be finite for a suitable gauge choice, unlike the case of the static
gauge, where the chain has an infinite sequence of terms. It is conjectured
that the formulation of closed string field theory may necessitate introduction
of a star product which is both noncommutative and nonassociative.
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1 Introduction:

Recently, the study of noncommutative geometry, from the perspective of
string theory, has attracted considerable attention. The noncommutativity of
the target space coordinates becomes manifest when a constant background
NS two form potential is introduced along the D-brane [1]. In the presence
of the two-form potential, the end points of the open strings attached to
the D-brane do not commute. The intimate connection between string the-
ory, noncommutative geometry and noncommutative Yang-Mills theories has
been investigated from diverse points of view by Seiberg and Witten in their
seminal paper [2]. It is natural, therefore, to examine the corresponding issue
when an open membrane ends on a D-brane under an analogous situation.
In this case, one would envisage a D-brane in flat space in the background of
a three-form tensor potential, with components tangential to brane coordi-
nates, since a membrane couples to the third rank antisymmetric tensor just
as a string couples to the two-form potential.

The motivation to study this problem arises from the conjectures that
membranes provide a clue to understanding M-theory. The five perturba-
tively consistent string theories are believed to be different phases of the
underlying M-theory and it is argued that the low energy limit of M-theory
is described by the D = 11 supergravity theory, just as low energy limits of
various super string theories go over to the corresponding supergravity the-
ories in ten dimensions. It is also well known that membrane and five brane
appear naturally in eleven dimensional supergravity and already, there have
been attempts to study the M5−brane in the background of a constant 3-
form [2]. Another motivation to study properties of open membranes arises
from the perspective of OM theory [3]. It has been conjectured that five
dimensional noncommutative open string theory on an M5 brane, in the
strong coupling limit, decouples from gravity, for a critical value of the field
strength, and becomes equivalent to a theory of light open membranes (OM
theory decouples from gravity with a near critical 3-form field strength.).
Furthermore, some progress has been made in examining how noncommuta-
tivity may arise by using open membranes as probes on branes [4, 5].

It is worth while to mention, at this point, that the study of noncom-
mutativity properties of open membranes ending on branes involves some
subtleties compared to the case where one considers an open string end-
ing on D-branes. The action, in the case of string theory, is chosen to be
of Polyakov type, whereas for membranes the conventional choice has been
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the Nambu-Goto action, with additional terms which are introduced from
various other considerations. Furthermore, the equations of motion for a
Nambu-Goto action are nonlinear, in contrast to the linear equations arising
in the case of the Polyakov formulation of the string theory. Therefore, one
has to resort to some approximation scheme while investigating the noncom-
mutativity aspects of such a theory. We mention en passant that one of the
easiest ways to bring out the noncommutativity for an open string-D-brane
system, in the presence of a NS B-field, is to scale the metric and the B-field
suitably and then take α′ → 0 limit. However, in the case of a membrane-
brane system, there is no such obvious limit, as has been emphasized by
several authors [4, 5].

In this paper, we have investigated the noncommutativity property of an
open membrane-brane configuration from a different perspective. In the first
place, in order to circumvent some of the technical difficulties encountered
in the Nambu-Goto action, we adopt a modified version of the action due to
Bergshoeff, London and Townsend [6], where one introduces a two-form gauge
potential in the world volume and where the tension is given the status of a
dynamical variable (depends on world volume coordinates). The equations
of motion derived from the BLT action coincide with those coming from
the Nambu-Goto action, when one substitutes the solutions of the auxiliary
equations for the world volume two-form potential as well as the tension, into
the equation of motion for the membrane coordinates. In fact, one can write
down an additional contribution due to the space-time dependent three form
background coupled to the membrane and study the symmetries associated
with such a system [7]. As we shall show, there are certain advantages
in adopting the BLT action. When an open string end is attached to the
D-brane, one introduces the coupling of the open string to a gauge field
background and the gauge invariance of the world sheet action implies that
the field strength associated with the gauge potential be constant for constant
B-field. Note that in the analogous situation, where the open membrane
(more details about the membrane configuration later, which we basically
choose to have a cylindrical topology) ends on the brane, the boundary is
that of a closed string and, therefore, a gauge symmetry demands that one
needs to introduce a two-form B-field coupled to the boundary string just
as a boundary D0-brane couples to a gauge potential. Thus, we are set out
to study noncommutativity properties of the ends of the membrane which
are coordinates of a string, depending on world volume time and one of its
spatial coordinates.
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The constrained Hamiltonian formalism due to Dirac [8] is one of the
most elegant and powerful techniques in which one can exhibit this feature
of the theory. Let us recapitulate how noncommutativity arises in an open
string theory when a constant B-field is introduced along the brane direction.
In the absence of B, the coordinates along the Dp-brane satisfy Neumann
boundary condition, ∂σX

µ = 0, µ = 0, 1..p, at the boundary σ = 0, π; here
we take the target space metric to be the flat Minkowski metric, ηµν . When B
is introduced, the boundary condition changes to a mixed condition, namely,
ηµν∂σX

ν + Bµν∂τX
ν = 0 at the boundaries. It has been suggested that the

boundary condition can be used as a primary constraint after eliminating
Ẋµ in favor of the canonical momenta of the string coordinates. One can
then use the procedure of Dirac to derive all the secondary constraints of the
theory, identify the second class constraints and finally evaluate the Dirac
brackets between various phase space variables [9] to see noncommutativity
of coordinates.

It is important to note that supersymmetry is not an essential ingredient
in the study of noncommutativity in the geometry of a brane in a constant
anti-symmetric field background. Therefore, we shall consider a bosonic open
membrane ending on a brane. However, it is also important to keep in mind
that this is a simplified model and within the context of M-theory, it will
be essential to consider super membranes. In that frame work, one should
consider the action in the background of the massless fields of eleven di-
mensional supergravity such as the graviton and the 3-form tensor. The
gauge invariance will be lost if we do not introduce the 2-form B-field for
the open membrane, as alluded to above. When one introduces open super
membranes, all the supersymmetries are broken, even in the flat Minkowski
space. However, in the presence of topological defects as backgrounds [10],
it is possible to construct supersymmetric actions for an open supermem-
brane. These defects have a natural interpretation analogous to the end of
the world 9-plane in the Horava-Witten construction [11]. Thus, keeping in
mind that one is likely to deal with supermembrane theories, we consider an
open membrane ending on a p-brane with constant target space metric and
three form potential along with a 2-form B-field coupled to the closed string
on the boundary.

