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1. Introduction

The AdS/CFT correspondence [[l]-[fi] has proved to be very crucial in establishing corre-
spondence between superstring and supersymmetric gauge theories. The AdS/CFT cor-
respondence becomes tractable essentially in two different situations. Namely, when the 't
Hooft coupling (g%, u V) is small, one can adopt the large N technique to carry out com-
putations in the superYang-Mills (SYM) sector [{]-[[§]. On the other hand, for the large
values of 't Hooft coupling, the duality argument can be invoked to facilitate computations
in the string theory perturbation (inverse tension) frame work [L§]-[RZ]. For values of the
't Hooft coupling which are neither small nor large, there is no obvious simplification. In
a recent paper, Bena, Polchinski and Roiban [PJ] studied the integrability properties of
the superstring propagating on the AdSs x S° background with a goal of exploring the
dynamics of the string theory for such an intermediate coupling when the string theory is
not necessarily in the perturbative regime.

The integrability properties of SYM have been subject of considerable interest in recent
years. The conformal group in four dimensions is identified to be SO(4,2) and dilatation
is one of its generators. It is well known in various computations to establish AdS/CFT
correspondence, the Yang-Mills theory lives on R x S3 and the dilatation operator D is
the hamiltonian in the radial quantization scheme [R4). Minahan and Zarembo [{f]-[[2]
computed anomalous dimensions of a class composite operators of N’ =4 SYM in the large
N limit at the one loop level. They show that the anomalous dimension operator, in the
radial quantization, is related to a spin chain quantum hamiltonian which is known to be



integrable. There is also correspondence between semiclassical string states and composite
operators of SYM [R5]. It has been argued by Dolan, Nappi and Witten [€] that the
integrability property of SYM unraveled in this context is intimately connected with the
yangian symmetry (see for a review [27]) associated with N' =4 SYM when one sets the
Yang-Mills coupling to zero. Furthermore, they conjecture that the yangian symmetry
discovered for the SYM is related to the yangian symmetry which one expects to obtain
due to the presence of conserved nonlocal currents for the superstring when it propagates in
AdSs x S® background. Therefore, the hidden symmetries uncovered by Bena, Polchinski
and Roiban [RJ] are connected with the integrability properties of SYM discussed above.

If one considers a bosonic string in an AdS,, space, the worldsheet action may be
identified with an O(n) nonlinear o-model [R§] and one may adopt well known prescriptions
to construct a family of nonlocal conserved currents [RJ] for such a case which is responsible
for the classical integrability of the model. Let us recall how the AdS5 x S° geometry arises
in type IIB string theory. The 5-dimensional extremal black hole solution is obtained
with appropriate choice of backgrounds which solve the equations of motion. Of special
significance, in this case, is the fact that the five form RR flux and the dilaton assume
constant values. Subsequently, the near horizon limit is taken which leads to the geometry
of AdSs x S°. Therefore, the worldsheet action for such a theory is to be constructed
keeping in mind the presence of constant RR background.

In such a case, the standard technique of [@] becomes inadequate. This is due to
the fact that the NSR formalism is inapplicable to construct a suitable nonlinear o-model
action on the worldsheet. Consequently, it is the Green-Schwarz formalism that is more
appropriate in this context where the theory can be described as a nonlinear sigma model
with a Wess-Zumino-Witten term. In this case, the basic field variables of the action

parametrize the coset
PSU(2,2/4) (1.1)
SO(4,1) x SO(5)’ '

as has been shown by several authors [B(]-[BJ]. It is worth emphasizing here that the

Green-Schwarz action for the superstring on AdSs x S° is not strictly a coset o-model
(unlike the bosonic theories) due the presence of the fermionic Wess-Zumino term as well
as the local k symmetry. The properties of the coset and its grading structure played a
key role in construction of the nonlocal currents [PJ]. Recently, Hatsuda and Yoshida [BJ]
have taken into account the presence of the Wess-Zumino term and constructed explicitly
the nonlocal charges as well as the yangian algebra associated with the system. Their
work involves a euclideanized supergroup GL(4]|4) and the sigma model is defined on a
superspace.

