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Abstract

The ten dimensional heterotic string effective action with graviton,

dilaton and antisymmetric tensor fields is dimensionally reduced to two

spacetime dimensions. The resulting theory, with some constraints on

backgrounds, admits infinite sequence of conserved nonlocal currents. It is

shown that generators of the infinitesimal transformations associated with

these currents satisfy Kac-Moody algebra.
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The purpose of this investigation is to unravel hidden symmetries of dimensionally

reduced string effective action in two spacetime dimensions. Recently, we have shown

[1] the existence of an infinite set of nonlocal conserved currents (NCC) for the reduced

action with some constraints. The starting point is to consider the heterotic string

effective action in ten dimensions with massless backgrounds such as graviton, dilaton

and antisymmetric tensor fields. Then, one toroidally compactifies d of its internal

coordinates and requires that the backgrounds are independent of these d coordinates. It

has been demonstrated that the dimensionally reduced effective action is invariant under

global noncompact O(d, d) symmetry transformations [2,3]. Thus in 1 + 1 dimensions

the group is O(8, 8), and its algebra is denoted by G. The infinite sequence of currents

were derived for this action with some restrictions on the backgrounds. It is well known

that Kac-Moody algebra is intimately connected with integrable systems, theories that

admit NCC and string theory [4].

We exhibit the infinite parameter Lie algebra responsible for the NCC to be the

affine Kac-Moody algebra. First, it is shown, following the work of Dolan and Roos [5],

that there is an infinitesimal symmetry transformation, associated with each of these

currents, which leave the Lagrangian invariant up to a total derivative term [6]. Then,

the existence of the Kac-Moody algebra is proved, for the problem at hand, by suitably

adopting the remarkable result of Dolan [7], derived for loop space and two dimensional

chiral models. We identify the infinite parameter Lie algebra, crucial for the NCC, to be

the affine Kac-Moody subalgebra C[ξ] ⊗ G following ref.7. Here C[ξ] ⊗ G is an infinite

dimensional Lie algebra defined over a ring of polynomials in the complex variable ξ.

A simple representation of the generators of the algebra C[ξ] ⊗ G is, M(n)
α = Tαξn,

where {Tα} are the generators of the finite parameter algebra G, and n = 1, 2, ...∞.

The generators of C[ξ]⊗G satisfy [M(n)
α ,M(m)

β ] = fαβγM(m+n)
γ , when the algebra of the
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generators of G is [Tα, Tβ] = fαβγTγ and fαβγ are the structure constants antisymmetric

in their indices and satisfy the Jacobi identity.

In what follows, we recapitulate the results of ref.2. The effective action in D̂ = D+d

dimensions (D̂ = 10 for the present case ) is,

Ŝ =
∫

dD̂x
√

−ĝe−φ̂[R̂(ĝ) + ĝµ̂ν̂∂µ̂φ̂∂ν̂ φ̂ − 1

12
Ĥµ̂ν̂ρ̂ Ĥ µ̂ν̂ρ̂]. (1)

Note that Ŝ is the bosonic part of the heterotic string effective action in critical di-

mension. Ĥ is the field strength of antisymmetric tensor and φ̂ is the dilaton. Here all

the field backgrounds to have been set to zero. We consider the theory in a spacetime

M ×K, where M is D dimensional spacetime and the coordinates on M are denoted by

xµ. The internal space, K, is d dimensional and {yα}, α = 1, 2, ..d, are the coordinates.

When the backgrounds are independent of yα and the internal space is taken to be torus,

the metric ĝµ̂ν̂ can be decomposed as

ĝµ̂ν̂ =





gµν + A(1)γ
µ A(1)

νγ A
(1)
µβ

A(1)
να Gαβ



 , (2)

where Gαβ is the internal metric and gµν , the D-dimensional space-time metric, depend

on the coordinates xµ. The dimensionally reduced action is,

SD =
∫

dDx
√
−ge−φ

{

R + gµν∂µφ∂νφ − 1

12
HµνρH

µνρ

+
1

8
tr(∂µM−1∂µM) − 1

4
F i

µν(M
−1)ijFµνj

}

. (3)

Here φ = φ̂ − 1
2
log det G is the shifted dilaton.

Hµνρ = ∂µBνρ −
1

2
Ai

µηijF j
νρ + (cyc. perms.), (4)

F i
µν is the 2d-component vector of field strengths

F i
µν =





F (1)α
µν

F (2)
µνα



 = ∂µAi
ν − ∂νAi

µ , (5)
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A(2)
µα = B̂µα +BαβA(1)β

µ (recall Bαβ = B̂αβ), and the 2d×2d matrices M and η are defined

as

M =





G−1 −G−1B

BG−1 G − BG−1B



 , η =





0 1

1 0



 . (6)

The action (3) is invariant under a global O(d, d) transformation,

M → ΩT MΩ, ΩηΩT = η, Ai
µ → Ωi

jAj
µ, where Ω ∈ O(d, d). (7)

and the shifted dilaton, φ, remains invariant under the O(d, d) transformations. Note

that M ∈ O(d, d) also and MT ηM = η. Thus if we solve for a set of backgrounds, M ,F

and φ, satisfying the equations of motion they correspond to a vacuum configuration of

the string theory.

