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Abstract

Ten dimensional type IIA and IIB theories with p-branes are compact-

ified to 8-dimensions. It is shown that resulting branes can be classified

according to the representations of SL(3,Z) × SL(2,Z). These p-branes

can also be obtained by compactification of M theory on three torus and

various wrappings of membrane and five brane of the eleven dimensional

theory. It is argued that there is evidence for bound states of the branes

in eight dimensions as is the case in the interpretation of SL(2,Z) family

of string solutions obtained by Schwarz.
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Recently, a considerable progress has been made in our understanding of non-

perturbative phenomena in string theory [1-4]. The extended objects, the ‘p-branes’,

have played a key role in these developments. They appear as non-perturbative solu-

tions of the low energy string effective field theory [5,6] and they have been instrumental

in providing an understanding of duality symmetry conjectures in string theory. Fur-

thermore, p-branes carrying Ramond-Ramond charges have important implications for

investigations of dualities and string dynamics in diverse dimensions [4,7]. It is now

accepted that all the five string theories are intimately related and there is only one

underlying theory and different theories are manifestations of various phases of a unique

theory.

The conjectured SL(2,Z) symmetry [8,9] of ten dimensional type IIB superstring

theory has interesting consequences. The strong and weak coupling regimes are related

by the duality similar to N = 4, D = 4 heterotic string. We recall that in type IIB

theory strings carrying two gauge field charges are related (this interchange is analogous

to T-duality) in contrast to the four dimensional case where electric and magnetic charge

carrying particle states are connected. When we consider theory toroidally compactified

to less than ten spacetime dimensions, the SL(2,Z) together with T-duality group results

in U-duality group [8].

The existence of a family of string solutions of type IIB theory in 10-dimensions

has been demonstrated by Schwarz [10] recently. Of special significance are the BPS

saturated solutions which form an SL(2,Z) multiplet, and these are labelled by a pair

of integers (m, n), where m and n are relatively prime. When the type IIB theory is

compactified on a circle and the spectrum of the D = 9 theory is compared with eleven

dimensional supergravity compactified on a torus, several interesting results follow. The

SL(2,Z) duality of type IIB theory, in D = 10, corresponds to the modular group of

the torus; moreover, one can interpret type II theories as wrapped supermembranes of

D = 11 supergravity. In sequel [11], nine dimensional type IIB theory on R9 × S1 with
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p-branes was considered along with M theory on R9 × T2. The eleven dimensional M

theory admits only a membrane and a five membrane [12]. It was found that the p-brane

tensions of type IIB theory could be related to the tensions of M theory using simple

heuristic arguments. Similar relations were also derived for the p-branes appearing in

type IIA theory. In view of these developments, it is of interest to study p-branes in 10-

dimensions, their compactifications to lower dimensions and various duality symmetries.

We shall show that the study of p-branes in eight dimensions results in revealing many

interesting features which can be understood from the perspectives of type II theories

as well as that of M theory.

In an interesting paper, Polchinski [13] has shown that p-branes carrying RR charges

can be described by an exact conformal field theory. Moreover, IIA theory admits even

p-branes and IIB theory couples to odd p-branes. Witten [14], in a beautiful paper,

has shown that the SL(2,Z) family of string solutions obtained by Schwarz [10] can

be interpreted as the bound states of strings and D-strings and the existence such of

BPS saturated (m,n) states is equivalent to existence of vacua of 1 + 1 dimensional

supersymmetric Yang-Mills theories with a mass gap. Subsequently, several authors

have have addressed the problem of bound states for D-branes [15,16].

In ten spacetime dimensions, we recall that for p-branes carrying RR charges, type

IIA theory admits even branes whereas type IIB couples to odd branes. When we turn

to NS-NS sector, both theories admit a string [17] and a five brane [18]. We mention in

passing that more detailed discussions of p-branes can be found in references [5,6,18].