In studying the integrability properties of a sigma model, the basic object is a one
parameter family of currents which satisfies a zero curvature condition. There is, how-
ever, an arbitrariness in the choice of this current. In construction of objects such as the
monodromy matrix, it is the current invariant under a generalized inner automorphism of
the symmetry group that plays a crucial role [B4]. This symmetry is, however, lacking in
the one parameter family of currents constructed in [RJ]. In this paper, therefore, we have
tried to study the integrability properties of the superstring on the AdSs x S® background



keeping the conventional automorphisms manifest. We construct a one parameter family of
currents which manifestly is invariant under the inner automorphism of the graded group
Z4. In spite of the fact that the sigma model in this case is not a genuine coset space
model, we find a generalization of the inner automorphism to Z3°® which is relevant in the
construction of the monodromy matrix. We systematically construct the nonlocal charges
from this current. Using the conventional sigma model action (in terms of currents) with a
Wess-Zumino-Witten term in the coset space [BF, we carry out the hamiltonian analysis of
the system and determine the basic Poisson brackets of the current (this generates the yan-
gian algebra) which is essential in the construction of the algebra of the transition matrix
and which has a closed form. We point out the difficulties that arise due to the presence of
the £ symmetry in the action. In addition, we clarify some subtleties associated with the
Virasoro constraints of the theory in this case.

The paper is organized as follows. In section ] we recapitulate the basic properties of
the type IIB Green-Schwarz superstring action on the AdSs x S° background. In section f§
we present essential properties of the superalgebra PSU(2,2|4). In section ] we introduce a
one parameter family of currents which satisfies the vanishing curvature condition and has
a form that reveals the special Z3° automorphism. In section ] we construct the hierarchy
of conserved nonlocal currents. In the final section | we perform the hamiltonian analysis
and calculate the Poisson bracket of the flat currents. We discuss various aspects of the
results as well as future directions for this analysis and conclude with a brief summary in
section .

2. Superstring on AdSs x S°

We summarize here some of the basic properties of the type IIB Green-Schwarz superstring
action on the AdSs x S® background [B0, BT, B, B7]]. The superstring can be defined as a
non-linear sigma model on the coset superspace

G PSU(2,2[4)
H  SO(4,1) x SO(5)

(2.1)

The classical action has the Wess-Zumino-Witten form
1 s o
S = ~3 / d*o\/—gg" (LfL?) + i/s” (L“ A Llfy“ A LJ> , (2.2)
oM3 M3

where ¢ ,4,7 = 0,1 represents the worldsheet metric, s’/ = diag(1, —1),1,J = (1,2);4 =
(a,a") with a = (0,...,4) and o’ = (5,...,9) corresponding to tangent space indices for
AdSs and S° respectively. We use the convention that repeated indices are summed. The
supervielbeins L* and L’ are defined as

: I
Il — <<s1njl\1/l./\/(> D9> ’
sinh M /2

A A o 2
LF = et (z)da — ify" <<T/z> D6> , (2.3)




where

(M) = K (-’Y“OKéJ’Ya + ’YaleKéJ’ya/) + %GK‘] (’y“beléK’y“b - ’y“/bIHIéKfy“/b/) . (24)

Here (2#,67) denote the bosonic and fermionic string coordinates in the target space,

(e‘i,w&i’) are the bosonic vielbein and the spin connection respectively and the covariant

differential is given by

(Do) = [5” <d - % wai’m) — ¢!/ 6‘%] 07 (2.5)

The equations of motion following from the action (R.3) take the forms

\/:Qg”'<VQL§—kl€bL§)~+ie“sIJEf7“Lj —0, (2.6)
V99" (Vz’L;’LI + L?,b,L?) — eIy L] = 0, 27)
(2s +in 1) (V=96 — 951y 1] = 0, (2:8)

with V; representing the covariant derivative on the worldsheet. We will use the conformal
gauge /—gg” = 1" in which case the equations of motion (2.6)-(R.§) simplify, but should
be complemented with the Virasoro constraints

ara_ 1 M rara

To consider the integrability properties of the sigma model we will need some properties
of the superalgebra PSU(2,2|4) which we review in the next section.

3. Properties of PSU(2,2|4)

In this section we discuss some of the essential properties of the superalgebra PSU(2,2|4)
B and B []]. Since we are interested in a supersymmetric field theory, we assume that
the algebra is defined on a Grassmann space, PSU(2,2[4; CBr). We represent an element
of this superalgebra by an even supermatrix of the form

AX
G:(YB), (3.1)

where A and B are matrices with Grassmann even functions while X and Y are those with
Grassmann odd functions, each representing a 4 x 4 matrix. (An odd supermatrix, on the
other hand, has the same form, with A and B consisting of Grassmann odd functions while
Xand Y consisting of Grassmann even functions.)