Let us consider the reduced action, eq.(3), in 1 + 1 dimension. Note that HµνρH
µνρ

term does not contribute to the action in two spacetime dimensions. Moreover, we as-

sume that the dilaton, φ, entering the action (3) is constant. We recall that a four

dimensional action admits solitonic string solution [8,9] when the backgrounds are such

that φ = constant, Hµνρ = 0, F i
µν = 0 and the metric as well as the moduli depend

only on two coordinates. Such a theory is an effective two dimensional theory. Recently,

Bakas [10] has considered a four dimensional effective action with δc = 0, where δc is

the central charge deficit. One can interprete that the action arises from compactifi-

cation of a string effective action in critical dimensions through dimensional reduction

where M and F i
µν are set to zero ( see eq.(3)). Furthermore, the axion ( arising from

duality transformation on Hµνρ) and the dilaton can combined to define a complex field

which transforms nontrivially under one SL(2, R). Then the existence of two commuting

Killing symmetries ( that all backgrounds depend ony on two coordinates), is exploited

to derive a form of the metric such that the action is invariant under another SL(2, R)
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and the resulting theory is described by a two dimensional action. Thus, this dimen-

sionally reduced theory has a symmetry which can be infinitesimally be identified with

the O(2, 2) current algebra [10]. In contrast, in the present investigation, M , expressed

in terms of moduli G and B, is spacetime dependent and other backgrounds fulfill the

restrictions of constant φ and vanishing F i
µν . The relevant action is

S2 =
∫

d2x
√
−g

{

R +
1

8
tr(∂µM−1∂µM)

}

. (8)

Notice that, for constant φ, ∂µφ∂µφ term is absent. Since we are considering two di-

mensional spacetime, we can choose the spacetime metric gµν = eα(x,t)ηµν . Here ηµν is

the flat diagonal spacetime metric = diag (−1, 1) ( not to be confused with the O(d, d)

metric ). The Einstein term of the action in two dimensions is a topological term and it

does not contribute to the equations of motion. Thus the equations of motion associated

with the matrix M is of primary importance to us. It is more convenient to go over to an

O(8, 8) metric, σ, which is diagonal and is related to η by the following transformation:

σ = ρT ηρ, where

ρ =
1√
2





1 −1

1 1



 , σ =





1 0

0 −1



 , (9)

and matrix elements 1 stand for d × d unit matrix. Then, M → U = ρT Mρ and the U

satisfies the property: UT = U and σUσ = U−1. The action eq.(8) takes the form

S2 =
∫

d2x

{

R +
1

8
tr(∂µU−1∂µU)

}

. (10)

The equations of motion for the U are

∂µAµ = 0, Aµ = U−1∂µU (11)

and we observe that Aµ is a pure gauge. Therefore, [Dµ,Dν ] = 0, with Dµ = ∂µ +

Aµ. It is worthwhile mentioning that Aµ coincides with the vector field introduced
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in ref.1 to construct the infinite set of NCC. The equations of motion (11) and the

curvaturelessness proprties of Aµ were utilized to construct these currents by employing

the known techniques [11] for our problem.

The infinitesimal transformations, on the O(d, d) valued function U , associated with

the infinite set on NCC are given by

δ(n)U = −UΛ(n) (12)

The set of {Λ(n)} are recursively defined as

Λ(n+1)(t, x) =
∫ x

−∞

dyD0Λ
(n)(t, y) =

∫ x

−∞

dy

{

∂0Λ
(n)(t, y) + [A0(t, y), Λ(n)]

}

, (13)

with Λ0 ≡ T , T being a generic form of an infinitesimal transformation of the group G

and T can be expanded as a linear combination of the set {Tα}. Furthermore,

Λ(1) = [X1, T ] =
∫ x

−∞

dy[A0(t, y), T ] (14)

Λ(2) = [X2, T ] +
1

2
[X1, [X1, T ]] (15)

where X1 =
∫ x
−∞

dyA(t, y) and X2 satisfies the equation ∂1X2 = ∂0X1 − 1
2
[∂1X1, X1].