If we turn our attention to the p-branes in 8-dimensions [19], we have not only to take

into account the compactification from D = 10 to D = 8, but also consider how the

branes wrap around various geometries. The M theory provides another perspective

of the p-branes in eight dimensions. Note that the eleven dimensional theory admits

only membrane and five brane; therefore the p-branes in 8-dimensions will arise from

dimensional reductions and various kinds of wrappings as we go from D = 11 to D = 8.
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To illustrate the point, let us consider membrane and 4-brane which can arise in ten

dimensional IIA theory. When we go to 8-dimensions the dimensional reduction [20] of

membrane will take a membrane to a membrane whereas the double dimensional reduc-

tion [21,6] of the 4-brane will also result in a membrane. Furthermore, the interpretation

of these two membranes in D = 11 M theory is different: one membrane arises from

dimensional reduction of membrane of this theory and another comes from wrapping of

the five brane around three torus. We shall see that when we consider the p-branes in

eight dimensions several interesting results follow.

As a definite case, let us consider the ten dimensional theory with 4-brane. The

relevant the action in ten dimensions that admits 4-brane solution is given by

Ĩ10(5) =
1

2κ2
10

∫

d10x
√

−g̃

{

R̃ − 1

2
(∂φ̃)2 − 1

2

1

6!
e−

1

2
φ̃F̃ 2

6

}

(1)

The 4-brane couples to the worldvolume as

S̃5 = T̃5

∫

d5ξ

{

√

−γ̃γ̃ij∂iX
M∂jX

N g̃MNe
1

10
φ̃ +

3

2

√

−γ̃

− 1

5!
ǫi1i2i3i4i5∂i1X

M∂i2X
N∂i3X

P∂i4X
Q∂i5X

RÃMNPQR
}

(2)

The actions Ĩ10(5) and S̃5 are defined with canonical metrics; here the fields with

tilde refer to objects in ten spacetime dimensions. Note that F̃6 refers to the 6-form

field strength and the corresponding 5-form gauge potential is denoted by Ã. In what

follows, we recapitulate the essential steps to obtain brane solution and its ’dual’ solitonic

solution, in the context of 4-brane and we refer to the review article of Duff et. al [6] for

details. While looking for the 4-brane solution, we split the coordinates as xM = (xµ, ym),

where µ = 0, 1, 2, 3, 4 and m = 5, 6....9 and the metric ansatz is

ds2 = e2Ãηµνdxµdxν + e2B̃δmndymdyn (3)

and the ansatz for the five form gauge potential is Ãµ1..µ5
= ǫµ1..µ5

eC̃ . We demand

invariance under Poincare transformations in directions 0,1,2,3 and 4 and SO(5) rota-

tional invariance in y coordinates. Then, φ̃,Ã, B̃ and C̃ are functions of y =
√

δmnymyn.
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The solution we look for is the ‘electric’ 4-brane since we solve the field equation for

combined action Ĩ10(5) + S̃5 and the solution is interpreted as an elementary brane with

e−2φ̃ = (1 + k5

y3 )
1/2 and k5 = 2κ2

10
T̃5

3Ω4

, Ω4 being the volume of four sphere. The ‘electric’

charge is given by

g
(e)
5 =

1√
2κ10

∫

S4

e−
1

2
φ̃ ∗F̃6 (4)

where S4 is the four sphere surrounding the 4-brane. Similarly, the ‘magnetic’ charge is

g
(m)
3 =

1√
2κ10

∫

S6

F̃6 (5)

g
(m)
3 is nonzero when Ĩ10(5) has a solitonic membrane solution. The solitonic membrane

is obtained by solving the equations of motion in the absence of source and adopting an

ansatz of combined P3 ×SO(7) invariance just as 4-brane had P5 ×SO(5) invariance, P

refers to Poincare transformation. The mass per unit volume of the 4-brane is

M5 =
1√
2
|g(e)