An element G (see B.1]) of the superalgebra PSU(2,2|4; CBp,) is given by a 8 x 8 matrix,
satisfying

GK + KG* =0, (3.2)
trA=trB =0, (3.3)
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0 Iy
dimensions respectively. The i is defined by

where K = ( > and ¥ = 03 ® Iy with I, I, representing the identity matrix in 2 and 4

Gt =GT, (3.4)

where T denotes transposition and f is a generalization of complex conjugation which acts
on the functions ¢ of the matrices as

A c‘ (for ¢ Grassmann even) (3.5)
—ic* (for ¢ Grassmann odd)
The condition (B.2) can be written explicitly as
YAT+Ax =0, B +B=0, X-iXY'=0. (3.6)

The essential feature of the superalgebra PSU(2,2(4) is that it admits a Z4 auto-
morphism such that the condition Z4(H) = H determines the maximal subgroup to be
SO(4,1) x SO(5) which leads to the definition of the coset for the sigma model. (This is
the generalization of the Zy automorphism of bosonic sigma models to the supersymmetric
case.) The Z4 automorphism ) takes an element of PSU(2,2|4) to another, G — Q(G),

such that
JATT —JYy7TJ
Q(G) = 3.7
(@) (JXTJ JBTJ >’ (3.7)

where J = (? _01>. It follows now that Q*(G) = G.

Since Q* = 1, the eigenvalues of Q are ¥ with p = 0,1,2,3. Therefore, we can
decompose the superalgebra as

G =Ho®Hi ®Ha @ Hs, (3.8)
where H,, denotes the eigenspace of €2 such that if H, € H,, then
Q(H,) =""H,. (3.9)

We have already noted that Q(Hp) = Ho determines Hoy = SO(4, 1) x SO(5). Ha represents
the remaining bosonic generators of the superalgebra while H1, H3 consist of the fermionic
generators of the algebra. (In a bosonic sigma model, Hg, Hs are represented respectively
as @, P.) The automorphism also implies that

[Hpv Hq] € H;D—I—q (mod 4)- (310)

The space H,, is spanned by the generators (¢,)4 of the superalgebra so that we can
explicitly write
G = (Hp)A(tp)A
= (Ho)" (to)m + (H1)™ (t1)ay + (H2)*(t2)a + (H3)**(t3)as ; (3.11)



where A = (m, a1, a,as) take values over all the generators of the superalgebra, (Hp)™
and (Hz)® are Grassmann even functions, while (H;)*! and (H3)*? are Grassmann odd
functions. The generators satisfy the graded algebra PSU(2,2(4),

[(tp)A, (tq)B] = fABC(tp—i—q)C ) (3-12)

where p + g on the right hand side is to be understood modulo 4.
The Killing form (or the bilinear form) (H,, H,) is also Z, invariant so that

(Q (Hp) , € (Hq)> = <Hpv Hq> : (3.13)
This implies that
it (Hvaq> = <Hvaq>7 (3.14)
which leads to
(Hp,Hg) =0 unless p+¢=0 (mod 4). (3.15)

Since the supertrace of a supermatrix M is defined as

trA — trB (if M is an even supermatrix)

3.16
trA + trB (if M is an odd supermatrix) (3.16)

str(M) = {

and the metric of the algebra is defined as Gap = str((t,)a(ty)B), the above relation also
implies that only the components G, Gab, Gajay = —Gaga, Of the metric are non-zero.
The structure constants possess the graded anti-symmetry property

fEsGpe = —(—)AP R \Gpe = —(—)PIC fR.Gps., (3.17)

where |A| denotes the Garssmann parity of A, namely, |A| is 0 when A is m or a, while |A|
is 1 when A is o1 or as.

4. The flat current

Let us consider the map ¢ from the string worldsheet into the graded group PSU(2,2[4).
In this case, the current 1 form J = —g~'dg belongs to the superalgebra and therefore can
be decomposed as

J=—¢gldg=H+P+Q" +@Q?, (4.1)

where, in terms of our earlier notation, we can identify
H=H,, Q'=H, P=H, Q*=H0H;. (4.2)

From the definition of the current in ([L.1]), we see that it satisfies a zero curvature condi-
tion

dJ —JAJ=0. (4.3)

In terms of the components of the current ([£J), the equations of motion can be written

as B3

d*P:*P/\H+H/\*P+%(QAQ’+Q’AQ),



0=PA(Q-Q)+(Q-Q)AP,
0=PAQ-"Q)+(Q-"Q)AP, (4.4)

where * denotes the Hodge star operation and we have defined Q = Q' + Q%, Q' = Q' —
Q*.

Let us next introduce a one parameter family of currents J(t) = —g~1(¢)dj(t) where ¢
is a constant spectral parameter (here we are suppressing the dependence on the worldsheet
coordinates)

t2
1—t2

R 1+t 2t 1

/
4.
et e Q' (4.5)

such that .J (t =0) = J. It is easy to check that the vanishing curvature condition for this
new current

dJ—JAJ=0, (4.6)

leads to all the equations of motion (f.4) as well as the zero curvature condition ([L.3).