In what follows, we present the essential steps to construct the generators of the Kac-

Moody algebra and demonstrate the existence of the algebra for the theory described by

eq.(9). Here we adopt an elegant and economic technique due to Devchand and Fairlie

[12] to derive the algebra. Let us introduce the generating function for the Λ’s as

S(ξ) =
∞
∑

0

Λ(r)ξr (16)

using the recursion relation, eq.(12), and the properties of Aµ, we can show

(∂1 − ξ∂0)S = ξ[A0, S] (17)
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and S can be expressed as

S(ξ) = Q(ξ)TQ−1(ξ). (18)

Now Q satisfies the equation

Q(∂1 − ξ∂0)Q
−1 = −ξA0 (19)

and Q is defined as limit: Q = limN→∞QN ; with

QN = eXN ξN

..eX2ξ2

eX1ξ. (20)

We can check by explicit calculations that coefficients of ξ and ξ2 in (18) and (19) give

us equns. (14) and (15).

Moreover, it can be shown, following ref.12 that, under an infinitesimal transforma-

tion, δU = −US, the variation of the Lagrangian density (9) is

δL =
1

4
∂µǫ

µνtr[ξAν + (ξ +
1

ξ
)Q−1∂νQT ] (21)

In order to derive the algebra, first we define the generators of the transformations

and then evaluate commutators of two transformations. Now, we label each transforma-

tion with an index. For definiteness, we choose two transformations to be δαU = −USα

and δβU = −USβ ; Λ0 appearing in the expansions, eq.(16), for Sα and Sβ are taken to

be Tα and Tβ respectively and these gerators satisfy [Tα, Tβ] = fαβγTγ . Of course, we

could have chosen any two arbitrary generator Ta and Tb ∈ G; in that case each of these

generators will be expanded in terms of the basis {Tγ} and the arguments we are going

to present below will go through in that general setting too with some extra calcula-

tions. However, we have made this choice here to facilitate simplicity in computations

and bring out the essence of the arguments. Let us define following Dolan [7]

Mα(ξ) =
∫

d2yUSα

δ

δU(y)
(22)
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Then the commutator of two transformations are

[Mα(ξ),Mβ(ζ)] =
∫

d2yU [Sα(ξ), Sβ(ζ)]
δ

δU(y)
−

∫

d2yU [δαSβ(ζ) − δβSα(ξ)]
δ

δU(y)
. (23)

The variation, δαSβ(ζ), can be expressed as

δαSβ(ζ) = − ζ

ζ − ξ

{

[Sα(ξ), Sβ(ζ)] − fαβγSγ(ζ)
}

(24)

after some computations [7,12], and a similar equation holds for δβSα(ξ) with appropriate

argument and indices. Using the above relations in eq.(22), we arrive at

[Mα(ξ),Mβ(ζ)] = fαβγ

∫

d2y
U [ξSγ(ξ) − ζSγ(ζ)]

ξ − ζ

δ

U(y)
(25)

This elegant form of equation was derived in [12]. The Kac-Moody algebra is derived as

follows: Note that Mα(ξ) can be expanded in a power series in ξ as

Mα(ξ) =
∞
∑

0

M(l)
α ξl (26)

inserting the expansion eq.(27) in the commutator (28) and comparing the coefficients

of ξmζn on both the sides we arrive at the desired Kac-Moody algebra

[Mm
α ,Mn

β] = fαβγM(m+n)
γ (27)

A few remarks are in order here: The NCC constructed in ref.[1] can be expressed

in terms of U ∈ O(8, 8) and is related to the the M-matrix: U = ρT Mρ. An arbitrary

element of O(d, d) can be expressed in terms of 2d2−d independent parameters. But we

know that U , alternatively M , is determined in terms of the moduli G and B and thus has

only d2 parameters. In fact, it was shown by Maharana and Schwarz [2] that the moduli

appearing in the effective action, parametrize the coset O(d,d)
O(d)⊗O(d)

and thus the matrix

valued function U can be expanded on a basis which belong to the coset O(8,8)
O(8)⊗)(8)

. Indeed,

the NCC were derived in [1] by going over to the coset reformulation [2] of the effective
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action (9) and then construct the curvatureless vector field Aµ. Notice that if we had not

set to zero the U(1)16 gauge field action in Ŝ the resulting coset will be O(8,24)
O(8)⊗O(24)

all our

arguments will still be valid. Recently, it has been recognized that the string effective

actions in lower dimensions exhibit a rich symmetry content. The dimensionally reduced

effective theory ( coming from 10-dimensional heterotic string action with the inclusion

of 16 Abelian gauge fields ) in 4-dimensions possesses two symmetries [3]: O(6, 22; Z)

T-duality and SL(2, Z) S-duality [13]. For D = 3, the theory has a bigger invariance

group, O(8, 24; Z), and it has been shown that SL(2, Z) and O(7, 23; Z) T-duality are a

part of this group [14]. Now, we see that in two spacetime dimensions there is an infinite

dimensional symmetry algebra.

To summarise, we have demonstrated the existence symmetrty transformations of

associated with each of the infinite sequence of conserved currents in the two dimensional

effective theory. The generators of the infinitesimal transformations, associated with

these currents, satisfy Kac-Moody algebra which is very intimately related with the

T-duality group.
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