5 |e 1

4
φ̃0 =

√
2κ10T̃5e

1

4
φ̃0 (6)

φ̃0 being the asymptotic constant value of dilaton. The corresponding mass density of

the membrane is

M̃3 =
1√
2
|g(m)

3 |e− 1

4
φ̃0 (7)

where g
(m)
3 = 2πn(

√
2κ10T̃5)

−1 by the Dirac quantisation rule. We mention in passing

that the masses and charges obey the same equality as the supersymmetric case [6]

when one chooses the ratio of the coefficients of the kinetic energy term and the WZW

terms appearing in eq.(1) and (2) as adopted here. The solitonic states are also BPS

mass saturated states. We also note that if λ5 is the coupling constant (now we are in

σ-model metrics) associated with 4-brane and λ3 is the one for membrane then, one can

check that the relation (λ5)
5 = (λ3)

−3 holds.

Let us proceed to envisage the scenario in 8-dimensions when we adopt double dimen-

sional reduction to obtain a membrane from the 4-brane; however, the membrane, when
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it is dimensionally reduced will be a membrane in eight dimensions. It is convenient to

use a prescription where the determinant of the five-world-volume metric is equal to the

determinant of the three-world-volume metric which we get after the reduction. The

8-dimensional action takes the following form

I8(3) =
1

2κ2
8

∫

d8x
√−g

{

R − 1

2
(∂φ)2 − 1

2

1

4!
e−φF 2

4

}

(8)

The membrane source term becomes

S3 = T3

∫

d3ξ

{√−γγij∂iX
M∂jX

NgMNe
1

3
φ +

1

2

√−γ

− 1

3!
ǫijk∂iX

M∂jX
N∂kX

PAMNP

}

(9)

Now the spacetime indices take values M, N = 0, 1, 2, 5, 6, 7, 8, 9 (we compactified x3

and x4) and the world volume indices run over 0,1 and 2. In eq.(8), F4 refers to the 4-

form field strength associated with the 3-form potential appearing in (9) which arises as

dimensional reduction of 5-form potential, Ã, in ten dimension. The membrane tension

T3 appearing in the above equation is proportional to T̃5 with a two-volume factor as we

come down from five dimensional world volume to three dimensional one. The constant

κ2
8 = (2πR)2κ2

10 where R is the radius of the circles along directions x3 and x4. The

‘electric’ charge (we still have the source term) is given by g
(e)
3 = (

√
2κ8)

−1
∫

S4 e−φ∗ F4

and the magnetic charge is g
(m)
3 = (

√
2κ8)

−1
∫

S4 F4 and they satisfy the quantization

condition g
(e)
3 g

(m)
3 = 2πn, where n is an integer. The solution to the field equation

can obtained in a straight forward manner by demanding invariance under P3 × SO(5)

transformations and choosing appropriate ansatz for the break up of the metric (now xµ

take three values and ym go over five values) and taking the gauge potential to be 1 to

three index ǫ tensor times a function of y. It is evident that we shall have electrically

and magnetically charged membranes.

Now let us turn our attention to the study of p-branes in 8-dimensions and look for

their origin in type IIB theory in ten dimension, a path taken by Schwarz [10] while

6



considering strings in IIB theory in ten and nine dimensions. The type IIB theory,

in RR sector has 3-form and 1 5-form field strengths thus admitting a string and a

3-brane; in addition a five brane ( we shall refrain from considering higher p-branes,

p > 7, here). The NS-NS sector has a string and a 5-brane in D=10. We note that

with each p-brane we can associate a p + 2 form field strength. Again, to be specific,

let us look at the 4-branes in D = 8. When we consider RR sector, the 7-form field

strength H̃(7) will give rise to two 6-form field strengths H(6)
α , α = 3, 4 being compact

directions. From the NS-NS sector, we have four 6-form field strengths: two coming

from the 7-form in NS-NS sector and the other two come from the dual of two of the