Our approach is similar to that of Kawamoto and Sasakura. However,
with the modified form of the action, we are able to make some head way
with the computation of the matrix of constraints as well as the evaluation
of the Dirac brackets (DB) in a systematic manner, without linearizing the
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action as was done at the outset in [5]. It is worthwhile to point out one in-
teresting feature that arises in the computation of the secondary constraints
for the problem under consideration. To start with, in the Dirac formalism,
one identifies the primary constraints and requires that the canonical Poisson
bracket (PB) of these constraints with the total Hamiltonian must vanish.
In other words, the constraints must be stationary under time evolution. As
a consequence, either one generates new constraints, which in turn gener-
ate further constraints and this goes on ad infinitum, or that this process
terminates in the sense that one does not generate any new constraint after
a finite number of iterations. However, as we will show, in the case of the
membrane, unlike in string theories, the velocities, Ẋµ cannot be written
in terms of the canonical momenta and, consequently, the boundary condi-
tions cannot be written as primary constraints on the phase space, unless

one chooses a gauge to begin with. In ref [5], the Dirac analysis was carried
out in the static gauge (in addition to the linearized approximation for the
action) and an infinite chain of constraints was obtained. In fact, a similar
situation also arises in the case of open strings ending on D-branes. Namely,
one knows that incorporation of boundary conditions as primary constraints,
in general, leads to an infinite chain of constraints. Surprisingly, however,
we find that with an alternate, suitable choice of gauge (one is free to choose
a gauge), the constraint chain for the same membrane system terminates.
In other words, in this alternate gauge, after a finite number of iterations,
new constraints are not generated. On the other hand, as a consistency
check, when we do resort to the static gauge, we find an infinite chain of
constraints, similar to those of ref [5]; the two chains do not coincide since
the starting point of Hamiltonian analysis are different (namely, the starting
actions are different), due to different gauge choices. It is well known that
noncommutativity depends on the choice of gauge (which, however, cannot
be eliminated). That the nature of the chain of constraints also depends on
the choice of gauge is something that we had not seen earlier.

The paper is organized as follows. In section 2, we first consider the
Nambu-Goto action for the membrane and discuss some of its salient fea-
tures. The resulting equations of motion are presented along with the relevant
boundary conditions. Subsequently, the alternate action due to Bergshoeff,
London and Townsend [6] is introduced; it is recalled how the original equa-
tions of motion are recovered from this action. In section 3, we proceed
systematically with the Hamiltonian analysis to identify the primary con-
straints. We show how a gauge choice becomes essential to carry out the
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Dirac procedure and choose a suitable gauge in order to facilitate the anal-
ysis of constraints. In section 4, we carry out the analysis of constraints in
some detail and show that, in this particular choice of gauge, the chain of
constraints terminates. In section 5, the evaluation of the Dirac brackets is
discussed, where we explicitly determine the Dirac brackets to linear order in
the background anti-symmetric field and demonstrate how noncommutativ-
ity of the coordinates on the boundary arises. We summarize our results in
section 6 and end with conclusions. In appendix 1, we briefly indicate how
the static gauge leads to an infinite chain of constraints and in appendix 2,
we point out the essential structure of the Dirac brackets to quadratic order
in the anti-symmetric background field.

2 The Action:

It is well known that the action for a membrane can be described by a Nambu-
Goto action, much like the action for a string. Thus, for example, the world
volume action for an open membrane in 11-dimensions, interacting with an
anti-symmetric background field, CMNP can be described by the action

S = T

(∫

Σ3

d3ξ

(√
g − 1

6
εijk∂iX

M∂jX
N∂kX

P CMNP

)
+

∫

∂Σ3

B

)
(1)

where T represents the tension of the membrane. Here M, N, P = 0, 1, .., 10
are indices of the 11-dimensional target space, ξ = (τ, σ1, σ2) are the coordi-
nates of the world volume of the membrane with the corresponding indices
taking values i, j, k = 0, 1, 2, g = det gij, where gij = GMN∂iX

M∂jX
N ; is the

induced metric on the membrane (We use a metric with signature (+,−,−)
on the world volume and one with signature (+,−,−, · · · ,−) in the target
space.). In addition to the anti-symmetric tensor background on the world
volume, here we also have a boundary term which is required for gauge invari-
ance of the action. Namely, with the boundary term, the action is invariant
under gauge transformations of the kind

C → C + dΛ

B → B − Λ (2)
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where Λ is the local, two form parameter of transformation. Combining C

and dB into a single 3-form

A = C + dB (3)

we can rewrite the action (1) in the following form:

S = T

∫

Σ3

d3ξ

(√
g − 1

6
εijk∂iX

M∂jX
N∂kX

P AMNP

)
(4)

For simplicity, we are going to choose both GMN and AMNP to be constants
(In fact, we will choose GMN = ηMN from now on.). In such a case, it is well
known that this action can describe an open membrane ending on p-branes
in the eleven dimensional target space.

In fact, let us note that the action (4) leads to the equations of motion

∂i

(√
ggijηMN∂jX

N − 1

2
εijkAMNP ∂jX

N∂kX
P

)
= 0 (5)

along with the boundary conditions

ni

(√
ggijηMN∂jX

N − 1

2
εijkAMNP∂jX

N∂kX
P

)
δXM = 0 (6)

where ni represents the unit normal vector. If we assume that our membrane
has a cylindrical topology characterized by 0 ≤ σ1 ≤ π, 0 ≤ σ2 ≤ 2π in units
of some length scale, this can, in fact, describe an open membrane terminat-
ing on p-branes. The Hamiltonian analysis, following from the action (4),
has been carried out in [5] with the gauge choices (for reparameterization
invariance)

X0 = τ, τ ∈ (∞,∞)

X9 = σ1L, σ1 ∈ [0, π]

X10 = σ2R, σ2 ∈ [0, 2π) (7)

where the radius of the compactified direction, X10, is R. (As we will see
later, in the case of membranes, gauge fixing becomes essential before car-
rying out an analysis of constraints.) It has been shown, in such a case,
how noncommutativity arises in the Dirac brackets. However, because of the
nonlinear nature of such a formulation, the analysis in [5] was done only in
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the linearized approximation (as well as other approximations) and it would
be nice to see if one can do the analysis without restricting to the linearized
approximation.

An alternate description for the membrane is through the first order ac-
tion of the form (due to Bergshoeff, London and Townsend) [6]

SBLT =

∫

Σ3

d3ξ
1

2V
(g − F̃2) (8)

Here we have defined

F̃ ≡ εijkF̃ijk = εijk(Fijk +
1

6
Aijk) (9)

where

Fijk = ∂[iUjk] = ∂iUjk + cyclic (10)

Aijk = ∂iX
M∂jX

N∂kX
PAMNP (11)

with AMNP defined earlier. Clearly, V (ξ) and Uij(ξ) are auxiliary field vari-
ables. If we now look at the equations of motion following from the action
(8), we obtain

∂i

(
1

V
ggij∂jX

NηMN − 1

2

F̃
V

εijk∂jX
N∂kX

PAMNP

)
= 0 (12)

∂i

(
F̃
V

)
= 0 (13)

g = F̃2 (14)

The constraint equations in (13) and (14) can be easily solved. Choosing the
solutions as

F̃ = TV =
√

g (15)

with T representing the tension in Eq. (4) and substituting these into Eq.
(12), we see that the dynamical equation for the coordinates coincides with
the one in (5) following from the action in (4).
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Similarly, we note that the boundary conditions following from the action
(8) take the forms

ni

(
(
1

V
)ggij∂jX

NηMN − (
F̃
2V

)εijk∂jX
N∂kX

PAMNP

)
δXM = 0 (16)

εijkniδUjk = 0 (17)

Using the solutions (15) for the auxiliary field equations, we see that Eq. (16)
reproduces the boundary condition (6) following from the action (4). The
second boundary condition, (17), can simply be satisfied by choosing U01 to
be a constant along σ1.