It is worth comparing the form of this one parameter family of currents ([L5) with
that for a (bosonic) two dimensional sigma model obtained from the string effective action
dimensionally reduced from D-dimensions [{]. In this case, the sigma model coupled
to gravity is defined on the symmetric space % = % where d = D — 2 and the
corresponding one parameter family of currents has the form (conventionally in a bosonic
sigma model § is written as V, but we are using the same letter for ease of comparison)

A 1+ ¢ 2t

_ ~—1 ~ _ *
J(t) = g7 Odg(t) = H + 15 P+ P, (4.7)

where the components of the currents belong to the appropriate spaces. This has the
same form as () if we set the fermionic generators to zero (the groups are, of course,
different). However, apart from the presence of the fermionic degrees of freedom in the
AdSs5 x S° theory, the essential difference between the two theories lies in the fact that
when we dimensionally reduce the string effective action to two space-time dimensions,
it describes a sigma model coupled to gravity. As is well known, in such a theory the
spectral parameter assumes space-time dependence for consistency. Namely, the consistent
zero curvature description in this case requires that the spectral parameter satisfies the

Oup = _%gaﬁaﬁ <e-¢ (t + %)) , (4.8)

where ¢ is the shifted dilaton and p = e~?. In contrast, in the case of AdSs x S°, the
spectral parameter is a global parameter.

condition

There is, however, an important symmetry which the one parameter family of currents
in both the theories share. In the bosonic sigma model coupled to gravity, the theory is
invariant under a generalization of the symmetric space automorphism (which is Zy as we

am = (" (1)) (49)

have alluded to earlier)



This symmetry is essential in the construction of the monodromy matrix M = §(t)g (%)
B4, (3] which encodes integrability properties and is related to the transition matrix [},
[i4]. In the case of the superstring on the AdS5 x S° background, the coset (R.1]) is not
exactly a symmetric space. We can, however, still define a generalization of the Z4 auto-
morphism of the superalgebra to Z$° in a manner analogous to ([.9). Explicitly, it is easy

to check that the one parameter family of currents is invariant under (we choose /—1 = 1)

1
t— —,
H — H, P— —P,
Q — —iQ, Q — —iQ. (4.10)

Consequently, this current is different from the one constructed in R3] which does not have
the necessary invariance property under the inner automorphism. (There is an arbitrariness
in the choice of the one parameter family of flat currents and we have constructed one that
has the desired behavior under the inner automorphism of the symmetry algebra which
parallels the construction in conventional sigma models.) This symmetry will allow us to
define the monodromy matrix for the present case in a way similar to the symmetric space
bosonic sigma model [iJ] and is, consequently, quite important. We note that one of the
fermionic constraints in (fL.4) is, in fact, a consequence of this Z3° symmetry.

5. Nonlocal currents

The sigma model action which leads to the equations of motion (f.4) has the form
1
S:i/str(P/\*P—Ql/\Cf), (5.1)

where P, Q', Q? are defined in ([.1]). The first term in the action (f.]) is similar to that in
the principal chiral model, while the second represents the WZW term [B5]. This action
is manifestly invariant under a local (gauge) transformation g — gh where h € SO(4,1) x
SO(5) is a local function, since under such a transformation

H — h'Hh—h"'dh,

P— hlPh,

QY — h'QY h. (5.2)

The action is also invariant under a global transformation (left multiplication) g — wg

where w € PSU(2,2/4) and the corresponding conserved Noether current for this left trans-
lation can be obtained from the action (5.1) to be

) 1 ‘

iV =p+3¢, a7 =0. (5-3)
(The meaning of the superscript will become clear shortly, namely, it is the zeroth order
current in the infinite hierarchy of conserved currents.) Here we have adopted the notations

of [P for the left and right invariant currents and the relation
x=gXg ", (5.4)

where lower and upper case objects denote left and right invariant quantities respectively.