2-form field strengths (which come from dimensional reduction of 3-form field strength

in ten dimensions). Thus there are altogether six 6-form field strengths and we conclude

that in eight spacetime dimensions there are six 4-branes . There is another way to cross

check our accountings. We know, when the type IIB theory is toroidally compactified to

8-dimensions, there are six gauge bosons: two pairs come from the dimensional reduction

of the ten dimensional metric and antisymmetric tensor fields (these are from NS-NS

sector) and two more from the antisymmetric tensor of the RR sector. Notice that the

existence of the six gauge bosons implies that there are six 0-branes. Since, in D = 8,

the dual of a 0-brane is a four brane, we should have six 4-branes. Since IIB theory has

two five branes (each from NS-NS and RR sector), in ten dimensions, the four branes

will arise when the five branes wrap around the two torus to give rise to the 4-branes we

have been discussing. How do we understand these 4-branes from eleven dimensional M

theory? There is one five brane in D=11 and we come down to a D=8 compactifying

on three torus. The 4 will give three of the 4-branes and the rest will come from the

KK modes. Now to complete the discussion of the 4-branes, let us 2 their origin from

type IIA view point since IIA and IIB theories are equivalent in 8-dimensions. In ten

dimensions, the graviton and antisymmetric tensor field originate from NS-NS sector

and the lone gauge field and 3-form potential arise from the RR sector. When we count
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the number of 6-form field strengths in D = 8, they add up to six. We can follow same

line of arguments for counting of other branes in 8-dimensions.

There are interesting consequences of these results. It is well known that when

IIB theory is compactified to 8-dimensions, the resulting fields can be grouped into

SL(3, ) × SL(2, ) representations. The gauge six gauge fields, alluded to above, belong

to (3, 2) representations and consequently, the 0-branes and their duals the 4-branes also

belong to this representations. We can adopt and generalize the arguments of Schwarz

[10], and propose that these 4-branes/0-branes will carry SL(3,Z) × SL(2,Z) charges,

and those objects carrying charges with relatively prime integer will be stable. Such

4-branes/0-branes can be interpreted as bound states of other branes. We know that

as we come to D = 8, the group is product of SL(2,Z), which was in ten dimensions

and O(2, 2;Z) which arises as a result of dimensional reduction. The O(2, 2;Z) has

SL(2,Z) × SL(2,Z) as its subgroup. One of these SL(2,Z), the one which parametrizes

B34 + i
√

detGαβ , α, β = 3, 4 combines with the SL(2,Z) coming from D = 10 and the

SL(3,Z) is a subgroup of the product of these two SL(2,Z) groups. Here B34 and Gαβ

refer to the internal components of antisymmetric tensor and the metric as we come

from ten to eight dimensions.

When we turn out attentions the membranes in 8-dimensions, we find that there

is only a pair of them. This can be seen by counting 4-form fields, after dimensional

reduction, either in type IIA, or in IIB or in M theories. It is easy to see that each of the

theory contains only two such field strengths. Therefore, we conclude that the 4-form

field strength F4 and its dual ∗F4 belong to (1, 2) representation of SL(3,Z) × SL(2,Z).

Indeed, the membranes will be characterized by a pair of integers (m, n) and the dyonic

solutions of Izquierdo et. al [18] now finds a natural interpretation in this perspective.

Now we can invoke the arguments of Schwarz, [10] for SL(2,Z) family of strings, and

claim that if a membrane carries charges (m, n), m and n relatively prime, they will be

stable. Therefore, bound states of membrane should exist as stable membranes.
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It follows from results of ref.11 that the p-brane tensions are related to the membrane

and fivebrane tensions of M theory. It is well known that the IIA theory has a simple

interpretation as the M theory on R10 × S1. If g(M) is the eleven dimensional metric,

and L = 2πR is the circumference in that metric, then the string metric, g(A), of type