Due to the cylindrical topology of the membrane, in the presence of p-
branes, the boundary condition (6) or equivalently (16) reduces to

√
gg1j∂jXµ − 1

2
ε1jk∂jX

ν∂kX
ρAµνρ |σ1=0,π= 0, µ, ν = 0, 1, ..., p

(18)

Xa = xa
0, a = p + 1, ..., 10 (19)

where the coordinates, xa
0, specify the positions of the p-branes at the two

boundaries σ1 = 0, π.

3 Gauge fixing and the Hamiltonian:

We take the first order action (8) as the starting point of our canonical
description of the system. The goal, of course, is to find the Hamiltonian,
implement the boundary conditions as primary constraints, determine all the
constraints of the theory and derive the Dirac brackets for the system. The
problem, however, is that the action for the membrane is highly constrained.
Of course, even string theory has constraints. However, as we will show next,
the constraints in the case of membranes are much more difficult to deal with
and necessitate gauge fixing.

To see the difficulty, let us note that the Lagrangian density of the action
(8) is singular in the sense that the determinant of the coefficient matrix
multiplying the quadratic terms in velocities (namely, the Hessian matrix)

∂2LBLT

∂
.

X
M

∂
.

X
N

9



where

LBLT =
1

2V
(g − F̃2) (20)

vanishes. This, of course, reflects the fact that there are constraints in the
system. To see the nature of the constraints in a simple manner, let us
introduce the following notations. Let us separate the world volume indices
into time and space as i = (0, a) where a = 1, 2. In that case, it is easy to
check that the determinant of the metric can be written in the factorized
form

g = det gij =
(
g00 − g0ag

abgb0

)
det gab (21)

where, as we have defined earlier,

gab = ∂aX
M∂bX

NηMN , a, b = 1, 2

and gab( 6= gab) is the inverse of this in the two dimensional subspace. With
this notation, it is clear that the momentum, conjugate to XM , is given by

PM =
∂LBLT

∂ẊM

=
1

V

((
ẊM − ∂aXMgabgb0

)
det gab −

1

2
F̃εab∂aX

N∂bX
P AMNP

)

so that we can write

(
ηMN − ∂aXMgab∂bXN

)
ẊN =

1

g

(
V PM +

1

2
F̃εab∂aX

N∂bX
P AMNP

)
(22)

where we have introduced the notation g = det gab. There are several things
to note from the structure of Eq. (22). First, it follows immediately from
this equation as well as the definitions of gab, that

PM∂aX
M = 0, a = 1, 2 (23)

These are, in fact, the two generators of reparameterization symmetry along
the σ1, σ2 directions. The analogous relation in string theory is

PM∂σXM = 0
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wherePM∂σXM corresponds to the generator of σ reparameterization invari-
ance. The generator of reparameterization along the τ direction is the Hamil-
tonian as we will see later. However, more important from our point of view
is the fact that the matrix multiplying ẊN , on the left hand side of Eq. (22),
is a transverse projection operator and, therefore, the velocities cannot be
expressed in terms of the phase space variables. Since the boundary condi-
tions in Eq. (18) involve velocities, this also means that, as it stands, the
boundary conditions cannot be written as primary conditions on the phase
space so that the Dirac analysis cannot be carried out in a conventional
manner. We would like to emphasize that this is a new feature that is not
present in the Hamiltonian analysis of strings. It is not hard to see that the
origin of this difficulty lies in the reparameterization invariance in our theory.
If we fix a gauge, then the velocities can, in fact, be expressed in terms of
phase space variables and the Dirac analysis can be carried out. It is well
known that local symmetries, such as reparameterization invariance, lead to
first class constraints which need to be gauge fixed. However, normally, this
is done after the constraint analysis has been completed and all the con-
straints have been classified into first class and second class constraints. In
the present case, on the other hand, we cannot even carry out the constraint
analysis, because the boundary conditions cannot be written as phase space
constraints, unless we fix a gauge.

It is clear, therefore, that to carry out the Hamiltonian analysis for the
membrane, it is necessary to start with a gauge fixed action instead of the
action in (8). A conventional gauge choice (static gauge) such as

X0 = τ, g0a = 0 a = 1, 2

would fix all the reparameterization invariances of the theory and would allow
the velocities to be inverted. In this case, one can carry out the constraint
analysis, which leads to the expected behavior that the boundary condi-
tions induce an infinite chain of constraints (We will describe this briefly in
appendix 1.). However, the infinite number of such constraints are highly
nonlinear and, therefore, are not readily amenable to calculating Dirac brack-
ets.

We will, therefore, choose an alternate gauge condition which brings out
an interesting feature of our analysis, namely, that with a suitable gauge
choice, the chain of constraints can terminate. A finite set of constraints is
clearly much easier to handle, in calculating Dirac brackets. Let us look at
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the action (8) in the gauge

g0a = 0, a = 1, 2 (24)

Namely, we are going to fix only the reparameterization invariance along the
spatial directions (This is equivalent to fixing two of the spatial coordinates
which we take to be normal to the brane.).

In this gauge, action (8) takes the form

S =

∫

Σ3

d3ξ
1

2V

(
gẊMẊM − F̃2

)
(25)

This action still has a τ reparameterization invariance, but, as we will see,
it does not interfere with the Hamiltonian analysis of the system. It is now
straightforward to determine the canonical momenta from Eq. (25) and they
take the forms

PM =
∂L

∂ẊM
=

g

V
ẊM − F̃

2V
ε0ab∂aX

N∂bX
PAMNP

Π(U)ab =
∂L

∂U̇ab

= −3F̃
V

εoab = −3F̃
V

εab

Π(U)oa =
∂L

∂U̇0a

≈ 0

PV =
∂L

∂V̇
≈ 0 (26)

Here PM , Π(U)ab, Π(U)oa, and PV are momenta conjugate to the fields XM , Uab,
U0a and V respectively and it is clear that we have two primary constraints
in the theory given by the last two equations in (26).