We can now determine the conserved non-local charges associated with the system
easily following [f] and [, i§). Let us note that the covariant derivative

Dy =08, — Ju(t), (5.5)
satisfies the zero curvature condition
Dy, D] =0. (5.6)

As a result, the equation
Dyx =0ux —J.(t)x =0, (5.7)
is integrable. It is convenient to rewrite (5.7) in the following equivalent form

X = ST (DX — LT + 1D, (5.8)

Using the form of ju(t) given in (fL.F), we can write (5.§) as

e (0¥ —HY —P" - Q") x = (5.9)
1 t ’ 1 N\ Y v
:t<aﬂ_Hﬂ+Pﬂ_ﬁQﬂ_ﬁ <Q>p+mgwj (Q) +S(t)EuVQ )X,
where S(t) can be determined from
L s (5.10)
e | |
Let us note that
H! + P! 4 Q" = —571(0)0"3(0) = g~ %g = J*(0), (5.11)
so that we can write (p.1(]) in the form
Euug_lau (gX) = (512)

1 t / 1
=% = @), =

We can now expand Y in a power series in the spectral parameter as

=t <8M—Hu + P, Epv (Q')V + S(t)sWQ”> X

x=>_ t"x" . (5.13)
n=0

Substituting this into (p.13), we obtain

o 0o 1 |
* \/11_—1525#” (Q/>V + S(t)%uQ”}x("‘l) (5.14)



Furthermore, expanding ﬁ as a power series

1 _ 12 34 _ n
1_t2—1—|—§t —|—§t+---—z Fot™, (5.15)

n

we can iteratively determine all the x()’s from (F.14).
We note that the lowest order term in powers of ¢ (namely, t°) in (F.14) gives

ey 0" <9X(_1)) =0 (5.16)
or, gl gx Y + 0V = 0. (5.17)
This implies that gx(~1) is a constant and it is convenient to choose
_ 1
o7V =2, (5.18)
for later purposes. In the linear order in ¢, Eq. (5.14) leads to (after using (5.17))
1w 1 v _
fug ™0 (x0) = 2 <Pu+ 5 (@) >x< ) (5.19)
1 A
= <PM + §€MV(Q,) > g, (5.20)
and so on.
We can now define the conserved currents associated with the theory as
i = 0 <gx(")) . (5.21)
This leads to the identification
i = ewd <g><(‘”) =0,
0 — o g (@) = 1 AP
G = ewd” (97 ) = g | Pt 5ew(@) ) g7 (5.22)
Upon using (p.4), the second current takes the form
. 1 v
i = pu+ Hew (@) (5.23)

2

This is precisely the Noether current (5.J) determined earlier which is conserved. Similarly,
in the second order in ¢, we obtain

i = €0 <g><(1)>

. v ) 1 D
= £ (J(O)> + 250 [gx(o)] + et~ 50 (5.24)
which can also be written in an explicitly non-local form using (5.22) as
. ) v . 1. 1 D
];(11) = Euv <J(0)) + 23;(10) (6 1](()0)> + 25 d — 5 (5.25)

It is easy to check (using the form (F.24)) that this current is indeed conserved, 9 j,(}) =0.
Using this iterative procedure we can construct all the conserved currents in the hierarchy
which are left invariant. The corresponding algebra of the non-local charges is expected to

satisfy a yangian algebra [27, BJ].

— 10 —



6. The hamiltonian analysis

The calculation of the algebra of charges can be carried out once the basic Poisson brackets
of the theory have been determined. Basically, we are interested in the Poisson algebra
of the transition matrices. Let us recall that the transition matrix 7'(o1,09,t) is defined
using the current ([[.F) which satisfies the zero curvature condition as

T(01,02,t) = g~ (o1, )g(02,1) = P (el 47 20). (6.1)

Here, we have put back the explicit dependence on the worldsheet coordinates whose spatial
component is denoted by o. (The transition matrix is simply an open Wilson line along a
spatial path. The spatial coordinate ¢ is periodic for the AdS5 x S® string and this causes
some technicalities in defining the charges. We avoid such questions by working directly
with the transition matrix.) It follows now [i9, that

1 2 o1 ol 1 2
{T(01,00,t1), T (0], 0h,t2)} = / dcr/ do’ <T(01,0,t1),T(ai,J/,t2)> X
o2 ol

! 2 1 2
X {Jl(O',tl), Jl(O'/,tg)} <T(O’, Ug,tl),T(O'/,O'é,tg))(ﬁ.Q)

We note here that (p.2) represents a matrix Poisson bracket written in an index free tensor
notation [I9] (which we will follow in our analysis) defined as

1 2
A=A®I, B=I®B, (6.3)

where
(A® B)ijkm = AiBjm . (6.4)

It follows from (B.3) and (f.4) that
(A® B)(C @ D) = (=) (AC @ BD). (6.5)

Furthermore, from (.9), we see that in order to compute the Poisson bracket between the
1 2

transition matrix, it is necessary to evaluate {J)(o,t1),Ji(0",t2)} which we can do only
after carrying out a hamiltonian analysis of the model.