IIA theory is g(A) = e2φA/3g(M) and the dilaton of the IIA theory is identified as φA

and the coupling constant is the vacuum expectation value of eφA. The set of relations

derived by Schwarz [11] are (T
(A)
1 , T

(A)
2 and T

(A)
4 denote IIA theory tensions for string,

membrane and 4-brane in what follows and similar parameters with superscript M refer

to the M-theory counter parts):

T
(A)
2 = g−1

A T
(M)
2 , T

(A)
4 = g

−
5

3

A LT
(M)
5 (10)

for the even p-branes coming from the RR sector and

T
(A)
1 = g

−
2

3

A LT
(M)
2 , T

(A)
5 = g−2

A T
(M)
5 (11)

for string and 5-branes in the NS-NS sector. Therefore, when we come down to D = 8,

the tensions of four branes and two branes can be expressed in terms of M theory tensions

and the volume factors. It is quite interesting to see all the intimate connections not

only between IIA and IIB theories, but also with M theory in the 8-dimensional world.

It is evident that we can consider theories compactified to lower dimensions and

systematically study p-branes in those theories starting from type II theories or M theory.

Then, dualities and classification of 0-branes, strings and membranes can be studied by

adopting this procedure. Recently, membrane solutions have been obtained for type IIA

and heterotic strings in 6-dimensions. It is natural to expect that there will be many

more solutions than the types of solutions obtained by Johnson et. al [22].

To summarize, we have studied p-branes in 8-dimensional theory from compacti-

fication of ten dimensional type II theories. They can be viewed from the M theory

perspective, where the eleven dimensional theory is compactified to 8-dimensions. The
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appearance of branes, classified according to SL(3,Z) × SL(2,Z), tells us that we expect

to have stable 0-branes as well as 4-branes when their charge assignments satisfy suitable

constraints and from these considerations, we can conjecture that there is evidence for

stable bound states of such branes. Our results can also be viewed as a way to verify the

predictions of U-duality [8]. Furthermore, we have shown intimate connections between

the type II theories and the M theory in these studies of p-branes and we demonstrated

simple and elegant descriptions of the eight dimensional p-branes from the view point

of M theory.

Acknowledgement

I would like to thank E. Witten for valuable discussions. I am thankful to John Schwarz

for sharing his insights of M theory and for his constant encouragements throughout this

work and to K.Intriligator for carefully reading the manuscript. The gracious hospitality

of E. Witten and the Institute for Advanced Study is gratefully acknowledged. This work

is supported by NSF Grant PHY 92-45317.

10



REFERENCES

[1] E. Witten, “Some Comments on String Theory Dynamics”; Proc. String ’95, USC,

March 1995, hep-th/9507121.

[2] A. Sen, Int. J. Mod. Phys. A9(1994)3707, hep-th/9402002.

[3] J. H. Schwarz, Lett. Math. Phys. 34(1995)309, hep-th/9411178.

[4] E. Witten, Nucl. Phys. B443(1995)85, hep-th/9503124.

[5] C. G. Callan, J. A. Harvey and A. Strominger, Proc. of 1991 Trieste Spring School

on String Theory and Quantum Gravity; G. T. Horowitz, Proc. of 1992 Trieste

Spring School on String Theory and Quantum Gravity, hep-th/9210119; P. K.

Townsend, “p-brane Democracy”, Proc. PASCOS/ Hopkins Workshop, March 1995,

hep-th/9507048.

[6] M. J. Duff, R. R. Khuri and J. X. Lu, Phys. Rep. C259(1995)213, hep-th/9412184.

[7] P. K. Townsend, Phys. Lett. 350B(1995)184 hep-th/951068.

[8] C. Hull and P. K. Townsend, Nucl. Phys. B438(1995)109, hep-th/9410167.

[9] M. B. Green and J. H. Schwarz, unpublished.

[10] J. H. Schwarz, Phys. Lett. 360B(1995)13, hep-th/9508143; J. H. Schwarz, “Super-

string Dualities” CALT-68-2019, hep-th/9509148.