It is also clear from Eq. (26) that the velocities can be inverted and we
have

ẊM =
V

g
PM (27)

where we have defined

PM≡PM − 1

6
Π(U)ab∂aX

N∂bX
PAMNP (28)
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The canonical Hamiltonian can now be determined and has the form

Hcan = P MẊM + Π(U)abU̇ab − L (29)

and, using (26) and (27), can be written in the form

Hcan =
V

2g
P2 − V

72
(Π(U)abεab)

2 + 2Π(U)ab∂aU0b (30)

We can now derive the boundary conditions following from the action (25)
which, using Eq. (27), can be converted to phase space constraints of the
form (

ga1∂aXµP2 +
1

3
Π(U)a1Pν∂aX

λAµνλ

)∣∣∣∣
σ1=0,π

≈ 0 (31)

With this, we are now ready to carry out the constraint analysis for the
system, which we take up in the next section.

We note here that in the constraint analysis of ref [5], the three form back-
ground was chosen to be purely magnetic, namely, A0IJ = 0, I, J = 1, 2, ..., p
and only the spatial components, AIJK , are nonzero. However, our con-
straint analysis in the next section and the evaluation of the Dirac brackets
in section 5 do not crucially depend on such a choice for the A-field. On the
other hand, let us note that if A0IJ were nonzero, then it is likely that the
DB of the time component of the boundary string coordinate X0(τ, σ2) with
a spatial component of string coordinate will be nonzero and the same result
will hold for the DB of time-time coordinates. Although, the consequences
of noncommutativity of these coordinates have not been investigated in de-
tail, it is well known from the analysis of the corresponding D-brane open
string that such noncommutativity of space-time and time-time coordinates
pose some difficulty in formulating the perturbative Feynman rules [12]. On
the other hand, there are persuasive reasons to believe that space and time
coordinates may not commute, based on some general arguments as well as
certain string and M-theoretic analysis leading to space-time uncertainty re-
lations [13, 14, 15]. In view of all these possibilities, we have kept our analysis
quite general without choosing any specific form for the A-field .

4 Constraint analysis:

In the previous section, we determined the canonical Hamiltonian of the
system in the gauge (24) and noted the two primary constraints following
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from the definition of the conjugate momenta. Adding to these the boundary
constraints, the complete set of primary constraints can be written as

ϕ1 = PV ≈ 0

ϕa
2 = Π(U)oa ≈ 0

ϕ3µ = (ga1∂aXµP2 +
1

3
Π(U)a1Pν∂aX

λAµνλ)δ(σ1) ≈ 0

ϕ4µ = (ga1∂aXµP2 +
1

3
Π(U)a1Pν∂aX

λAµνλ)δ(σ1 − π) ≈ 0 (32)

Adding these primary constraints to the canonical Hamiltonian (30), we ob-
tain the Hamiltonian for the system to be

H =
V

2g
P2 − V

72
(Π(U)abεab)

2 + 2Π(U)ab∂aU0b + cϕ1 + kaϕ
a
2 + λµϕ3µ + λ̃µϕ4µ

(33)

where c, ka, λ
µ, and λ̃µ are Lagrange multipliers.

The analysis for the consistency of constraints can now be carried out in
a straightforward manner. The consistency condition

ϕ̇1 =

{
ϕ1,

∫
H

}
≈ 0 (34)

leads to

λµ = λ̃µ = 0

ϕ5 =
P2

2g
− 1

72

(
Π(U)abεab

)2 ≈ 0 (35)

There are a couple of points to be noted from this. First, the vanishing of the
Lagrange multipliers, λµ and λ̃µ, can be understood intuitively as follows. We
have already seen in Eq. (27) that the velocities can be expressed in terms
of the phase space variables as

ẊM =
V

g
PM

On the other hand, if we calculate directly, using the Hamiltonian (33), we
have

ẊM =

{
XM ,

∫
H

}
(36)
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and we find that the two are compatible only if λµ = 0 = λ̃µ. The second
point to note from Eq. (35) is that the non-evolution of the constraint ϕ1

leads to a secondary constraint, ϕ5, which, as we will see shortly, is simply
the constraint reflecting the τ reparameterization invariance of the theory.
But, for the present, we only note that the consistency of this secondary
constraint leads to no further constraint.

Let us next note that the consistency of the second constraint in Eq. (32),

ϕ̇a
2 =

{
ϕa

2,

∫
H

}
≈ 0

leads to a secondary constraint of the form

ϕa
6 = ∂bΠ

(U)ba ≈ 0 (37)

This is the analog of Gauss’ law in electrodynamics and it can be easily
checked that the consistency of this constraint leads to no new constraints.
Furthermore, it is clear now that with Eq. (37), the constraint in Eq. (35)
simply says that the canonical Hamiltonian (and, therefore, H) vanishes in
this theory, which is a reflection of the τ reparameterization invariance of the
theory. Notice that, since Uab is a cyclic variable in our theory, it follows that
Π(U)ab is a constant of motion. Thus, together with Eq. (37), this implies
that Π(U)ab is truly a constant, which in turn implies, from Eq. (35), that P2

g

is a constant. Without loss of generality we choose

P2

g
= 1 (38)

With the help of Eq. (38), the boundary conditions can now be rewritten
(reduced) as

ϕ3µ = (g ga1∂aXµ +
1

3
Π(U)a1Pν∂aX

λAµνλ)δ(σ1) ≈ 0

ϕ4µ = (g ga1∂aXµ +
1

3
Π(U)a1Pν∂aX

λAµνλ)δ(σ1 − π) ≈ 0 (39)

Consistency of the boundary constraint ϕ3µ ≈ 0,

ϕ̇3µ =

{
ϕ3µ,

∫
H

}
≈ 0
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leads to the secondary constraint,

ϕ7µ = δ(σ1)

[
ga1∂a[

V

g
Pµ] + εab∂aXµ∂(bX

λ∂2)[
V

g
Pλ] +

V

3g
Π(U)a1AµνλPν∂aPλ

−1

3
Π(U)a1Aµνλ∂aX

λ∂c[V gbc∂bX
ν ]

]
(40)

In deriving Eq. (40), we have used the relations {Pµ(σ),Pν(σ
′)} ≈ 0, which

follows from the Gauss’ law constraint, as well as the following PB
{
PµPµ(σ),

1

g(σ′)

}
= − 4

g(σ′)
gab(σ′)∂aXν(σ

′)∂bδ(σ − σ
′

) (41)

Since the Hamiltonian (33) contains a term of the form cPV and the
secondary constraint ϕ7µ depends on V as well as ∂V , consistency of this
new constraint