The hamiltonian analysis [] can be carried out starting from the action (b.1)) in a way
similar to [i4]. We treat the space component of the current J,, as the dynamical variable.
The zero curvature condition (f.J) then allows us to determine the time component of the
current as

Jo=D""(0oh), (6.6)

where (we are identifying Jy = a%,(?l = a% corresponding to the two worldsheet coordi-

nates)
D=0 —[h,]. (6.7)

— 11 —



The canonical momentum can now be obtained from an arbitrary variation of the ac-
tion (b.1)) satisfying (f.6) and leads to (we use the left derivatives for fermionic degrees of
freedom)

1 1
I, =Ny el ellpelly =-D! <P0+§Qi—§cg§>. (6.8)

In components (see section []), the basic canonical Poisson bracket structures are given by
(at equal time)

{P{(0). (ITp), (o)} = 85d(0 — o), (6.9)
{H]'(0). (i), (o)} = 0760 — o). (6.10)
@Y™ (0), (TTg2) , (o)} = ~0515(0 — o), (6.11)
(@)™ (0). (Tgn) , (o)} = ~0328(0 — o). (6.12)

The extra minus sign in (6.11]) and (B.13) arises as a result of the definition of the generalized
Poisson brackets involving fermionic systems [{j]

OF 0G  OF 0G (—)er olFola n olForG
oq' Om;  Om; O¢’ 00« om, = Om, 002 |’
where the superscript L represents left derivation while er denotes Grassmann parity of
F.

{(F,G} = (6.13)

Decomposing relation (@) into the appropriate subspaces, we obtain

Py = —0illp + [Hy, Tp] + [P, Ty + [Q1, en] + [QF, M), (6.14)
¢1 = —Olly + [Hy, ) + [P, 1p] + [Q, Hg2] + [@QF, ] ~ 0, (6.15)

1
0y = —§Qi — Ol + [Hy, U] + [P, Tge] + [Q1, ] + [QF,11p] ~ 0,  (6.16)

1
3 = 5@% — O\lg2 + [Hy, Hge] + [P, ] + [Q1,T1p] + [QF, ] ~ 0. (6.17)

Since Py contains time derivatives (see (p.6))), the first relation can be used to express ve-
locities in terms of canonical momenta. The last three relations, on the other hand, define
primary constraints of the theory. In particular, the first constraint (f.17) is the generator
of gauge transformation (f.9). On the other hand, as we will see the last two fermionic con-
straints give rise to the k-symmetry. The three primary constraints (5.17), (f-16) and (6.17)
should be supplemented with the standard Virasoro constraints, which in our notation take

the forms
Y4 = % str(PE + P?) ~ 0, (6.18)
p5 = str(FoP1) =0, (6.19)
and can also be written as
i =str(Py+ P)*~0. (6.20)

The Poisson brackets (6.9), (6.10), (b.11]) and (p.13) can be written in the index free
tensor notation as

{Pio).11v(e) | = il - o),
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1
{ %(a),ﬁ@(a')} = Quud(o — o), (6.21)

where we have introduced the Casimir operators

Qp = t, @, G| Qi = t), @ty G
Qle =1q, ® tazGalaz R QQ21 =lay &® talGazal . (6.22)

It can now be derived in a straightforward manner (using the relations ([A.]) presented in

the hppendi) that

r 2
= — |Qp, P1(0)| 6(c — o),

2
= —|Qp,Q1(0)| 6(c — '),

{ =l i)
{1130(0),6;%(0")} = - QP,C%(U) 6(c—0'),
{ |

_ ) ]
= —|Qp,H(0)| 6(c — ')+ Qpdyd(oc — '),

{1130(0), 1230(0')} = [0 21(0)] 30— o). (6.23)

We note that there is a non-ultra local term in the Poisson brackets (6.23) (namely,
the term with the derivative acting on the delta function which in the context of integrable
systems is called a non-ultralocal term, while it is known as a Schwinger term in field the-
ory. We will use these two terms interchangeably.). It is well known that the presence of
such a term leads to problems in the calculation of the Poisson brackets between the tran-
sition matrices. In the bosonic case considered in [[4], this problematic term is naturally
regularized in the calculation of the algebra of transition matrices in the presence of the
dilaton field. When there is no coupling to gravity (and hence a constant spectral param-
eter), there are also several methods of regularizing the calculations and we will discuss
some of them later. We note that the presence of k£ symmetry, in the present case, also
complicates the calculations. The next step in our analysis is, therefore, to determine all
the secondary constraints of the theory and group the constraints into first class and second
class constraints. The total hamiltonian density of the theory is easily determined to be