[11] J. H. Schwarz, “The Power of M Theory”, RU-95-68, CALT-68-2025, hep-

th/9510086.

[12] M. J. Duff and K. S. Steele, Phys. Lett. 253B(1991)113; R. Guven, Phys. Lett.

276B(1992)49.

[13] J. Polchinski, “Dirichlet Branes and Ramond-Ramond Charges”, hep-th/9510017.

11

http://arXiv.org/abs/hep-th/9507121
http://arXiv.org/abs/hep-th/9402002
http://arXiv.org/abs/hep-th/9411178
http://arXiv.org/abs/hep-th/9503124
http://arXiv.org/abs/hep-th/9210119
http://arXiv.org/abs/hep-th/9507048
http://arXiv.org/abs/hep-th/9412184
http://arXiv.org/abs/hep-th/9410167
http://arXiv.org/abs/hep-th/9508143
http://arXiv.org/abs/hep-th/9509148
http://arXiv.org/abs/hep-th/9510086
http://arXiv.org/abs/hep-th/9510086
http://arXiv.org/abs/hep-th/9510017


[14] E. Witten, “Bound Sates of Strings and p-branes” IASSNS-HEP-95-83, hep-

th/9510135.

[15] M. Bershadsky, V. Sadov and C. Vafa, “D-Strings and D-Manifolds, hep-th 9510225;

M. Li, “Boundary States of D-branes and Dy-Strings”, hep-th/9510161.

[16] A. Sen, A Note on Marginally Stable Bound States in Type II String Theory, hep-

th/9510225 and “U-duality and Intersecting D-branes”, hep-th/9511026.

[17] A. Dhabolkar, G. W. Gibbons, J. A. Harvey and F. Ruiz Ruiz, Nucl. Phys.

B340(1990)33; A. Dhabolkar and J. A. Harvey, Phys. Rev. Lett. 63(1989)478.

[18] A. Strominger, Nucl. Phys.B343(1990)167; C. G. Callan, J. A. Harvey and A.

Strominger, Nucl. Phys. B359(1991)611; G. T. Horowitz and A. Strominger, Nucl.

Phys.B360(1991)197; M. J. Duff and J. X. Lu, Phys. Lett. 253B(1991)409.

[19] p-branes in 8-dimensions have been discussed in M. J. Duff and J. X. Lu, Nucl. Phys.

B416(1994)301; E. Bergshoeff, H. J. Boonstra and T. Ortin, “S-duality in type

II String Theory”, hep-th/9508091; P. K. Townsend, Phys. Lett. 354B(1995)247;

J. M. Izquierdo, N. D. Lambert, G. Papadopoulos and P. K. Townsend, “Dyonic

Membranes”, hep-th/9508177.

[20] J. Maharana and J. H. Schwarz, Nucl. Phys. B390(1993)4; S. Hassan and A. Sen,

Nucl. Phys. B375(1993)103. For a recent review see A. Giveon, M. Porrati and E.

Ravinovici, Phys. Rep. C244(1994)77.

[21] M. J. Duff, P. S. Howe, T. Inami and K. S. Stelle, Phys. Lett. 191B(1987)70.

[22] C. V. Johnson, N. Kaloper, R. R. Khuri and R. C. Myer, “Is String Theory a Theory

of Strings?”, hep-th/9509070.

12

http://arXiv.org/abs/hep-th/9510135
http://arXiv.org/abs/hep-th/9510135
http://arXiv.org/abs/hep-th/9510225
http://arXiv.org/abs/hep-th/9510161
http://arXiv.org/abs/hep-th/9510225
http://arXiv.org/abs/hep-th/9510225
http://arXiv.org/abs/hep-th/9511026
http://arXiv.org/abs/hep-th/9508091
http://arXiv.org/abs/hep-th/9508177
http://arXiv.org/abs/hep-th/9509070