ϕ̇7µ =

{
ϕ7µ,

∫
H

}
≈ 0

simply determines the Lagrange multiplier c and leads to no further con-
straint. The expression for the Lagrange multiplier is complicated and its
explicit form is not very crucial for our analysis; therefore, we do not present
it here. An identical analysis goes through for the constraint ϕ4µ at the other
boundary and generates only one secondary constraint ϕ8µ, whose structure
is identical to that of ϕ7µ except that it is at the other boundary. What we
have found is truly remarkable. We may recall that the boundary constraints,
in the context of string theory as well as in the analysis of constraints in [5],
led to an infinite chain of constraints. In contrast, we find that in a par-
ticular gauge, the boundary constraints for the case at hand lead to only
one secondary constraint at each boundary. Namely, the chain of constraints
actually terminates which is quite desirable from the point of view of calculat-
ing Dirac brackets. We have also carried out the constraint analysis, starting
from our action in the static gauge and indeed, we find that the infinite chain
of constraints do appear. That is, had we worked in a different gauge, there
would be an infinite chain of constraints as normally expected. It is known in
the literature that the noncommutativity arising in Dirac brackets depends
on the gauge choice (which, however, cannot be eliminated). However, what
we find here is that the nature of the constraint chain itself depends on the
choice of gauge. This is, in fact, the only example that we are aware of,
where the constraint chain for boundary conditions terminates [16].
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5 Dirac brackets:

Since we have determined all the constraints of our theory, it is now straight-
forward, in principle, to determine the Dirac brackets. However, we note that
the boundary constraints, (31) and (40), are, in particular, highly nonlinear
and, consequently, evaluation of the inverse of the matrix of constraints is, in
general, a very difficult problem. Things, however, do simplify enormously
if we use a weak field approximation for Aµνλ. In this case, it is easy to
determine the inverse of the matrix of constraints in an iterative manner to
any order in the Aµνλ field. Let us demonstrate this by first calculating the
Dirac bracket to linear order in Aµνλ. In appendix 2, we will indicate the
structure of the Dirac brackets to second order in this field.

Let us note that among the entire set of constraints including the primary
constraints ϕ1, ϕ

a
2, ϕ3µ, ϕ4µ and the secondary constraints ϕ5, ϕ

a
6, ϕ7µ, ϕ8µ,

only the boundary constraints ϕ3µ, ϕ7µ, ϕ4µ and ϕ8µ are second class con-
straints. The other constraints are all first class and can be handled by choos-
ing appropriate gauge fixing conditions. These (first class) constraints do not
influence the evaluation of the Dirac bracket of the coordinates {Xµ, Xν}D

(in which we are interested) and, consequently, we will ignore them for our
analysis. Furthermore, the analysis of the Dirac bracket using the constraints
at the second boundary (σ1 = π) is completely parallel to that at the first
boundary (σ1 = 0) so that we will describe the analysis using only one set of
constraints, say ϕ3µ, ϕ7µ.

The constraints ϕ3µ, ϕ7µ are second class and, therefore, the Dirac bracket
between the coordinates takes the form

{Xµ(σ), Xν(σ
′)}D = −

∫
d2σ′′d2σ′′′ {Xµ(σ), φA(σ′′)}C−1AB(σ′′, σ′′′)

×{φB(σ′′′), Xν(σ
′)} (42)

where φA ≡ (ϕ3µ, ϕ7µ) and

CAB(σ, σ′) =

(
{ϕ3µ(σ), ϕ3ν(σ

′)} {ϕ3µ(σ), ϕ7ν(σ
′)}

{ϕ7ν(σ
′), ϕ3µ(σ)} {ϕ7µ(σ), ϕ7ν(σ

′)}

)
(43)

We can, of course, calculate exactly all the brackets entering into the
matrix, CAB. However, determining the inverse matrix exactly is a techni-
cally nontrivial problem. It is here that the weak field approximation is of
immense help (We want to emphasize that there is no other approximation
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used in our derivations.). To proceed, let us note that

{ϕ3µ(σ), Xλ(σ
′)} = −δ(σ1)

3
Π(U)a1∂aX

ρAµλρδ(σ − σ′) (44)

{ϕ7µ(σ), Xλ(σ
′)} = δ(σ1)

(
εabgb2∂a

(
V

g
δ(σ − σ′)

)
ηµλ

+εab∂aXµ∂(bXλ∂2)

(
V

g
δ(σ − σ′)

)

+
V

3g
Π(U)a1Aµλρ ((∂aPρ) −Pρ∂a) δ(σ − σ′)

)
(45)

Here and in what follows [a1 · · ·an] would stand for anti-symmetrization,
while (a1 · · ·an) would denote symmetrization of indices. We also note that,
unless explicitly denoted, all quantities depend on σ (σ′ dependence will be
explicitly displayed). Let us parameterize these relations as

{ϕ3µ(σ), Xλ(σ
′)} = Sµλδ(σ − σ′) (46)

{ϕ7µ(σ), Xλ(σ
′)} = Tµλδ(σ − σ′) + Uµλδ(σ − σ′) (47)

where

Sµλ(σ) = −δ(σ1)

3
Π(U)a1∂aX

ρAµλρ (48)

Tµλ(σ) = δ(σ1)
(
εabgb2∂a

(
V

g

)
ηµλ

+εab∂aXµ∂(bXλ∂2)

(
V

g

)
(49)

+
V

g

(
εabgb2ηµλ + εbc∂bXµ∂cXλδ

a
2

−εab∂bXµ∂2Xλ

)
∂a

)

≡ Ωµλ(σ) + Γa
µλ(σ)∂a

Uµλ(σ) = δ(σ1)
V

3g
Π(U)a1Aµλρ ((∂aPρ) − Pρ∂a) (50)

Here, we have separated the Poisson bracket structures into terms that de-
pend on Aµνλ and those which do not. Thus, for example Sµν and Uµν are
linearly dependent on Aµνλ while Tµν is independent of Aµνλ. This is, in

18



fact, quite natural and useful since we are going to be expanding in powers
of Aµνλ. Furthermore, note that it is best to think of S, T, U as operators
acting on the delta function, so that S is a multiplicative operator while T

and U each has a multiplicative part as well as a part that is linear in the
derivative operator. For example, Ωµλ represents the multiplicative operator
in Tµλ, while Γa

µλ∂a corresponds to the terms with the derivative operator.
Let us next analyze the structure of the inverse of the matrix CAB. If we

represent the matrix obtained from the mutual PB of second class constraints
in the generic form as

CAB =

(
a b

c d

)
(51)

where a, b, c, d are themselves matrices (with indices suppressed for simplic-
ity), then, it can be easily checked that the inverse has the form

(C−1)AB =

(
α β

γ δ

)
(52)

where

α = (a − bd−1c)−1

β = (c − db−1a)−1

γ = (b − ac−1d)−1

δ = −b−1a(c − db−1a)−1 (53)

Once we know the constraint matrix (namely, a, b, c, d), it is clear that we
can calculate the inverse to any given order in Aµνλ by a suitable expansion
technique, using Eq. (53). The Dirac bracket for the coordinates, of course,
has the (symbolic) form

{X, X}D =
(
S̃αS + (T̃ + Ũ)γS + S̃β(T + U) + (T̃ + Ũ)δ(T + U)

)
(54)

where S̃, · · · represent the transposed operators corresponding to S, · · · in
the complete space.