1
Hp = str <§ (P02 + P12) + A1 + oo + /\3903) , (6.24)
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where A1, Ay and A3 denote the Lagrange multipliers corresponding to the three primary
constraints. ¢ is easily checked to be stationary while requiring the constraints s, 3 to
be stationary determines two of the Lagrange multipliers to correspond to

Ao =—-Q% X =0Ql. (6.25)

There are no additional secondary constraints and the Lagrange multiplier A is undeter-
mined corresponding to the fact that ¢; is the generator of a gauge symmetry. ¢4, @5 or
equivalently 4 can also be checked to be conserved under the hamiltonian flow. It is
important to emphasize here that unlike in bosonic models where the standard Virasoro
constraints correspond to first class constraints representing generators of reparameteriza-
tion transformations, in the present theory (in this formulation) with fermions, this is not
true. On the other hand, one can define a linear combination of the constraints as

D1 = @4 +str (A2 + A3p3) =0,
@5 = @5 —str (Aap2 — Azp3) =0, (6.26)
which can be easily checked to correspond to first class constraints and generate the repa-

rameterization transformation (of course, ¢4 corresponds to the hamiltonian).
It is straightforward to calculate the Poisson brackets between the constraints

{6100).2:0)} = = [, 51(0)] 60 = o) = 0,

{6100). 2500} = = [, 8a(0)] 60 = o) = 0,
{£10), 840"} = = [, &s(0)] 80— o) ~ 0. (6.27)

This shows explicitly that o is indeed a first class constraint as we expect. The algebra
between o and 3, on the other hand, is more complicated

1 2 | &)
{$2(0), 8200} = — | u2, (B = P)(0) | 80 = o), (6.29)
{$200), 820" } = = [Qgu. 41(0)] 80 = ) ~ 0, (6.29)
1 2 i ?
{$3(0),84(0") } = = | Qg (B + P)(0) | (0 = o). (6.30)

We see from (p.2§) and (p.3() that 2 and 3 define a non trivial algebra. These constraints
are, however, reducible because of the constraints (6.1§) and (f.19). One, therefore, has
to further decompose @9 and 3 into first and second class constraints using some relevant
projection [BJ. The resulting first class constraints will then generate the s-symmetry.
The second class constraints can be used to define the Dirac brackets. The decomposition
of 9, w3 into first class and second class components, however, is nontrivial and remains
an open question. In this paper, we attempt to calculate the ordinary Poisson bracket
between the currents which can be thought of as a first step in the complete evaluation of
the algebra of the transition matrices.
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1 2
We can calculate the desired {.Ji(o,t1),J1(c",t2)} bracket using ([£F), the relations

(6:21)) as well as (6.23). Without giving the tedious technical details, we note that the
form of this bracket takes the closed form

! 2
{Jl(a,tl), Jl(al,tg)} =

1)
=|a

Qp, Ji(o,t1)
1 2 1 2
+ &2 {Jl(@tl), 902(0')} + X2 {Jl(mtl), ws(a’)} +

(2)

+3(Qp, Ji(o,t2) | +

W @)
QH,Jl(O',tl)—i-Jl(O',tg) (5(0’—0'/)4-

2 2
1 ~ 1 <
+& {@2(0/), J1 (o, tl)} + X1 {cpg(a/), Ji (o, tl)} + Adyd(0 — o), (6.31)
where a, 3,7,&1,2 and x1,2 are functions of the spectral parameters t1,to defined as
(B s—a(Pr) _ B
T ABy— AyBy ~"\B) " 7%y
§2 = 1Cq, x2 =Dz, & =—Ch, x1=-7D1, (6.32)
A = (A1By + A3B1) Qp + (&2D1 + x102) QQzl +
+ (§1D2 + x2C01) Qg2 (6.33)

with

1+t 2t; 1+t 1—¢
A; = L Bi=—"- C;= D, = ) 6.34
T T O T (6.34)

In the bosonic limit, i.e. when one sets all the fermions to zero, this reduces to the result
of [[4]. In the presence of the fermions one has additional terms depending on &;, x; as
well as non-ultralocal terms involving A. The terms depending on &;, x; are there primarily
because we have not yet separated the constraints into (k symmetry generating) first class
constraints and second class constraints. Once this is done and the second class constraints
are used to define Dirac brackets, then, in the Dirac bracket of the currents, such terms
will be absent and the algebra will have a closed structure. The k symmetry can, in fact,
be fixed in the action as has been suggested in [B6, B7, b1, FZ]. It is also interesting to
understand the meaning of the algebra of the transition matrices on the SYM side. This
is a topic presently under study.