Let us note next that we are interested in terms which are linear in Aµνλ

in the Dirac bracket in Eq. (54). Since S and U are already linear in this
field, the Dirac bracket simplifies and takes the form

{X, X}D =
(
T̃ γ(0)S + S̃β(0)T + T̃ δ(0)U + Ũδ(0)T + T̃ δ(1)T

)
(55)
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where, clearly, β(0), γ(0), δ(0), in the first four terms on the right hand side,
do not contain Aµνλ, while δ(1) in the last term is linear in this field (The
superscript signifies the number of Aµνλ contained.).

To evaluate the Dirac bracket, let us note that

{φ3µ(σ), φ3ν(σ
′)} =

δ(σ1)δ(σ
′

1)

3
Π(U)a1

(
− εbc∂aX

λ(σ′)g2cAµνλ∂bδ(σ − σ′)

+εbc∂aX
λg2c(σ

′)Aµνλ∂bδ(σ − σ′)

+εbc∂aX
ρ(σ′)∂bXµAνλρ(∂(cX

λ∂2)δ(σ − σ′))

−εbc∂aX
ρ∂bXν(σ

′)Aµλρ(∂
′

(cX
λ(σ′)∂2)δ(σ − σ′))

+
3

g
Π(U)b1AµλρAναγη

αρPλ∂aX
γ(σ′)∂bδ(σ − σ′)

−3

g
Π(U)b1AµλρAναγη

λγPα(σ′)∂aX
ρ∂

′

bδ(σ − σ′)
)

(56)

It is clear from this that the element “a” in the coefficient matrix CAB is
linearly and quadratically dependent on Aµνλ. Since we are interested only
in terms which are linear in Aµνλ in the Dirac bracket, we can neglect the
terms quadratic in Aµνλ in this Poisson bracket to write

{φ3µ(σ), φ3ν(σ
′)} = Vµν(σ, σ′) + Wµν(σ, σ′) (57)

where Vµν , Wµν are respectively the symmetric and the anti-symmetric parts
(in the Lorentz index) of the terms in Eq. (56) which are linear in Aµνλ,
namely,

Vµν(σ, σ′) =
δ(σ1)δ(σ

′
1)

6
Π(U)a1εbc

(
∂aX

ρ(σ′)∂bX(µAν)λρ∂(cX
λ∂2)

−∂aX
ρ∂bX(ν(σ

′)Aµ)λρ∂
′

(cX
λ(σ′)∂2)

)
δ(σ − σ′) (58)

and

Wµν(σ, σ′) =
δ(σ1)δ(σ

′
1)

6
Π(U)a1εbc

(
− 2∂aX

λ(σ′)g2cAµνλ∂b

+2∂aX
λg2c(σ

′)Aµνλ∂b + ∂aX
ρ(σ′)∂bX[µAν]λρ∂(cX

λ∂2)

−∂aX
ρ∂bX[ν(σ

′)Aµ]λρ∂
′

(cX
λ(σ′)∂2)

)
δ(σ − σ′) (59)
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Thus, we see that since “a” is already linear in the field Aµνλ, it now follows
from Eq. (53) that

β(0) = c−1
∣∣
Aµνλ=0

γ(0) = b−1
∣∣
Aµνλ=0

δ(0) = 0

δ(1) = − b−1ac−1
∣∣ (60)

where in the last expression b, c are restricted to be evaluated with Aµνλ =
0. It is worth noting from (60) and (54) that since δ(0) = 0, the Dirac
bracket vanishes to zeroth order in the Aµνλ field. This is consistent with
our understanding that noncommutativity arises in the presence of an anti-
symmetric background.

Since we already know the structure of the element a, it is clear that,
at this order, all the relevant elements of the inverse matrix are determined
completely from a knowledge of the elements b, c which are related to each
other. Let us next analyze the structure of these elements. Defining,

Mµν(σ, σ′) = {φ3µ(σ), φ7ν(σ
′)}|

Aµνλ=0 (61)

it is straightforward to calculate and show that

Mµν(σ, σ′) = −δ(σ1)δ(σ
′
1)ε

abεcd

[
gb2(σ

′)∂
′

a

(
V (σ

′

)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)Xν∂cXµ

+
V (σ′)

g(σ′)
∂

′

cδ(σ − σ′)gd2ηµν

)

−∂aXν(σ
′)∂(bXλ(σ

′)∂
′

2)

(
V (σ′)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)X
λ∂cXµ

+
V (σ′)

g(σ′)
∂

′

cδ(σ − σ′)gd2δ
λ
µ

)]

= Gµν(σ, σ′) + Fµν(σ, σ′) (62)

where Gµν and Fµν represent the symmetric and the antisymmetric parts of
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Mµν in the Lorentz indices. More explicitly,

Gµν(σ, σ′) = −δ(σ1)δ(σ
′
1)

2
εabεcd

[
gd2(σ

′)∂
′

a

(
V (σ′)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)X(ν∂cXµ)

)

+gb2(σ
′)∂

′

a

(
V (σ′)

g(σ′)
∂

′

cδ(σ − σ′)gd2ηµν

)

+∂aX(ν(σ
′)∂(2Xλ(σ

′)∂
′

b)

(
V (σ′)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)X
λ∂cXµ)

)

+∂aX(ν(σ
′)∂(2Xµ)(σ

′)∂
′

b)

(
∂

′

cδ(σ − σ′)gd2

) ]
(63)

Fµν(σ, σ
′

) = −δ(σ1)δ(σ
′
1)

2
εabεcd

[
gb2(σ

′)∂
′

a

(
V (σ′)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)X[ν∂cXµ]

)

+∂aX[ν(σ
′)∂(bXλ(σ

′)∂
′

2)

(
V (σ′)

g(σ′)
∂

′

(dδ(σ − σ′)∂2)X
λ∂cXµ]

)

+∂aX[ν(σ
′)∂(bXµ](σ

′)∂
′

2)

(
V (σ′)

g(σ′)
∂

′

cδ(σ − σ′)gd2

)]
(64)

Thus, we can write the inverse of Mµν formally as

(M−1)µν(σ, σ′) =
(
(G + F )−1)µν

(σ, σ′) (65)

The important thing to note here is that, since neither Gµν nor Fµν vanishes,
the inverse exists and contains both symmetric and antisymmetric parts.
This, therefore, determines b−1 which is related to c−1 through a negative
sign. Therefore, we are now ready to write down the Dirac bracket between
the coordinates in the linear approximation in the Aµνλ field.

Substituting all of this into Eq. (55), we find that the Dirac bracket has
the form

{Xµ(σ), Xν(σ
′)}D =

[
T̃µλ

(
(G + F )−1)λρ

Sρν

−S̃µλ

((
(G + F )−1)λρ

Tρν

)
(66)

+ T̃µλ

((
(F + G)−1(V + W )(F + G)−1

)λρ
Tρν

)]
(σ, σ′)

where the derivative operators in the factor T on the right are assumed to
act on the factor to the left within the parenthesis with a negative sign (We
will give the explicit form of this Dirac bracket in appendix 2). It is worth
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emphasizing here that because of the structure of the boundary constraints
in Eqs. (39) and (40), the σ1 coordinate is fixed at the boundary (to be 0, π)
and, therefore, the Dirac bracket, evaluated at equal τ , effectively depends
only on the world volume coordinates τ, σ2. This shows that the boundary
string coordinates indeed become noncommutative in the presence of an anti-
symmetric background field and what is even more interesting is that they
have a structure that is quite analogous to that in the case of strings.

6 Summary and Discussions

We have studied an open membrane, with cylindrical geometry, ending on
p-branes. The boundary of the open membrane on the brane is a closed
string. We have confined our attention to a background configuration where
the target space metric and the three-form potential are constant. We have
also incorporated a two-form potential, on the boundary, whose presence is
necessary to maintain gauge invariance.

The world volume action is conventionally chosen to be of Nambu-Goto
form. We have adopted a modified action which has some distinct advantages
as discussed in the text. We have treated the boundary conditions as primary
constraints and have shown that, one can carry out the Dirac formalism
without restricting to the linearized approximation of the action. We have
also introduced a gauge choice, different from the one adopted in ref [5], and
have shown that the Dirac procedure, in this gauge, leads to a finite number
constraints. As a consequence, we are able to compute the PB brackets of all
the second class constraints which are necessary for the evaluation of Dirac
brackets.

Since the second class constraints are highly nonlinear, one, however, has
to adopt an approximation scheme in order to determine the inverse of the
matrix of constraints. In the absence of a length scale (i.e. there is no ana-
logue of α′ here), we evaluate the inverse matrix as well as the Dirac brackets
order by order in Aµνλ, assuming that this constant background can be taken
to be small (we have chosen background metric to be ηµν for simplicity). As
a consistency check, we find that the DB between coordinates on the bound-
ary (circle) vanishes when the A-field is set to zero. We have computed the
noncommutativity (strictly speaking DB) up to quadratic terms in the three
form field. Since, we carry out the computations in a different gauge, our
DB relations differ from ref. [5] (As is well known, the noncommutativity in
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the Dirac brackets is gauge dependent.).
We would like to note here that we have also carried out the double

dimensional reduction [17] (although we do not discuss it here) as another
consistency check, where one of the coordinates say X10 is compactified on a
circle and it is chosen to be identical to one of the world volume coordinates,
say σ2. Furthermore, as is customary for double dimensional reduction on
a circle, if we assume that the rest of the coordinates are independent of
σ2, then we obtain the reduced action corresponding to that of Cederwall
and Townsend [18] as was employed in [7]. Thus, if one had started from
the action [18], one could have carried out the constraint analysis through a
slightly different route for open strings ending on D-branes.

We may recall, that the two form potential, introduced on the boundary
to ensure gauge invariance, is actually space-time dependent for a constant
field strength (H = dB in form notation). Recently, it has been pointed
out, in the context of strings ending on D-branes, that such space-time de-
pendent (even for constant H-field) theories result in noncommutative field
theories which do not respect associativity [19]. The ⋆ product, in such a
case, is replaced by a generalized product constructed by Kontsevich [20].
Note that the boundary of the membrane is a closed string, in contrast to
the case where the boundary of an open string ending on a D-brane is a
point, a D0-brane. When this D0-brane couples to a gauge potential, whose
field strength is taken to be constant for a constant B-field, the gauge theory
becomes noncommutative. As is argued in [19], for a space-time dependent
B-field, in the case of open strings ending on a D-brane, on the other hand,
one has a noncommutative and nonassociative • product. In our study of
open membranes with a cylindrical topology, we have closed strings on the
boundary. With a space-time dependent B-field whose field strength is space-
time dependent, therefore, we speculate that the underlying field theory of
strings will be described by an underlying geometry which is noncommutative
as well as nonassociative. At this stage, we do not have any insight to com-
ment on how noncommutativity of string coordinates, in general, will modify
the formulation of open string field theory [21] or closed string field theory
[22]. However, based on the developments in noncommutative gauge theo-
ries from the point of view of D-branes, our conjecture may have interesting
implications for string field theories.

24



Acknowledgments

AD would like to thank S. Minwalla for a helpful discussion and JM would
like to acknowledge support from the Albert Einstein Institute and the warm
hospitality of Professor Hermann Nicolai. This work is supported in part by
US DOE Grant No. DE-FG 02-91ER40685.

25



Appendix 1:

In this appendix, we indicate briefly how the infinite chain of constraints
arises with the conventional choice of static gauge. Let us choose

X0 = τ, g0a = 0 a = 1, 2 (67)

In such a gauge, all the reparameterization invariance is fixed and the BLT
action takes the form

S =

∫
d3ξ L =

∫
d3ξ

1

2V

(
g(1 + ẊMẊM) − F̃2

)
(68)

Here, the indices M take only spatial values 1, 2, · · · , 10. The momenta, in
this gauge, have the forms

PM =
∂L

∂ẊM
=

g

V
ẊM − 1

2V
F̃εabAMNP∂aX

N∂bX
P

Π(U)ab =
∂L

∂U̇ab

= −3εab

V
F̃

Π(U)0a =
∂L

∂U̇0a

≈ 0

PV =
∂L

∂V̇
≈ 0 (69)

Thus, we see that the velocities can be inverted and that we have two primary
constraints as before. Let us define, as in the analysis of section 3 (except
that now indices take only spatial values),

PM = PM − 1

6
Π(U)abAMNP ∂aX

N∂bX
P (70)

With this, as well as our assumption of a cylindrical topology for the open
membrane, the boundary conditions take the form

[(
P2 +

(
g

V

)2
)

ga1∂aXµ +
1

3
Π(U)a1AµνλPν∂aX

λ

]

σ1=0,π

≈ 0 (71)
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Thus, we can write all the primary constraints, in this gauge, to be

ϕ1 = PV ≈ 0

ϕa
2 = Π(U)0a ≈ 0

ϕ3µ =

((
P2 +

(
g

V

)2
)

ga1∂aXµ +
1

3
Π(U)a1AµνλPν∂aX

λ

)
δ(σ1) ≈ 0 (72)

ϕ4µ =

((
P2 +

(
g

V

)2
)

ga1∂aXµ +
1

3
Π(U)a1AµνλPnu∂aX

λ

)
δ(σ1 − π) ≈ 0

The total Hamiltonian for the system, including the primary constraints, has
the form,