The presence of the A dependent non-ultralocal terms, on the other hand, leads to
a different issue. Analogous to the bosonic case considered in [[{4], one has to deal with
the fact that the non-ultralocal term in (f.23) will lead to an ambiguity in the calcula-
tion of the bracket between the transition matrix (f.4). There have been several methods
proposed to regularize this ambiguity for the PCM (principal chiral model) and other
models. They are based either on regularizing [fJ] the Poisson bracket between the cur-
rents (.31)) by defining symmetrized “weak” Poisson brackets, or by regularizing the tran-
sition matrices by introducing a "retarded” monodromy matrix [54]. Another method due
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to Faddeev and Reshetikhin [55] views the non-ultralocal terms as a consequence of false
vacuum in the classical limit and correspondingly modify the vacuum structure of the
theory.

7. Summary and discussions

In this paper, we have constructed nonlocal conserved currents for the superstring in Ad.Ss x
S5 background, investigated the hamiltonian structure and presented the algebra of the
transition matrices. It is noted that the evolution of the superstring in AdSs x S5 is
most conveniently described in Green-Schwarz formalism and the action is expressed as a
nonlinear ¢ model on the coset %. It is pointed out that superalgebra admits
a Z4 automorphism which determines the maximal subgroup as SO(4,1) x SO(5). The
model naturally contains a current satisfying the zero curvature condition.

We introduce a constant spectral parameter which enables us to define a family of new
currents such that the vanishing of curvature of these new currents leads to the equations
of motion as well as the flatness of the original current. These constructed currents, in our
formulation, are invariant under definite transformation rules which are generalizations of
the Z4 automorphism of the superalgebra. This is completely parallel to the bosonic sigma
models where this generalized automorphism is used in the construction of the monodromy
matrix and the nonlocal currents.

It is more appropriate to adopt the hamiltonian formalism to compute the Poisson
bracket algebra of the transition matrices (which can yield the algebra of the charges).
The hamiltonian analysis is carried out in a frame work where the spatial component of
the current is identified as dynamical variables and its time component gets determined
from the zero curvature condition. Subsequently, the canonical momenta are identified.
Next, the constrained hamiltonian analysis is carried out to identify the constraints and
the algebra of the constraints is presented. When we compute the Poisson bracket between
the new currents (defined with the spectral parameter) there are additional terms which
include Schwinger term (derivative of the J-function). As a cross check, if we set all
fermionic coordinates to zero, we are able to recover the algebra of such currents derived
earlier for purely bosonic o-models. However, the presence of the x symmetry makes
it difficult to separate the constraints into first and second class ones and construct the
Dirac brackets. It is necessary, therefore, to fix the x symmetry, this is presently under
study.

The presence of the non-ultralocal term in the algebra of the current leads to ambigu-
ities in the computation of brackets between the transition matrices. There already exist
proposals to regularize such terms as we have discused earlier. The essential difference
between the bosonic sigma model coupled to gravity and the present theory is that here
we have a constant spectral parameter. We note, however, that in the present theory we
do have a Z$° invariance (f.10) that leads to a symmetry under ¢ — % much like in the
bosonic case. This naturally suggests that one way to regularize the non-ultralocal terms
is to assume that the spectral parameter is a local function satisfying (f.§) (which would
correspond to having a dilaton field in the theory). This would naturally regularize [i4]
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the ambiguity in (6.9) and only at the end of the calculation one should take the limit of a

constant spectral parameter. This is an interesting possibility that needs further work and

is under investigation.
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A. Useful identities

We present here some relations that have proved useful in the text.

1,2] r 2.1 1] I 2
|:QH7P = - QP7P:|7 |:QP7H = - QPaH:|7
- 2 3 — 1 - 2 3 — 1
QQ127Q2 = - QP7Q2 5 QQ217Q1 = - QP7Q1 )
" 1] S 2 [ 1] S 2
QQ217Q2 = QP7Q2 s QQ127Q1 = QP7Q1 5
- 2] [ 1 I 2 ] [ 1
QQ127 Ql = - QHa Ql ) QQ21 ) Q2 = - QH7 Q2 )
- 1] S 2 I 1] S 2
QQ127 Q2 = QH7 Q2 ) QQ21 > Ql = QH7 Ql s
B 17 I 2 B 17 I 2
|:QQ12,H = — QQ12,H] , [QQm,H = — QQ21,H} ,
17 I 2 2] I 1
[QQu,P = — QQ21,P] , [QQu,P = — QQ21,P} ,
1] i 2 ) i
[QH, H| = — QHH] . (A.1)
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