H =
V

2g

(
P2 −

(
g

V

)2
)

− V

72

(
εabΠ

(U)ab
)2

+ 2Π(U)ab∂aU0b

+cϕ1 + kaϕ
a
2 + λµϕ3µ + λ̃µϕ4µ (73)

So far everything seems completely parallel to the discussion in section 4

except for the extra
(

g

V

)2
terms in the boundary conditions as well as in the

Hamiltonian. As we will see, these make all the difference.
The constraint analysis can be carried out now. Requiring ϕ̇1 ≈ 0 leads

to

λµ = 0 = λ̃µ

ϕ5 =
1

2g

(
P2 +

(
g

V

)2
)

− 1

72

(
εabΠ

(U)ab
)2 ≈ 0 (74)

As before, there is a secondary constraint, which, however, does not corre-
spond to the vanishing of the Hamiltonian. In fact, there is no reason for
it to, since we have already gauge fixed the τ reparameterization invariance.
Requiring ϕ̇5 ≈ 0, as is easily seen, determines the Lagrange multiplier c.
This is already a point of departure from the earlier analysis. (Namely, ear-
lier, the secondary condition implied the vanishing of the Hamiltonian which
is automatically invariant under time evolution. But in the present case, the
new constraint does not correspond to the vanishing of the Hamiltonian and,
therefore, leads to a nontrivial relation, namely it determines the Lagrange
multiplier c.)
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Requiring ϕ̇a
2 ≈ 0 leads, as before, to the Gauss’ Law constraint

ϕa
6 = ∂bΠ

(U)ab ≈ 0 (75)

which does not generate any further constraint. Turning now to the boundary
constraints, we recognize that, since the Lagrange multiplier c is already
determined and that the boundary constraints do not depend on the field
U0a, their consistency can only lead to new (secondary) constraints which, in
turn, will lead to tertiary constraints and so on. Explicit calculation, indeed,
do verify this. Namely, in this gauge, the boundary constraints do lead to an
infinite chain of constraints as is normally expected.

Appendix 2:

In this appendix, we will give the explicit form of the Dirac bracket, linear
in Aµνλ, defined in Eq. (66) as well as indicate the structure of the Dirac
bracket up to quadratic terms in Aµνλ.

Let us recall that (see Eq. (60))
(
β(0)
)µν

=
(
c−1
)µν∣∣

Aµνλ=0
= −

(
(F + G)−1

)µν

(
γ0
)µν

=
(
b−1
)µν∣∣

Aµνλ=0
=
(
(F + G)−1

)µν

(
δ(1)
)µν

= −
(
b−1ac−1

)µν∣∣ =
(
(F + G)−1(V + W )(F + G)−1

)µν
(76)

The Dirac bracket between the coordinates, linear in Aµνλ (see Eq. (66)),
can now be written out explicitly as

{Xµ(σ), Xν(σ
′)}

D

= Ω̃µλ(σ)
(
γ(0)
)λρ

(σ, σ′)Sρν(σ
′) − ∂a

(
Γ̃a

µλ(σ)
(
γ(0)
)λρ

(σ, σ′)Sρν(σ
′)
)

− S̃µλ(σ)
(
β(0)
)λρ

(σ, σ′)Ωρν(σ
′) + ∂′

a

(
S̃µλ(σ)

(
β(0)
)λρ

(σ, σ′)Γρν(σ
′)
)

+ Ω̃µλ(σ)
(
δ(1)
)λρ

(σ, σ′)Ωρν(σ
′) − ∂a

(
Γ̃a

µλ(σ)
(
δ(1)
)λρ

(σ, σ′)Ωρν(σ
′)
)

(77)

− ∂′
a

(
Ω̃µλ(σ)

(
δ(1)
)λρ

(σ, σ′)Γa
ρν(σ

′)
)

+ ∂a∂
′
b

(
Γ̃a

µλ(σ)
(
δ(1)
)λρ

(σ, σ′)Γb
ρν(σ

′)
)

We note here that the Dirac bracket can be specified completely in terms of
the coordinates and the Aµνλ field with the identification (see Eqs. (35) and
(38))

Π(U)ab = 3εab (78)
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Let us next indicate briefly the structure of the Dirac bracket between
coordinates up to quadratic order in the Aµνλ fields. From Eq. (54) and
from the structure of various quantities in there, we see that up to quadratic
order in Aµνλ, the Dirac bracket will contain, in addition to the terms on the
right hand side in Eq. (77), terms which are quadratic in Aµνλ. These can
be written symbolically as

{Xµ, Xν}(2)
DB

=
(
S̃α(0)S + Ũγ(0)S + S̃β(0)U

)

+
(
T̃ γ(1)S + S̃β(1)T + T̃ δ(1)U + Ũδ(1)T

)
+ T̃ δ(2)T(79)

To determine this, let us note that we can decompose and write the elements
of the matrix of constraints as a series of terms containing different powers
of Aµνλ. Namely, let us write

a = a(1) + a(2)

b = b(0) + b(1) + b(2)

c = c(0) + c(1) + c(2)

d = d(0) + d(1) + d(2) (80)

It is important to recognize that, since the constraints are at best linear
in Aµνλ, the elements of the constraint matrix can at most have quadratic
dependence on Aµνλ.

With this, we can determine the elements of the inverse matrix pertur-
batively. At the zeroth order, they take the forms

α(0) = −
(
c(0)
)−1

d(0)
(
b(0)
)−1

β(0) =
(
c(0)
)−1

γ(0) =
(
b(0)
)−1

δ(0) = 0 (81)
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At linear order, they are determined to be

α(1) = −α(0)
(
a(1) − b(0)

(
d(0)
)−1

c(1) − b(1)
(
d(0)
)−1

c(0)

+b(0)
(
d(0)
)−1

d(1)
(
d(0)
)−1

c(0)
)

α(0)

β(1) = −β(0)
(
c(1) − d(0)

(
b(0)
)−1

a(1)
)

β(0)

γ(1) = −γ(0)
(
b(1) − a(1)

(
c(0)
)−1

d(0)
)

γ(0)

δ(1) = −
(
b(0)
)−1

a(1)
(
c(0)
)−1

(82)

And, finally, the last term that is needed for the Dirac bracket at the quadratic
order (79) is determined to be

δ(2) =
(
b(0)
)−1

a(1)
(
c(0)
)−1
(
c(1) − d(0)

(
b(0)
)−1

a(1)
) (

c(0)
)−1

−
(
b(0)
)−1
(
a(2) − b(1)

(
b(0)
)−1

a(1)
) (

c(0)
)−1

(83)

Substituting these into Eq. (79) determines explicitly the Dirac bracket for
the coordinates that is quadratic in the Aµνλ fields. In fact, this iterative
procedure can be carried out to any order in the field Aµνλ
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